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Computation of the Ideal Class Group of Certain Complex

Quartic Fields

By Richard B. Lakein

Abstract. The ideal class group of quartic fields K = F(\f¡x), where F = Q(i), is calculated by

a method adapted from the method of cycles of reduced ideals for real quadratic fields. The

class number is found in this way for 5000 fields K = F(\/n), it = + 1 mod 4, it a prime of F.

A tabulation of the distribution of class numbers shows a striking similarity to that for real

quadratic fields with prime discriminant. Also, two fields were found with noncyclic ideal

class group C(3) x C(3).

1. Introduction. In a famous paper of 1842, Dirichlet [1] extended Gauss' theory

of binary quadratic forms to forms whose coefficients are Gaussian integers. In

modern terms, he studied quadratic extension fields K of the Gauss field F = Q(i).

The high point of the paper is the beautiful theorem that when K is the composite

of quadratic fields, so K = Q(\/m, yj—m ), the class number of K equals the product

of the class numbers of the quadratic subfields Q(\/w), Q(\/—w), or one-half this

product, with a simple criterion to distinguish the two cases.

In case K is not of this special form—so A" = F(y/ji), p. a squarefree Gaussian

integer which is neither real nor purely imaginary—then K/Q is a quartic, non-

Galois extension with no quadratic subfield except F. In this paper, a modified

version of the classical method for real quadratic fields, counting periods of reduced

ideals, is adapted to the relative quadratic extension K/F and used to calculate the

class number h of K.

In a previous paper [8], I calculated, for 1000 fields K, the class number h—or

rather a close approximation to h, by estimating the Dirichlet L-series in the analytic

class number formula. Here, the class number is calculated exactly, by finding the

ideal class group. The results of the earlier (approximate) computation are here

confirmed and extended to 5000 cases. The remarkable empirical distribution of

class numbers for real quadratic prime discriminants—80% have h = 1, 10% have

h = 3, etc.—occurs in this quartic situation, as first reported in [8]. At the end of

the paper, we tabulate the distribution for the 5000 cases, along with the corre-

sponding data for real quadratic fields. Finally, we note that, in 1006 cases with

h > 1, the computation found just 2 cases with noncyclic ideal class group:

C(3) X C(3).

In Section 2, we discuss the fields K and explain why the method for the

quadratic case must be modified. The method is given in Section 3, and, in Section

4, the numerical results are discussed.

2. The Quartic Field K. Let F = Q(i), the Gauss field, and G = Z[i], the

Gaussian integers. Let K — F(\/jx), where p. G G, squarefree, and let I be the ring

of algebraic integers of K. Then (see [2]), I has a relative integral basis 1, Ü over G,

Received May 16, 1973.

AMS (MOS) subject classifications (1970). Primary  12A30, 12A50; Secondary 10F20, 12A05.

Copyright © 1974. American Mathematical Society

839



840 RICHARD B. LAKEIN

I = G[Q], where

S2 = K« + Viïl £ = ». í.        if ¡u = e2 = ±1 mod 4,

= (1 + V/x)/(l + i), if¡i = ±1 + li mod 4,

= \fp\, otherwise .

The relative discriminant 8 of A"/F is S = ¡i, l¡i, or 4/t, respectively, while the

absolute discriminant of K is D = 167VÔ. (iV5 = |ô|2 = norm .) An integral ideal

has a canonical G-basis

a = [a,ß + -yfi],        ><£ + yß) = 0 mod a,

where v denotes the relative norm from K to F. Any ideal is equivalent to (in the

same ideal class as) a primitive ideal (no factor in F) having y = 1. A primitive ideal

a = [a, ß + Q] has relative norm a and absolute norm Na = Na = \a\2. As in the

quadratic case, we make the correspondence

(1) a = [a,ß + ti\^A = (j8 + Q)/o,

where A is a quadratic irrational over F.

In analogy to the quadratic case, two ideals at, a2 are equivalent if and only if

the corresponding quadratic irrationals A\, A2 are equivalent complex numbers:

A2 = (aAi + b)/(cAi + d),       a, b, c, d G G, ad - be = ±1, ±i.

