
MATHEMATICS OF  COMPUTATION,   VOLUME   28,   NUMBER   127,   JULY   1974,   PAGES   743-755

A Comparison of Some Numerical Methods for Two-Point

Boundary Value Problems *

By James M. Varah

Dedicated to the memory of G. Immerzeel

Abstract. In this paper we discuss and compare two useful variable mesh schemes for linear

second-order two-point boundary value problems: the midpoint rule and collocation with

cubic Hermite functions. We analyze the stability of the block-tridiagonal factorization for

solving the linear systems, compare the amount of computer time required, and test the

methods on some particular numerical problems.

1. Introduction. Recently, there has been a great deal of interest in "global"

methods for the numerical solution of two-point boundary value problems. By this,

we mean methods which find a solution of the form

(1.1) «<">(*) = 2 q,4s(x),

where the {<j>j{x)} are piecewise polynomials. Most of the work reported on these

methods deals with the theoretical aspects, and it is our purpose here to report on

the computational aspects, in particular, to compare the most economical computa-

tional versions of these methods with appropriate finite-difference methods. This is

not meant to be an all-encompassing survey; rather, a comparison between some

computationally feasible schemes on the same problems.

We will fix our attention on the linear second-order equation

U> = y" + p{*)y' + q{x)y = /(*),

ay{a) + ßy'{a) = g0,       a'y{b) + ß'y'(b) = g,.

Define the mesh partition a = x0 < x. < ■•• <xm = b, and let h = max|x1 + , - xt\.

Of the global methods, the most attractive computationally is the collocation method

since no quadrature sums are required (see [7] for a detailed comparison). In particular,

deBoor and Swartz [2] have shown that collocation at the two Gaussian points within

each interval ix¡, x¡+l) with piecewise Hermite polynomials of degree 3 gives a method

of order 4.  This defines the coefficients  {aA in (1.1) by the linear system

Ltfi*(%) =/(%),       i= 1, ...,m,j= 1,2,

where £,i, £,2 denote the two Gaussian points in {x¡-X,x¡)-
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The corresponding finite-difference method used should have the same versatil-

ity and accuracy; thus, we will use the well-known midpoint rule popularized by

Keller [4]. This is second-order accurate for any mesh partition, and can be

extended to a method of order 4 by one extrapolation. This method is normally

derived from finite-difference equations, but, in Section 2, we will show that it is

equivalent to a particular discrete Galerkin method.

Both these methods are 0(A4) and both solve explicitly for approximations to

{u{x¡),u'{x¡)}, i = 0, ..., m, if we use a natural basis for the cubic Hermite

polynomials. In Section 3, we discuss the form of the linear systems generated by

these methods, and their solution via block-tridiagonal factorization. In particular,

we show that the factorization is stable without pivoting. Then, in Section 4, we

compare the amount of work required to set up and solve these systems, and also

compare collocation with higher-order piecewise polynomials and more extrapola-

tions of the midpoint rule. Finally, in Section 5, we give some results for the OQZ)

methods on some particular numerical examples.

Both of these methods (collocation and midpoint rule) can be used on more

complicated problems, e.g. first-order systems of two-point boundary value prob-

lems, and nonlinear problems, but we feel that this would not change the

comparison greatly.

2. The Midpoint Rule as a Global Method. The midpoint rule is usually defined

for a first-order system of equations (see Keller [4]). In this form, it is easily seen as

a collocation method for the system using piecewise linear functions (see Russell

[5]). However, for our Eq. (1.2), it can also be viewed as a discrete Galerkin method.

Consider (1.2) in selfadjoint form with homogeneous boundary conditions:

{r{x)u')' - s(x)u =/,

u{a) = u{b) = 0.

