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Continued Fractions and Linear Recurrences

By W. H. MUls

Abstract.   Let   íq, fj, t2, • • •   be a sequence of elements of a field  F.   We give a

2 3
continued fraction algorithm for   t^x + txx    + t2x    + • • ■ .   If our sequence sat-

isfies a linear recurrence, then the continued fraction algorithm is finite and pro-

duces this recurrence.

More generally the algorithm produces a nontrivial solution of the system

s

£',•+/*/. 0</<*-l,
/=0

for every positive integer   s.

1. Let   t0, tx, t2, • ■ ■  be a sequence of elements of a field F.   Set

T-\ttft.
/=0

Let  d be a nonnegative integer. We say that  T*  is an approximation of T of

degree  d  if there exist polynomials   V and   W such that   T* = V/W, deg V < d,

deg W < d, x\w, and x2d\WT - V.

We shall give a continued fraction expansion for xT.   This yields polynomials

V-, W¡, and integers d-,   0 = dx < d2 < d3 < ■ • • ,  such that  (V¡, W¡) = 1   and

V,/W-  is an approximation of T of degree  d¡.  Suppose  T*  is any approximation

of T of some degree  d.   Then  T* = V¡/W¡  for that value of i such that  d¡ <

d<di+x.

If the sequence of the   t ■  satisfies a linear recurrence of degree  d,  but not one

of smaller degree, then there is an  m  such that  dm = d and the linear recurrence

is given by the polynomial   Wm.  In this case, WmT = Vm, the continued fraction ex-

pansion, terminates at   i = m,  and we can determine   Wm   from the first   2d  of the

t:,  i.e., from those  t¡  such that  0 </ < 2d.

Our algorithm is closely related to Zierler's version of Berlekamp's algorithm [1].

2. We consider continued fraction expansions of the form

a = A, +-l

A, +2     A3+-

where A,, A2, A3, • • ■  are elements from some field E.   We can write
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174 W. H. MILLS

a = Nx+Rx,       1¡RX = A2 +R2,      1/R2 = A3 + R3, ■ ■ • .

If Rm =0 for some m, then the continued fraction terminates with Nm. Other-

wise it is an infinite continued fraction.

In the classical case, a is a real number, the N¡ are integers, and 0 </?,.< 1

for all  ¿   We are interested in a different case.

We set

0) P0 = L   Ôo = °;      pi =Ni>    Gi = 1.

(2) Pi = NiPi_1+Pi_2,      i>2,

and

(3) Qi = N.Qi-i + Qi-2>      I->2.

It is well known, and easy to show, that

PX/QX=NX,      P2/Q2=NX+HN2,

P3/Q3=Nl +1/(A2 +1/A3), •••.

The sequence P\/Q\, P2/Q2' P3/Q3' ' ' '   converges to  a  in many cases, including

the classical case.

We put

Ai = aQi-Pi,      i>0.

Then we have

(4) A0 = -l,      At=a-Nx

and

(5) A,' = ^A-i+V2'      i>2.

Clearly Rx = a -A, = ~AX/A0.  Since Ri+X = -A/+1 + 1/R.  it follows from (5),

by induction on  i,  that

(6) Ri = -AJàt_v      i>\.

3.  We now take E to be the field of all series of the form   2ZjLkajX',  where

the a-  are elements of the field F and  k  is a rational integer which may be  neg-

ative.  For convenience let y= 1/x.   We set   a = xT and A, =0.  Then Rx =

a = xT.  We now define the N¡ and R¡ inductively using

(7) 1//V, =N, +/?,-,      z>2,

where we take N-  to be a polynomial in y  and xi/?,-.   Thus if

00
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it turns out that  k < 0  and we have

Ni = £ ají = ¿ a_uyu    and   R. = ¿ ape!.
¡=k u = 0 /=1

This determines the A;-  and R.  uniquely.   If Rm = 0   for some  m,  then the

process terminates at this point.  The P¡, Q¡, and  A,- are now determined by (1),

(2), (3), (4), and (5).