Recall that, in the quadratic case, one calculates the periodic continued fractions

(CF's) of the quadratic irrationals, each pure period representing an ideal class of

the quadratic field. Thus, one simply counts the number of distinct periods to obtain

the class number. This is essentially the method used to construct the tables of Ince

[5] and others. A complex CF will be introduced for our quartic fields, after we note

some other analogies to the quadratic case.

The decomposition of a prime it of F in K is quite similar to the quadratic case

—see [2]. In particular, tr splits in K, it = f t>', if and only if 8 is a quadratic residue

of it (for Tr j=- 1 + /'). If 77 = 1 + i and 8 = ¡x = ± 1 mod 4, tt splits if and only if

8 = ± 1 mod 4 + 4í. The group of units of K has one fundamental unit EQ. Finally,

if 8 = p. = tt is a Gaussian prime, we say K has prime discriminant; as in the

quadratic case, for such a field the class number is odd.

There is a complex generalization of continued fractions due to Hurwitz [3]. It

generalizes not the usual CF but the "nearest integer" CF (which can be used for

the real quadratic calculations). The complex CF is defined by partitioning the

complex plane into unit squares U(a) centered at points a G Z [/'] :

U(a) = {a + u + vi\u,v real,-$ ^ u < {,-{ ^ v < {}.

If z G U(a), we say that a is the nearest Gaussian integer to z. Now, given a

complex number x, we expand it in a simple CF:

11 11,
x = x0 = a0 H—     — —     - = («o,

ai + a2 + • • • + a„ + x„+i
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where xn = a„ + l/xn+x, and the partial quotient a„ is the nearest Gaussian integer

toxn.

As expected, the CF for x terminates (some xn = an G Z[/]) *> x G F; and the

CF for x is periodic <* x is quadratic irrational over F. Furthermore, for a given

discriminant 8, there are only a finite number of distinct periods. However, unlike

the situation in the real quadratic case, it is not the case that distinct periods always

correspond to distinct ideal classes. A preliminary computation produced a field

with two distinct periods representing the same class. Details will be given in Section

4.

Thus, it is preferable to calculate with ideals, making use of the structure of the

ideal class group. There is a helpful analogue to the well-known "Gauss bound" for

the fields K ([6],[7]). In every ideal class of the field K = F{\ß) with relative

discriminant 8, there is an integral ideal a with norm Na Si B = Z)1/2/8 = i\/N 8.

(The corresponding "Gauss bound" for the real quadratic fields is \\ß) So it is

sufficient to find all primitive ideals of K with norm sí B and determine how many

ideal classes are represented. A further simplification comes from observing that

such ideals are products of prime ideals p = [tt, p + ß] with norm Np = Ntt Sí B,

so the class group can be generated starting with these prime ideals.

3. The Method for Fields K with Prime Discriminant. These fields are obtained

by generating successive rational primes P = 1 mod 8, with P = N8 = a2 + b2, a,

b > 0, 4\b, so 8 = a + bi = ±1 mod 4. Then K = F(^/8). Since 8 itself is the only
prime that ramifies, using the "Gauss bound," we need only consider primes tt

which split in K.

(I) Given 8, determine which tt with Ntt sí B = \\/P split in K, which we

denote by x(t) = + 1. First, x(l + 0 = + 1 ** § - ± 1 mod 4 + 4L For tt # 1 + /,

we calculate a "Gaussian Jacobi symbol" x(tt):

xi"") = [S/t] = +1 **■ 8 = x2 mod tt,       x G G.

The calculation of this symbol is like that of the ordinary rational Jacobi symbol,

except of course for using the quadratic reciprocity law in F ([I, p.556],[6, p.390]).

Note that if Nit = tttt = p, we need compute only x(77'); then x(^) = xM(P/p)> the

last a Legendre symbol in Q. Those primes tt for which x(^) = +1 are stored in an

array S; they split in K, tt = W, where p = [tt, p + fi], and the ideals p generate

the class group. In particular, h = 1 if and only if these ideals ¡o are all principal.

