Continued Fractions and Linear Recurrences

By W. H. Mills

Abstract. Let $t_{0}, t_{1}, t_{2}, \cdots$ be a sequence of elements of a field F. We give a
continued fraction algorithm for $t_{0} x+t_{1} x^{2}+t_{2} x^{3}+\cdots$. If our sequence satisfies a linear recurrence, then the continued fraction algorithm is finite and produces this recurrence.

More generally the algorithm produces a nontrivial solution of the system

$$
\sum_{j=0}^{s} t_{i+j} \lambda_{j}, \quad 0 \leqslant i \leqslant s-1
$$

for every positive integer s.

1. Let $t_{0}, t_{1}, t_{2}, \cdots$ be a sequence of elements of a field F. Set

$$
T=\sum_{j=0}^{\infty} t_{j} x^{j}
$$

Let d be a nonnegative integer. We say that T^{*} is an approximation of T of degree d if there exist polynomials V and W such that $T^{*}=V / W, \operatorname{deg} V<d$, $\operatorname{deg} W \leqslant d, x \nmid W$, and $x^{2 d} \mid W T-V$.

We shall give a continued fraction expansion for $x T$. This yields polynomials V_{i}, W_{i}, and integers $d_{i}, 0=d_{1}<d_{2}<d_{3}<\cdots$, such that $\left(V_{i}, W_{i}\right)=1$ and V_{i} / W_{i} is an approximation of T of degree d_{i}. Suppose T^{*} is any approximation of T of some degree d. Then $T^{*}=V_{i} / W_{i}$ for that value of i such that $d_{i} \leqslant$ $d<d_{i+1}$.

If the sequence of the t_{j} satisfies a linear recurrence of degree d, but not one of smaller degree, then there is an m such that $d_{m}=d$ and the linear recurrence is given by the polynomial W_{m}. In this case, $W_{m} T=V_{m}$, the continued fraction expansion, terminates at $i=m$, and we can determine W_{m} from the first $2 d$ of the t_{j}, i.e., from those t_{j} such that $0 \leqslant j<2 d$.

Our algorithm is closely related to Zierler's version of Berlekamp's algorithm [1].
2. We consider continued fraction expansions of the form

$$
\alpha=N_{1}+\frac{1}{N_{2}+\frac{1}{N_{3}+\cdots}},
$$

where $N_{1}, N_{2}, N_{3}, \cdots$ are elements from some field E. We can write

AMS (MOS) subject classifications (1970). Primary 12C10, 10F20.

$$
\alpha=N_{1}+R_{1}, \quad 1 / R_{1}=N_{2}+R_{2}, \quad 1 / R_{2}=N_{3}+R_{3}, \cdots
$$

If $R_{m}=0$ for some m, then the continued fraction terminates with N_{m}. Otherwise it is an infinite continued fraction.

In the classical case, α is a real number, the N_{i} are integers, and $0 \leqslant R_{i}<1$ for all i We are interested in a different case.

We set

$$
\begin{equation*}
P_{0}=1, \quad Q_{0}=0 ; \quad P_{1}=N_{1}, \quad Q_{1}=1 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
P_{i}=N_{i} P_{i-1}+P_{i-2}, \quad i \geqslant 2 \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
Q_{i}=N_{i} Q_{i-1}+Q_{i-2}, \quad i \geqslant 2 \tag{3}
\end{equation*}
$$

It is well known, and easy to show, that

$$
\begin{aligned}
& P_{1} / Q_{1}=N_{1}, \quad P_{2} / Q_{2}=N_{1}+1 / N_{2} \\
& P_{3} / Q_{3}=N_{1}+1 /\left(N_{2}+1 / N_{3}\right), \cdots
\end{aligned}
$$

The sequence $P_{1} / Q_{1}, P_{2} / Q_{2}, P_{3} / Q_{3}, \cdots$ converges to α in many cases, including the classical case.