We shall write xr\\A  if xr divides A,  but xr+ '   does not divide A.   This

means that A   is of the form A='LjLraixi with ar ¥= 0.   Let xri\\R(,  i>l.  If

Rm = 0, we set  rm = °°.  Then r¿ > 1   for  z' > 1.  For z > 2, N¡ is a polynomial

in y  of degree  ri_x.  Set

(8) ci,. = g r,

1=1

Then we have  0 = dx < d2 < d3 < • • • .  It follows from (1) and (3), by induction

on  z,   that  Q¡  is a polynomial in y  of degree  d¡.  Similarly, for  z > 2, P¡  is a

polynomial in y  of degree  d¡ - r,.   Set

d.-l d.
V. = xl   P.,       W, = x %.

Then   V,  and   W-  are polynomials in x, deg F¿ < ci,-,  and  deg W¡ < c/¿.  Moreover,

W-  has a nonzero constant term so that xiW¡. Now

7W, - K¿ = /»""'(oß, - P,) = /í_1 A,-.

Since  A0 = -1,  (6) gives us

Since x '\\Rj,  we have

(9)

by (8).  Hence

àt = t-Di+1URr
7=1

/Í+1||A,.

^7^ d.+d. , ,-1

(10) x>    i+i    \\TWi~Vi.

Therefore, x   l[TW¡-V¡ so that   V-/W,  is an approximation of T of degree  d¡.

Lemma 1. Let T* be an approximation of T of degree d.  Let i be the

integer such that d¡<d< di+ x.  Then   T* = V,/Wv

Proof.   We have  T* = V/W,  where  deg W<d, deg V < d,  and x2d\WT - V.

Now d + d¡< 2d so that xd+di\WT - V.   Moreover, *d + d, < dt + di+x - 1   so

that xd+di\WiT-Vi by (10).  Since

V¡W - VW¡ = WjtWT -V)~ W(WT - V-),



176 W. H. MILLS

we have

d + d.,
x      l\V¡W-VWi.

Now the degree of   V¡W - VW¡  is less than d + d¡.  Therefore   V-W - VWi = 0, so

that

T* = V/W = V-/W-.

Lemma 2. //  VjWt = Vj/Wj,  then  i = j.

Proof.   Suppose   V¡/W¡ = Vj/Wj.  Then we have   V¡ = VD, W- = WD, V¡ = VE,

W¡ = WE for suitable polynomials   V, W, D, E with  (V, W) = 1.  Since x\w(, we

have xtD so that (10) yields

d. + d.,,-l
x '    ,+ 1    II7W- V.

Similarly

cZ.+d.^.-l
x'    ¡+1    WTW-V.

Hence

ci, +di+1 -l=dj+d;+ï-l.

Therefore, i = j.

Lemma 3.  (Ve W¡) = 1.

Proof.   Suppose  (F(-, W¡) = D  where  deg D > 0.  Then   F. = FA   HA = H©

for suitable polynomials   V, W such that xTW, deg IV < d¡, and   deg V <d¡- 1.

Moreover xl2) so that x   '\TW - K  Hence   V/W is an approximation of T of

degree less than  dv  By Lemma 1 we have   V/W = V/-/W¡-  for some / < i.   This

contradicts Lemma 2.

Lemma 4.  For any particular value of i  we have either  deg V¡ = d¡ - 1  öz-

deg W,. = i,..

Proof.   Since  deg IV, = 0 = dx, we may suppose  i > 1.   If the result is false,

then   F,-/!!7,,   is an approximation of T of degree less than  d¡.  By Lemma 1 this

implies that   V¡/W¡ = V^/W-  for some / < i,   which contradicts Lemma 2.

4.   Let   {i-} = {r0, tx, ■ • • , tn_x } be a finite sequence of elements of F,   and

set
n-l

T=Htjxi.
/=o

Let   H7 be a polynomial of degree  s  with a nonzero constant term.  Thus   W =

2ñ=QWjX', where the  w-  are elements of F,   w0 #0,  ws ¥= 0.  The linear recurrence

given by   W  is

(11) ¿^-,- = 0.
i=0

If (11) holds for a particular value  k0   of k,  we say that the linear recurrence   W holds
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for k0.  If (11) holds for all values of k for which the left side is defined, i.e., for

s < k < n — 1, then we say that the sequence   {Z-} satisfies the linear recurrence  W.