(II) Next, the basis number Í2 = j(e + y/8), which corresponds by (1) to the unit

ideal [l,ß], is expanded in a CF, (2) until the end of the partial period is reached,

where a complete quotient recurs, possibly with a unit factor ie. That is, we set

xo = ß and let the complete quotients and corresponding ideals be

(3) xn = ß„ = (b„ + ß)/a„ « [a„,bn + B].

In all cases computed, X\ = ßi is purely periodic; it may always be the case. So,

eventually, xm = (bm + $l)/ie, xm+x = ieX\, and the primitive partial period is

ßi = Xi = (c\,c2,... ,cm,ieX\). After this, the ideals in (3) repeat since [ika,ß + ß]

We should point out that, calculating just the denominators q„ of the conver-

gents of the CF for Í2,, we have a unit E = qmxm+t + qm-X which is the fundamental
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unit E0 for all the cases computed, except only for 8 = 1 + 4/, 5 + Ai, when

E = Eo2.

Of course, all the ideals in (3) are principal. Therefore, each an in (3) is compared

with each tt G S; if a„ = ikir, tt G S, then the prime divisors p, p' of tt are

principal and make no contribution to the class group. Accordingly, tt is eliminated

from S. In a very few cases, all w G S are eliminated this way and it follows that

h = I.

(III) If the principal period fails to exhaust S, we find the basis of p for each

remaining tt:

(4) p = [tt, p + ÏÏ],    so    p' = [tt,(tt - p - e) + fi].

This means solving the quadratic congruence v(p + ß) = p(p + e) + (e2 - 8)/4

= 0 mod 77. (Since Ntt < \y/P < 250 in this computation, no special tricks were

used.)

Then each ideal p (4) is tested. It is principal if and only if the CF of

A, — (p + Q)/tt falls into the principal period, so we need only test if a complete

quotient (r + Q)/s has s = ik. If so, tt is eliminated from S. In case all 77 G S are

disposed of, again it follows that h = 1. Otherwise, for some 77, the partial period of

Av is reached without any s = ik, so the ideal p (4) is nonprincipal and so h > 1.

(IV) If h > 1, let 77 be the smallest prime remaining in S. The prime divisor p of

77 is in a nonprincipal ideal class C, and we calculate the cyclic group generated by

C: p G C, p2 G C2, ..., p" G C = I, the principal class. However, we do not

merely calculate powers of p; the following simple modification is more suitable and

has the advantage of avoiding any need for multiple-precision arithmetic when h is

large.

Expand x = A„ = (p + ÍI)/tt in a CF until the end of the partial period is

reached, and choose an xj in the period, which we denote A\ = (ß\ + ß)/ai, and its

corresponding ideal ai (1), to represent the class C of p. Recursively, given a

representative

(5) am = [am,ßm + fl] <-» Am = (ßm + Q)/am

for the class Cm, calculate the ideal product amp (in essentially the same way as in

a quadratic field). Then expand in a CF its corresponding quadratic irrational as

before and take am+i = [am+[,ßm+l + £2] in the periodic part. Thus pm+l ~ amp

~ am+\, so am+\ represents Cm+1. Since A/p = ./V77 < \\fP, and an ideal in the

period has Na = Na < \/P, so A/(ap) < P, which is easily single precision.

Now, each class Cm is represented by a "reduced" ideal (purely periodic) am in

(5), with am, ßm stored in a table. The procedure continues until, finally, the

principal period is encountered, so p" — 1, C = I.

(V) Once the cyclic group generated by p has been produced, the other

remaining primes k G S are are considered. Each k has a nonprincipal prime ideal

and corresponding quadratic irrational

(6) q = [k, A + fi] <-> BK = (A + Í2)/K.

We expand BK in a CF; at each step the complete quotient (r + ß)/j is compared

with the list of representatives (5) of the classes Cm. When a match is found—r
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= ßm, s = ikam—then q ~ am ~ pm, and so q contributes nothing new to the class

group.

If for every k G S the ideal q ~ pm for some m, then, since the class group is

generated by these prime ideals, the group is cyclic, generated by the class C of p.

There are three cases when the group is not settled in this way:

(a) The class group is cyclic, but p generates a proper subgroup. Repeating the

procedure in (IV), (V) for a prime ideal outside this subgroup eventually generates

the whole group.