Then the midpoint rule is defined by first forming the equivalent first-order system

v' = su + f

and then differencing across each mesh interval and averaging, so the approxima-

tion is second-order accurate. This gives

bj   , s
UJ   =   Ul-\  + Tr-W + VJ-i>>

(2.2) 2rj-l/2

h
vj = Vj-x + -rjsj_\/2{uj + Uj-x) + hjfj_l/2

fory = 1.m, and, of course, u0 = um = 0. Here w, = u(xj), h¡ = x¡ — x¡-x, and

5-1/2 = r{xj - Ay/2). Although this is a finite-difference method, we can consider it

a global method if (for example) we let the {uf) be the coefficients of a piecewise

linear or "roof function" expansion. (Indeed, for the original formulation (1.2), the

{uj} and [v/) together can be considered as the coefficients of a piecewise cubic

Hermite polynomial basis; we will use this fact later.) Now, consider the Ritz-
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Galerkin method for (2.1). This finds as a solution, u(JV) = 2 Ç,-<£,•(*), where the

coefficients {c,} satisfy

Ac = b,

(2-3) çb rb
ay = - Ja  {r<t>'i<}>j + s<t>¡<t>j)dx,       b¡ = Ja ffydx.

Of course, these matrix elements cannot be evaluated exactly; instead, some

quadrature rule is applied, giving a discrete Galerkin method.

Theorem 2.1. The values {uj) obtained from the midpoint rule (2.2) are precisely the

coefficients {cj) obtained from the Galerkin method (2.3) using the midpoint quadrature

rule on piecewise linear functions.

Proof. First, consider the discrete Galerkin method. Since <i>,(x) is the normalized

piecewise linear function with support in [x,_i, xi+x ], it is easy to see that the

midpoint quadrature rule gives

_        —  rZZ!l _|_ rtZ!l _|_ hJ + [SJ+ltt   ,    V.M/2

(2.4)

hJ+x hj            4              4    '

- 5+1/2 _ bj+j,                          _ rj-x/2 _ hj
aJj+i — fj 4 sj+\/2,       Oj-ij —   n        4Ä/-i/25

_ hj hJ+x
°i ~~ 2Jj']/2 2 ■'J+V2'

Note that A is symmetric and tridiagonal.

Now consider the midpoint rule (2.2). To get an expression involving only {«,},

use the first of these equations to define vJ+l :

,    25+l/2/ >
VJ+x  =  -Vj + -r-(«,-+! - Uj)

»y+i

2^-1/2/ n . 2/;+1/2.

= ¡7-1 - -j¡-{"j - ";-i) + -jr^-{«y+i - ">)■

Now, if we add the second equation of (2.2) with indices j,j + 1, we obtain

-hi.2-s
( hj hj+\        \        hj+i

<j-X/2Uj-i ~~ I ~2Sj-\ft + ~2~Sj+\/2Íuj 2~i/ + '/2W/ + l + w+i — u/-i/

— bjfj-x/2 + hj+\fJ+l/2.

Now, substitute for (yy+i — fy-i) from above, and we have

l/2rj-\/2     hj        \ m~\i2  ,  2{/+i/2 , hj A,+1        \

\~h~ ~ V'-"2p-' - \~h~ + "vT    2^'/2 + -TSJ+V2)«J

+  \~ft~ ~YSj + \/2juj+\   —  "jJj-X/2 + "j+lJj+X/2-

But this is precisely (2.4) multiplied by 2. Moreover, the boundary conditions are

u0 = um = 0 for both schemes, so the {uj) and {cj} are identical.    Q.E.D.
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Notice that, although the form (2.4) gives a symmetric tridiagonal matrix, it is

much more work to set up this linear system than the original midpoint rule (2.2).

Perhaps other Galerkin schemes could be similarly economized by rearrangement

of the linear system.

3. Solution of the Linear Systems. The collocation method, using piecewise cubic

Hermite polynomials with natural basis and collocating at the two Gaussian points

in each subinterval, gives a linear system of the form

(3.1)

Gr,

where all blocks are 2x2 except F0 and G0 (1 X 2). Of course, the midpoint rule

gives a system of exactly the same form. An effective way of solving this system is

by block-tridiagonal factorization; i.e., we put the matrix into the form

So

Ax

Co

Cm-\

B,„

where each block is 2 X 2, and use the iteration

i/o = B0,

(3.2) L, = A,U¿\, )  .

U, = Bi-Lid-xS
1, m,

to form a block-Li/ factorization. Then, we solve the linear system by a forward and

backward substitution with 2x2 blocks.

Just as with the normal LU decomposition, we must ensure that this block-Li/

factorization is stable, i.e. ||L/||, \\U,\\ is K. Since we can rewrite (3.2) as

i/o = Bo.

U, = B,-A,U-\C,-x, i= 1, , m,
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this is equivalent to k(m,) = \\U¡\\ \\UZ{ || Si K.