Whenever we speak of a linear recurrence W we shall mean a polynomial W

with a nonzero constant term. The degree of the linear recurrence is defined to be

the degree of this polynomial.

In order to determine   W,   up to a multiplicative constant, we must have (11)

satisfied by at least  s  values of k.   Hence we must have  2s < «.   Our problem is to

determine whether or not the sequence   {r-} satisfies a linear recurrence of degree

< «/2,  and if so to determine the linear recurrence of lowest degree that   [t,} sat-

isfies.

Let  « = [n/2].  Thus «  is an integer and either « = 2«  or  « = 2« + 1.

Let xT be expanded in a continued fraction as indicated in Section 2 and Section 3.

This gives us polynomials   V¡  and   W¡ and integers d¡.   Let  m  be the integer such

that dm <h <dm + x.  This is equivalent to

(12) 2dm<n<2dm + 1.

Now suppose that the sequence {Z-} satisfies a linear recurrence W of degree

s, where s < «/2. Thus s < h. We suppose W chosen so that s is minimal. Set

V = HjZ^VjX', where

«v = £ wi{j-i-
i=0

Then xn\TW - V by (11) so that   V/W is an approximation of  T of degree h.

More precisely it is an approximation of T of degree  d  for any d  such that  s <

d < «.   By Lemma 1 and the choice (12) of m  we have   V/W = V /W   .  Since

W is of minimal degree, we have  (V, W) = 1.  Moreover  iVm, Wm) = 1   by Lemma

3, so that   W = \Wm   for some nonzero element  Â  of F.

More generally, suppose only that the linear recurrence   W holds for those  k

such that  « < k < « - 1,  that   deg W < h,   and that   W is a linear recurrence of

minimal degree with these properties.  As above there is a polynomial   V such that

V/W is an approximation of  T of degree  «, (V, W) = 1,  and   W = ~KWm   for some

nonzero   À  in  F.

It is easy to see that there need not be such a linear recurrence.   For example,

we may take   {f ■} = {0, 0, • • • , 0, 1 }.  However, we have shown that if there is one,

then it must be  Wm, up to a multiplicative constant.

Now

d    +d     .,-1
m      m + 1      i™     _ y

by (10).  Hence if n > dm + dm + x,  then   {f,} does not satisfy the linear recurrence

Wm,  in fact   Wm   fails to hold for dm + dm + x - 1.  Thus we have the following

result:

Theorem 1. // dm +dm + x <« <2dm + x,  then the sequence   {Z;} does



178 w. H. mills

not satisfy any linear recurrence of degree  < zz/2.   In fact, there is no linear recurrence

of degree  < «/2  that holds for all k such that h < k < n - 1.

Now suppose that  n <dm + dm + x.   Then the linear recurrence   Wm   holds

for all  k  in the range  dm < k < « - 1.  We have   deg Wm <dm.  If deg Wm =

dm, then   [t-} satisfies the linear recurrence   Wm.  However, if deg Wm < dm,

then  deg Vm = dm - 1   by Lemma 4, and, therefore, the linear recurrence   Wm

fails to hold at dm ~ 1. Thus we have the following result:

Theorem 2. Suppose 2dm <n <dm + dm + x.  If deg Wm = dm,  then  Wm

is a linear recurrence of minimal degree satisfied by   {Z-}. // deg Wm < dm,   then

there is no linear recurrence of degree  < «/2  which is satisfied by   {f,}.   However,

Wm   is a linear recurrence of minimal degree that holds for all k such that h <

k < « - 1. It holds for all k in the range dm < k < n - 1, and fails to hold for

dm-l.

5.  In this section, we shall describe an efficient method of computing the poly-

nomial   Wm.  As before, let   {/■} = {t0, tx, • • • , tn_x } be the finite sequence we

are interested in.  We start with Nx =0,  A0 = -1,  and

A1 =xT-Nl = ¿ tjx'+1.
¡=o

For z > 2,  (6) and (7) give us

N, +R,= 1 //?,_, =-Ai_2/A,._1,

where x|/?,- and A,-  is a polynomial in y,  y = 1/x.  Thus TV,-  can be obtained

from  A,._2   and  Af_,   by an ordinary division process.  Then  A,-  is given by (5):

A,- = TV.-A._j + A,_2.   In this way, the TV,, and the   A,  can be successively obtained.