(b) The class C does indeed generate the whole group, but some prime ideal q

is a "mismatch" — q ~ am ~ pm, but the period of BK is distinct from that of Am.

We may check that ama' ~ 1, so q is in the cyclic group. This occurred only two

times during the computation. Details will be given in Section 4.

(c) The class group is noncyclic and our procedure can only produce cyclic

subgroups. This occurred in two cases where the group is C(3) X C(3), and all four

cyclic subgroups of order 3 were obtained.

4. Results. Using the above method, we computed the ideal class group, and so

the class number, for 5000 prime discriminants 8 = ±1 mod 4, 17 sí N8

g 226241. The case where 8 is a rational prime p = 3 mod 4 was excluded, since

Dirichlet's theorem applies to show h = h(p)h(—p), the product of the quadratic

class numbers. Also E0 — \/ïëo, where e0 is the fundamental unit of Q(y/p).

(A) Out of 5000 cases, 3994 have h = 1, 1006 have h > 1. We list in a table the
cumulative distribution of class numbers, along with the corresponding data for the

quadratic case (copied from [10]). The data provide empirical evidence that the

mysterious distribution of class numbers previously noted in the real quadratic case

is the same for this quartic case. (That is, of course, if there actually is a fixed

asymptotic distribution.)

We conjecture the same distribution for the fields K quadratic over F

= Q{\J—m) having class number 1: m = 2, 3, 7, 11, 19, 43, 67, or 163. In the first

4 cases, where there is a CF over F, it may be possible to test the conjecture. The

distribution might even occur for K quadratic over any fixed complex quadratic

field F—although this is more speculative, since in this general case the computa-

tions are probably infeasible.

(B) Of the 1006 cases with h > 1, all but two fields have a cyclic class group.

(Only the 64 cases with h = 9, 25, 27 are in question.) The two noncyclic groups

occur for

P = 54713, 8 = 107 + 208/;

P = 201881,       5 = 91+ 440/.

In both cases, h = 9 and the class group is C(3) X C(3). We may note (see [11, p.

75]) that of the first 5000 real quadratic prime discriminants, exactly two have

noncyclic class group: d = 32009, 62501, group C(3) X C(3).

(C) Recall that after stage (II) of the procedure, the array S contains Gaussian

primes 77 which split in K into prime ideal factors p, p' which are not in the principal

period. We denote the prime in S of smallest norm by 771 ; or if there are two such

primes with the same smallest norm, then they are complex conjugates: it\, tí\ . Then

we denote a prime ideal factor of 77, [respectively ñt\) in K by p, [pi].
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Now, if h = 1, then, of course, pi [pi] becomes principal. It is remarkable that

in all 1006 cases with h > 1, pi [and pi] remains nonprincipal. That is, pi [and pi]

becomes principal exactly when h = 1. A check of the first 5000 real quadratic

prime discriminants found the identical situation: the analogous prime ideal Pi (that

is, the splitting prime ideal of the smallest norm that remains after the primes in the

principal period have been eliminated) becomes principal only when h = l.Here is

either a remarkable coincidence or a new conjecture.

We may also note that of the 1004 cyclic (quartic) cases with h > 1, in all but

23 cases, the class group is generated by pi or by pi.

(D) There were other interesting results, all due to peculiarities of the CF. First,

in real quadratic fields [5] conjugate ideal classes are always represented by

conjugate periods of ideals. Such is frequently not the case here (nor for the

quadratic case if the nearest integer CF is used). An example is P = 2137, 8

= 29 4- 36/, where h = 1 and pi = [1 + /, ß]. Using the notation of [5], we

represent the ideal [a, b + ß] by just a,b. The periods of (equivalent) ideals for the

conjugate classes C, C6 are as follows:

C: 3 + li, 3 + 2/ ~ 1 + /, 2 + 2/,

C6 : 3 + /, 3 + / ~ 1 + /, 2 + /.

(E) A second point of interest concerns the length of the preperiod of a periodic

CF. In the quadratic case, given any ideal [a, b + w] with norm = a < \yfd, it is

easy to see that the (usual) CF for a = (b + u)/a has at most a one-term preperiod.