We put

$$
\Delta_{i}=\alpha Q_{i}-P_{i}, \quad i \geqslant 0
$$

Then we have
(4)

$$
\Delta_{0}=-1, \quad \Delta_{1}=\alpha-N_{1}
$$

and

$$
\begin{equation*}
\Delta_{i}=N_{i} \Delta_{i-1}+\Delta_{i-2}, \quad i \geqslant 2 \tag{5}
\end{equation*}
$$

Clearly $R_{1}=\alpha-N_{1}=-\Delta_{1} / \Delta_{0}$. Since $R_{i+1}=-N_{i+1}+1 / R_{i}$ it follows from (5), by induction on i, that

$$
\begin{equation*}
R_{i}=-\Delta_{i} / \Delta_{i-1}, \quad i \geqslant 1 \tag{6}
\end{equation*}
$$

3. We now take E to be the field of all series of the form $\sum_{j=k}^{\infty} a_{j} x^{j}$, where the a_{j} are elements of the field F and k is a rational integer which may be neg. ative. For convenience let $y=1 / x$. We set $\alpha=x T$ and $N_{1}=0$. Then $R_{1}=$ $\alpha=x T$. We now define the N_{i} and R_{i} inductively using

$$
\begin{equation*}
1 / R_{i-1}=N_{i}+R_{i}, \quad i \geqslant 2 \tag{7}
\end{equation*}
$$

where we take N_{i} to be a polynomial in y and $x \mid R_{i}$. Thus if

$$
1 / R_{i-1}=\sum_{j=k}^{\infty} a_{j} x^{j}, \quad a_{k} \neq 0
$$

it turns out that $k<0$ and we have

$$
N_{i}=\sum_{j=k}^{0} a_{j} j^{j}=\sum_{u=0}^{-k} a_{-u} y^{u} \quad \text { and } \quad R_{i}=\sum_{j=1}^{\infty} a_{j} x^{j} .
$$

This determines the N_{i} and R_{i} uniquely. If $R_{m}=0$ for some m, then the process terminates at this point. The P_{i}, Q_{i}, and Δ_{i} are now determined by (1), (2), (3), (4), and (5).

We shall write $x^{r} \| A$ if x^{r} divides A, but x^{r+1} does not divide A. This means that A is of the form $A=\sum_{j=r}^{\infty} a_{j} x^{j}$ with $a_{r} \neq 0$. Let $x^{r_{i} \|} R_{i}, i \geqslant 1$. If $R_{m}=0$, we set $r_{m}=\infty$. Then $r_{i} \geqslant 1$ for $i \geqslant 1$. For $i \geqslant 2, N_{i}$ is a polynomial in y of degree r_{i-1}. Set

$$
\begin{equation*}
d_{i}=\sum_{j=1}^{i-1} r_{j} \tag{8}
\end{equation*}
$$

Then we have $0=d_{1}<d_{2}<d_{3}<\cdots$. It follows from (1) and (3), by induction on i, that Q_{i} is a polynomial in y of degree d_{i}. Similarly, for $i \geqslant 2, P_{i}$ is a polynomial in y of degree $d_{i}-r_{1}$. Set

$$
V_{i}=x^{d_{i}-1} P_{i}, \quad W_{i}=x^{d_{i}} Q_{i} .
$$

Then V_{i} and W_{i} are polynomials in $x, \operatorname{deg} V_{i}<d_{i}$, and $\operatorname{deg} W_{i} \leqslant d_{i}$. Moreover, w_{i} has a nonzero constant term so that $x \nmid w_{i}$. Now

$$
T W_{i}-V_{i}=x^{d_{i}-1}\left(\alpha Q_{i}-P_{i}\right)=x^{d_{i}-1} \Delta_{i}
$$

Since $\Delta_{0}=-1$, (6) gives us

$$
\Delta_{i}=(-1)^{i+1} \prod_{j=1}^{i} R_{j}
$$

Since $x^{r_{j}} \| R_{j}$, we have
(9)

$$
x^{d_{i+1}} \| \Delta_{i}
$$

by (8). Hence

$$
\begin{equation*}
x^{d_{i}+d_{i+1^{-1}}} \| T W_{i}-V_{i} \tag{10}
\end{equation*}
$$

Therefore, $x^{2 d_{i}} \mid T W_{i}-V_{i}$ so that V_{i} / W_{i} is an approximation of T of degree d_{i}.
Lemma 1. Let T^{*} be an approximation of T of degree d. Let i be the integer such that $d_{i} \leqslant d<d_{i+1}$. Then $T^{*}=V_{i} / W_{i}$.