Conditions for stability were given in [9, Theorem 2.2]; unfortunately, these

conditions do not hold here, so we must examine the iteration more closely.

Assume now that the problem (1.2) has constant coefficients (i.e., p{x) = q{x)

= 0) and uniform mesh h. Then both systems have the block-tridiagonal form

(3.3) B

with A = (To2), C = O B = (tX).
Lemma 3.1. The block-tridiagonal factorization (3.2) with a matrix of form (3.3)

gives explicitly U¡ = (£*) with

where

a,+i = bx + cx{e - l/r¡),       /?,-+, = b2 + c2(e - l/r¡),

rt = K'{r0 + L/{a - 1)) - L/{a - 1)        {if K # 1)

= r0 + iL {if K = 1)

and

K =
dx/d2 - e

L =
1

r0 =
1

djd2 + e' d4/d2 + e' e + (a2a0 - a\ß0)/(bAa0 - b4ß0)

e is either root of e2d2 + e{d4 - d\) + d¡ = 0, and

dx =
bx       ¿>2

A3    bt,
d2 =

b3    bi,

C\     c2

at    a2

bx    b2

a\    a2

ex    c2

Proof. The z'th step of iteration (3.2) applied to (3.3) is l/l+I = B - AU¡ ' C giving

Ui+x = C'lfbT)' with a'+i = b\- Cx8¡/y¡, ßi+x = b2- c2ô,/y,, where 8¡ = a2a¡
- axßi, y, = 64a, - A3ß,. Of course, this is a nonlinear iteration for a¡, /},, but we

can express the iteration in terms of 8¡, y,:

8¡+] = -di + di8¡/y¡, ■■    yi+, = dt + d28Zy¡.

This is still nonlinear, but if we define the new variable r¡ = l/(e + 8¡/y¡), for e a

constant, we obtain

ri+x
dx + d28¡/y¡

edx - d} + (ed2 + dA)8¡/yZ

Now, if e is defined as in the statement of the lemma,
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1 + 1
d] + d2 8¡/y¡ dt + d2{e + 8¡/y¡) - d2e

{ed2 + d4){e + Si/y,) {ed2 + d4){e + 8,/y,)

with K, L as given above. This is linear, and hence

r, = K'(r0 + L/{a - 1)) - L/(a - I),       if K ¥= I,

= Kr, + L,

= r0 + iL, if K = 1.

The expressions for ai+i, /?,+, then follow easily.    Q.E.D.

Now, to show stability of the block-tridiagonal factorization, we need only show

that the {a,}, {/?,} remain bounded and ajßi =£ b3/b4 (i.e., det (i/,-) # 0). First,

consider the midpoint rule. For our Eq. (1.2), the midpoint rule is

uj - uj-x = hj{vj + Vj-x)/2,

(3.4) vj - vj-x = -hjp{Xj_V2){vj + vM)/2 - hjq{xj.V2){Uj + «y--i)/2

+ bjf{Xj_l/2)

which for p = q = 0 and constant A gives the linear system

(3.5)

after multiplying the even rows by -2/A and the odd columns by A/2.

Corollary 3.2. Consider the midpoint rule applied to the constant coefficient

problem

y" =/(*),

qy{a) + ßy'{a) = g0,

a'y{b) + ß'y'{b) = g,,

with constant mesh size h.

(i) If ß/a ^ 0, the block-tridiagonal factorization (3.2) is stable for all A; in fact,

-1 í«,íO,l£ ßi ë 2.
(ii) If ß/a > 0, the factorization is unstable for certain values of h.

Proof. Lemma 3.1 applied to (3.5) gives
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rii = -1 +2ß/ha- 2i,

a/+i iA, A+. = i - i/ü.

If ¿8/« g 0, r¡ stays bounded away from zero for all A, so the {a,} and {/?,-} remain

bounded as above. In this case, this ensures stability because -det{U¡) = ß, - a¡

à 1, so llí/f' II, < Hi/,II, ¿ 3. Note also that if a = 0, then a, = 0, ß, = 1 for all i.
However, if ß/a > 0, we have r¡ = 0 if h = ß/a(/ + 1/2) for some i, in which case

the factorization is unstable and, in fact, breaks down.   Q.E.D.