We must continue this out to  i = m  where  2dm <« < 2dm + x.  Since x l\\A¡_x

by (9), we know at once when we have reached  i = m.   If dm + dm + x < «,   then

there is no solution.  If dm + dm + x> n,   then we calculate  Qm   from the  TV,, and

the relations  Q0 = 0,  Qx = 1,  Qi = NiQi_x + Q._2.

If Qm   has a nonzero constant term, then  deg Wm = dm   and   !Vm = x mQm

is the required linear recurrence.   If Qm   has no constant term, then  deg Wm < dm

and   {Z-} does not satisfy a linear recurrence of degree  < «/2.  However, in this case,

Wm = x mQm   is a linear recurrence that holds for all  k  such that  dm < k < « - 1.

We note that x 'IIA,-_,, x ,_1||A,._2, and di = r¡_x + d¡_x. Hence in perform-

ing the division A._2/A._x we need only use the first ri_i + 1 terms of A,._2 and

the same number of terms of A,._j.  This is sufficient to determine TV.  completely.

Finally we note that it is only necessary to calculate  A,- out to the term in

x      '.  This corresponds to the fact that   A = xT is known only out to the term in

x".  To see this, consider the division of A,-_2   by  A,-_j.  We need  r¡_x +1   terms

of each.  More terms of A,_2   are assumed known than of A,._,.  The number of

terms of A,_j   that we have is n - d¡_x - d¡ + I = n - 2d¡ + r,_x + 1.  Since we
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may suppose  i < «z,   this is at least  r¡_x + 1   terms.  Thus A,-  may be computed

exactly.  Clearly if we know   A,-_2   out to the term in x      '~2   and  A,-_j   out to

the term in x      '~l,  then once A,-  is known as a polynomial in y  of degree

/■/_.,  we may calculate  A,-  out to the term in x      '.

Tables 1 and 2 give examples of the calculation for small «  and F — GF(2).

The unnecessary terms of A,-,  i.e., those beyond x      ',  are given in parenthesis.  In

the first example  « = 12,  m = 3,  „3 = 3, i4 = 7, dm + dm + x < «,   so there is

no solution and the  Q,- are not calculated.   In the second example, the sequence sat-

isfies the linear recurrence x4 + x + 1.

Table 1

F=GFi2), « = 12, {tj}= {100101110111}

z       A,- Af

0 - 1

1 0 x+x4 +x6+x7+x8+x10 +X11 +x12

2 y x3 +x5 +x6 +x7 +x9 +x10 +X11

3 y2 +1 x7(+x12)

There is no linear recurrence of degree  < 6.

Table 2

F=GF(2), n = &,   {Z/}= {11101011}

i      A,- A,- Q.

0-1 0

1 0 x +x2 +x3 +x5 +x7 +x8 1

2 y + 1    x3 +x4 +x5 +x6(+x8) y + 1

3 y2 x4 +xs(+x6 +x7 +x8) y3+y2+l

4 y ix7 +x8) y4 + y3 + 1

The linear recurrence is x4(y4 + y3 + 1) = x4 +x + 1.

6. We now consider the system

(13) ZWV'      0</<s-l,
j=0

of s   linear equations in  s + 1   unknowns.  This system must have at least one non-

trivial solution in F.   If we set

A = ¿ y*-'-,
/=o

then we can write  A = xrW,  where   W  is a polynomial with nonzero constant term,
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and   deg W < s - r.   If (13) holds, then there is a polynomial   V such that  deg V <

s—r  and  X2s~r\TW - V.   Thus   V/W  is an approximation of T of degree  s - r.

Hence   V/W = Vm/Wm   for some  z«  with dm <,s~r and dm +dm + x -1 >

2s — r,   so that  dm < s < dm + x.  Thus we see that our algorithm can be used to

solve the system (13) for any positive integer  i
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