Using the nearest integer CF, it is easy to find 2-term preperiods. In the present

complex quartic case, we encountered, for analogously restricted ideals a, preper-

iods up to 9 terms long. No extensive check was made, but it seems possible that

there is no bound on the length of the preperiod," even for ideals with norm below

the "Gauss bound." Of course the uncertainty about the preperiod length makes it

more tedious to check for the end of the period.

(F) A final, more serious peculiarity occurs for P = 2633, 8 = 43 + 28/, which

also has h = 7, p, = [1 + /, 0]. The ideals

a = [4,3 + 2/ + 01       b = [4 - /, 5 - / + ti]

are equivalent, both in C3. Let their corresponding quadratic irrationals be

A = (3 + 2i + ß)/4, B = (5 - i + 0)/(4 - /). We find that B = (2A - i)/(A - i),
so A and B are equivalent numbers, as expected. However, the CF's, which are purely

periodic, give distinct cycles:

A : 4, 3 + 2/-3 - 2/, 5 + i-2 - 2/, 3 - /,
(7)

B: 4 - i, 5 - i ~ 1 - 3/, 4 + 2/-2 - 4/, 5.

It turns out that the conjugate class C4 is also represented by two distinct cycles,

each conjugate to one of the above cycles.

The class group of this field is of course cyclic, generated by pi, but the prime q

dividing 3 + 2/ is a "mismatch," since its period (that of A in (7)) has no match with

the representative of C3 (in the period of B in (7)). It is easy to check that a3 q' is

principal so that q G C3. This mismatch is clearly a rare event, occurring only twice
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in the computation, and it is easily distinguished from the case where pi generates

a proper subgroup of the class group. For in the latter case, if the subgroup has

index k, only about l/k of the primes in S will have their prime factors (6) in the

subgroup. So one of the remaining primes in S is used and (except in the two

noncyclic cases) eventually we obtain the whole cyclic group. On the other hand, in

the case of a mismatch there will be only a very few primes of S left out of the group

—just one prime in the case P = 2633 above; two primes in the only other case

encountered, P=210209. For a mismatch q, we simply test if amq' is principal for

1 Si m < n to find the class Cm to which q belongs.

(G) Finally, we mention two old papers. J. Hurwitz [4] used a complex

continued fraction to classify binary quadratic forms over Z[i] . However, his CF

has only even Gaussian integers as partial quotients, and his forms are always

ax2 + 2bxy + cy2. For the fields in our computation with 8 = ±5 mod 4 + Ai, J.

Hurwitz' CF usually gives as class number 3h, where h is the actual class number,

so this method is unsuitable. G. B. Mathews [9] used, as we do, A. Hurwitz' CF, and

his forms need not have an even middle coefficient. However, his basic definition of

a reduced form is faulty, although it is not clear how much of his results are thereby

invalidated.

The computation was done between November, 1972, and March, 1973, on a

CDC 6400 at SUN Y at Buffalo. In the final run, 12 minutes of CP time were

Table

Cumulative distribution of class numbers for first 5000 prime discriminants

Quartic Quadratic

h= 1000 2000 3000 4000 5000 cases 1000 2000 3000 4000 5000

I 830 1635 2427 3225 3994 816 1622 2420 3198 3987

3 100 208 310 410 525 101 213 306 422 522

5 35 65 113 155 198 35 70 111 145 183

7 14 31 47 69 85 22 36 58 79 98

9 5 13 25 37 56 9 16 34 50 66

II 6 14 19 22 28 6 10 13 19 29

13 3 11 19 22 30 5 8 14 20 28

15 2 8 13 15 21 2 7 13 16 20

17 3 6 10 15 19 1 2 7 9 11

19 2 5 6 2 5 8 11

21 113 6 112 5 7

23 11345 2234

25 1 1 1 2 3 1 4 7 10

27 3345 13344

29 1223 --124

>30 2 5        10        16 14 7        13        16
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required to generate 5000 fields and to determine the 3994 cases with h = 1; 10

minutes more were required to calculate the class group for the remaining 1006

cases. A copy of the complete table has been deposited in the UMT file of this

journal.
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