Now consider the collocation scheme on the same constant coefficient problem.

Recall the mesh a = x0 < xx < • • • < xm = b, and recall that we must collocate

at two points £,,, £,2 in each interval (jc,_-, , x¡). Let the points be placed symmetrically

in the interval at ((*,_, + x¡)/2) ± p((x, - x,_,)/2), with 0 < p < 1 (for Gaussian

points, p = l/\/3). Then the linear system to solve is

(3.6)

o o

*2«n)    0';«,,)

o

0 0

*4«2l)        1>l(Í2,)

The {<p¡{x)} are the usual natural basis for cubic Hermite polynomials (see Schultz

[8, p. 27]). Thus, tp2i, 4>2i+x have support (x,_,,x,+i) and fafa) = 1, <py+x{xi) = 1. If
we scale successive columns by multiplying by A2, A respectively, the matrix (3.6)

becomes

Moreover, it simplifies the stability analysis if we divide successive columns by

(—6p), —1 — 3p; then the collocation matrix becomes
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(3.7)

where a = (3p - l)/(3p + 1). Since 0<p< 1,-1 < a < ï and for the Gaussian

points, o = 2 — sj3.

Corollary 3.3. Consider the cubic Hermite collocation scheme applied to the

constant coefficient problem

y" = /(*),

ay{a) + ßy'{a) = g0,

ay{b) + ß'y'{b) = g,,

with constant mesh size h, with collocation at symmetric points in each subinterval.

(i) If ß/a Si 0, the block-tridiagonal factorization is stable for all h; in fact,

0 g a,■ â 1 - a,

a - 1 ^ ß, S a - 1 - 0-/(1 - a),        if a á 0,

a - I - 0-/(1 - a) á ßi g a - 1, if a g 0.

(ii) If ß/a > 0, the factorization is unstable for certain values of h.

Proof. Applying Lemma 3.1 to (3.7), we obtain

1 - 6pß/Aa(l + 3p) + ;(1 + a)
'i

1 -a

a,+i = l/n,        ßi+x = a - 1 a/r¡.

Recall 0 < p < 1, -1 < a < J. If ß/a ^ 0, then 1/(1 - a) ^ a; < oo, giving the

bounds on a,, ß, as above. Again, we need only ensure the boundedness of

{a,}, {ß,}. Also, if a = 0, a, = 0, ß, = a - 1 for all i. However, if ß/a > 0, r¡ = 0

possibly for certain values of A and / in which case the factorization is unstable.

Q.E.D.
Of course, the above analysis only shows that the block-tridiagonal factorization

is stable for constant coefficients and constant A; however, a similar analysis could

probably be done for variable A, and the bounds may involve the mesh ratios. Also,
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for variable coefficients, the matrix elements only change by 0(A). In any case, the

stability can be monitored during the decomposition and if the intermediate

||L,||, \\U¡\\ become too large, one can shift to a partial pivoting routine.

4. Work Estimates. Now let us compare the work required (we measure this in

units of M, the average time for a multiplication or division) for the two 0{h4)

schemes. For our problem, (1.2) and the given mesh a = x0 < x{ < • • ■ < xm = b,

both schemes give a matrix of the form (3.1). The collocation scheme has the general

matrix element

(4.1) i4»(&) = */fe) + Kí) tíií) + q(í)h(l)

where the {<£,-} are the natural basis for cubic Hermite polynomials. Recall from

Section 3 that, for stability of the matrix factorization, we must scale by dividing

successive columns of the matrix by hj, h¡. Now, we can assume that the constants

used in the evaluation of <£,■(£,■), </>;(£;)> $/(£>) are done beforehand, so each element

(4.1) takes 4M (i.e., 4 multiplications/divisions). Also let E denote the time required

for evaluating p{x), q{x), and f{x) at some point. Then the total setup time for the

collocation matrix is (4M)(8m) + {2m)E. Moreover, the matrix elements have no

fixed value; this will make a difference later when we discuss the work required to

solve the system.

For the midpoint rule, the matrix elements are much easier to evaluate; if we

scale as in Section 3 (i.e., multiply row 2/ by —2/h¡, column 2/ - 1 by A/2), we have,

using the notation of (3.1),

/    '

I jq{xj-i/2)   -1 + jp{xj-x/2) t

14 2) /  ~hj+l/hj '

Gj =     hihi+x h

\-Lf1q{xi-¥.)    I + f p{Xj_xn)l

F0 = (fß),    G.-(*±r).

If we store the terms involving only the mesh sizes, the total setup time is

(3M + E)m.

Now, consider solving these systems by block-tridiagonal factorization (3.2).

The relevant operations are as follows, where we assume arbitrary elements for the

collocation matrix but use the ones appearing in the midpoint matrix (4.2):

collocation midpoint rule

solve Li{Ui-x) = A,                       6M 2M

form U, = B, - L,C,-x 2M IM

solve Ltyt_x + y¡ = f¡ 2M 2M

solve U¡x, + C¡xi+[ — y¡ 6M 3M

total for m blocks 16 Mm 8 Mm
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Of course, with the midpoint rule, we must extrapolate once to get an 0{h4)

method; this involves placing new points at the midpoints of each subinterval,

solving on the expanded mesh by the midpoint rule, and then forming the right

linear combination (-5,5) of these two solutions on the original mesh. This, of

course, involves setting up and solving a second system of exactly double the size,

so the time for the full 0(A4) method is (1 IM + E)3m + 2m (for the extrapolation),

or (35M + 3E)m.  For collocation, the total is (48M + 2E)m. This easily gives

Theorem 4.1. The midpoint rule with extrapolation is faster than collocation with

cubic Hermite polynomials on the same mesh for problem (1.2), provided E/M < 13,

where E/M is the number of equivalent multiplications required to evaluate p{x), q{x),

and f{x).
Notice that because three evaluations of the coefficient functions in each

subinterval are required for the midpoint rule, and only two for collocation, the

collocation scheme is cheaper except for quite simple functions.

Note. Recently, G. Immerzeel has observed that if the trapezoidal method of aver-

aging is used instead of the midpoint rule (see [4, p. 15]), then one extrapolation again

gives a fourth-order method, but the number of evaluations is reduced to two per interval,

the same as collocation, and the number of multiplications is not increased. So this meth-

od (which has almost identical error properties as the midpoint rule) is always cheaper

than collocation.

Another appropriate comparison of higher-order methods involves collocation

with higher degree piecewise polynomials and more extrapolations of the midpoint

rule. DeBoor and Swartz [2] show that using piecewise polynomials of degree

2n - 1, which are only C(l) at the mesh points, and collocating at the 2« - 2 Gauss

points in each subinterval gives a method of order An - 4 at the mesh points. Even

though such a method is only practical for small values of n, we can compare the

work required with the correspondingly accurate method obtained by extrapolating

the midpoint rule.

First, consider the midpoint rule: for a method of order An — 4 at the basic mesh

points, we need to extrapolate 2n - 3 times. Normally (see Keller [4]), this is done

by subdividing each A, into A,/2, A,/4, A,/8, .... However, this quickly involves too

many points. Here, we propose the sequence A,/2, A,/3, A,/4, .... This sequence has

not been used even for extrapolation with initial value problems because of the

possible unlimited growth of the roundoff error (see Gragg [3]). However, experi-

ments of G. Immerzeel have shown that this roundoff error growth is not large in

the range of practical computation (10 or 12 extrapolations). For this,sequence, we

must set up and solve midpoint rule systems like (4.2) with m, 2m, 3m, ..., pm

blocks, where we define p = 2n — 2. Proceeding as with the 0{h4) method, we see

the total time required is

(4.3) [11á£^ + 2á^i)]mA/+áz_Li)/M£.

The collocation method, on the other hand, requires only one solution of a

larger system; we have {2n -2) basis functions at each of the (m — 1) interior

nodes and n at each endpoint, giving # unknowns = 2n + (m — l){2n — 2).

Similarly, there are (2n — 2) collocation equations for each of the m intervals, which

together with the boundary conditions give m(2« - 2) + 2 equations. Because the
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basis functions have support over only two intervals, the linear system is again of

the form (3.1) with F¡ and G¡ p x p, except F0 and G0 which are 1 X n and /*[ and

Gm{pX n). Now, the block-tridiagonal factorization has the first and last diagonal

blocks n X n, and the rest pX p.

We again assume the basis functions have been evaluated beforehand, so the

total setup time for each matrix element is 4M. Also, we assume the block-

tridiagonal factorization is stable; then we find (as in [9, p. 867] with q = p/2) the

solution time is (13/>3/12 + 2p2 - p/3)mM. Here, unlike [9], we have included the

lower-order terms since we are interested in small values of p. Thus, the total time

for collocation is

(4.4) ( j|/>3 + 1 Op2 - ^\mM + pmE.

Comparing (4.3) and (4.4), we obtain easily

Theorem 4.2. Extrapolation with the midpoint rule is faster than the above

described collocation procedure of order An — A when E/M < l3n/3 + 29/6.

Notice that again the outcome depends on how complex the functions p{x),

q{x), f{x) are. The more accuracy desired however, the more attractive extrapola-

tion appears. Also, the extrapolation procedure is much easier to program.

5. Numerical Examples. Here, we will report the results of the two 0{h4) schemes

on some test problems. It is not our purpose to obtain extremely high accuracy even

though this is certainly possible; rather, we are interested in reasonable accuracy (3

or 4 significant figures) with a small number of mesh points. Each example is of the

form (1.2) on the mesh a = x0 < X\ < • • • < xm = b. For each example, we give

the interior mesh points used (xx,.. .,xm-x). Since both collocation with cubic

Hermite polynomials (denoted CH3) and the midpoint rule with one extrapolation

(denoted M + E) provide approximations to the solution and its first derivative at

the mesh points, it is natural to use the uniquely defined piecewise cubic Hermite

polynomial as the global solution and then measure the maximum error between

this function and the true solution over the whole interval. We give this error for

CH3 and M + E, and also for the cubic Hermite interpolate of the exact solution

at the same mesh points (denoted INT). We give this last error for reference: we

can hardly expect the approximate solution to give results better than interpolating

the exact solution! We could also give first derivative errors, but, in all cases, they

were no larger than a factor of 10.

Example 1.

y" + {2yx)y' + 2yy = 0,        exact solution

X0) = L      y{l) = e-\     y = e-^2.

y m       interior mesh points       INT        CH3

10       5        .2, .4, .6, .8 .0029       .0036

10       5        .137, .302, .457, .703       .0008       .0028

20       5        .2, .4, .6, .8 .0063       .0102

M + E

.0025

.0027

.0054

20       5 .107, .234, .327, .561 .0014        .0049 .0051



754 JAMES M. VARAH

Example 2.

y" + (3 cot x + 2 tan x)y' + yy = 0,

y{a) = g0,   y{b) = g,        (0 < a < b < ff/2).

This has the Fourier series solution y{x) = 2o° a* cos*x, with

tffc + 2 = ((*(* + 0 - 7)/(* - 1) (* + 2))flfc,

a, =0, and a0, a3 determined by the boundary conditions. (For 7=2 and the proper

boundary conditions, _y(x) = csc2x) This is almost the same as Problem 2 of Russell and

Shampine [6] except they measure x in degrees not radians. With a = 30°, b = 60°,

g0 = 0, g y =5,7 = 0.7, their solution has a sharp rise near x = a (this can be predicted

if their problem is converted to radians; then there is a small constant {tt I ISO)2 in the

y"   term).

With x in radians and the same boundary conditions, the solution rises slowly

from 0 at x = 77/6 to 5 at x = it/3. The errors are as follows:

y m       interior mesh points INT        CH3        M + E

0.7       5        677/30, 777/30, 877/3O, 977/30       .0026       .0024       .0023

A harder example is the same problem from a = 77/I8 (10°) to b = 877/I8 (80°).

This has a sharp rise near x = a.

y          m       interior mesh points INT       CH3        M + E

0.7       5         13°, 17°, 27°, 50° .021        .016         .015

Example 3.

ey" - {2 - x2)y =-I, /(0) = y{l) = 0.

This is the right half of the singular perturbation problem discussed by Carrier [1]

and also used in [6].

e m interior mesh points INT CH3 M + E

.01 5 .3, .6, .8, .9 .002 .0024 .0023

.0001 5 .4, .85, .96, .99 .020 .015 .21

.0001 7 .3, 6, .85, .95, .97, .99 .006 .008 .042

Notice that, for a small e, the midpoint rule gives inferior results; this is because

the first derivative is poorly approximated, particularly with only a few mesh points.
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