Proof. We have $T^{*}=V / W$, where $\operatorname{deg} W \leqslant d$, $\operatorname{deg} V<d$, and $x^{2 d} \mid W T-V$. Now $d+d_{i} \leqslant 2 d$ so that $x^{d+d_{i}} \mid W T-V$. Moreover, $d+d_{i} \leqslant d_{i}+d_{i+1}-1$ so that $x^{d+d_{i}} \mid W_{i} T-V_{i}$ by (10). Since

$$
V_{i} W-V W_{i}=W_{i}(W T-V)-W\left(W_{i} T-V_{i}\right)
$$

we have

$$
\left.x^{d+d_{i}}\right|_{i} W-V W_{i}
$$

Now the degree of $V_{i} W-V W_{i}$ is less than $d+d_{i}$. Therefore $V_{i} W-V W_{i}=0$, so that

$$
T^{*}=V / W=V_{i} / W_{i}
$$

Lemma 2. If $V_{i} / W_{i}=V_{j} / W_{j}$, then $i=j$.
Proof. Suppose $V_{i} / W_{i}=V_{j} / W_{j}$. Then we have $V_{i}=V D, W_{i}=W D, V_{j}=V E$, $W_{j}=W E$ for suitable polynomials V, W, D, E with $(V, W)=1$. Since $x \nmid W_{i}$, we have $x \nmid D$ so that (10) yields

$$
x^{d_{i}+d_{i+1}-1} \| T W-V
$$

Similarly

$$
x^{d_{j}+d_{j+1}^{-1}} \| T W-V
$$

Hence

$$
d_{i}+d_{i+1}-1=d_{j}+d_{j+1}-1
$$

Therefore, $i=j$.
Lemma 3. $\left(V_{i}, W_{i}\right)=1$.
Proof. Suppose $\left(V_{i}, W_{i}\right)=D$ where $\operatorname{deg} D>0$. Then $V_{i}=V D, W_{i}=W D$ for suitable polynomials V, W such that $x \nmid W, \operatorname{deg} W<d_{i}$, and $\operatorname{deg} V<d_{i}-1$. Moreover $x \vdash_{D}$ so that $x^{2 d_{i}} \mid T W-V$. Hence V / W is an approximation of T of degree less than d_{i}. By Lemma 1 we have $V / W=V_{j} / W_{j}$ for some $j<i$. This contradicts Lemma 2.

Lemma 4. For any particular value of i we have either $\operatorname{deg} V_{i}=d_{i}-1$ or $\operatorname{deg} W_{i}=d_{i}$.

Proof. Since $\operatorname{deg} W_{1}=0=d_{1}$, we may suppose $i>1$. If the result is false, then V_{i} / W_{i} is an approximation of T of degree less than d_{i}. By Lemma 1 this implies that $V_{i} / W_{i}=V_{j} / W_{j}$ for some $j<i$, which contradicts Lemma 2.
4. Let $\left\{t_{j}\right\}=\left\{t_{0}, t_{1}, \cdots, t_{n-1}\right\}$ be a finite sequence of elements of F, and set

$$
T=\sum_{j=0}^{n-1} t_{j} x^{j}
$$

Let W be a polynomial of degree s with a nonzero constant term. Thus $W=$ $\Sigma_{j=0}^{s} w_{j} x^{j}$, where the w_{j} are elements of $F, w_{0} \neq 0, w_{s} \neq 0$. The linear recurrence given by W is

$$
\begin{equation*}
\sum_{i=0}^{s} w_{i} t_{k-i}=0 \tag{11}
\end{equation*}
$$

If (11) holds for a particular value k_{0} of k, we say that the linear recurrence W holds
for k_{0}. If (11) holds for all values of k for which the left side is defined, i.e., for $s \leqslant k \leqslant n-1$, then we say that the sequence $\left\{t_{j}\right\}$ satisfies the linear recurrence W.

Whenever we speak of a linear recurrence W we shall mean a polynomial W with a nonzero constant term. The degree of the linear recurrence is defined to be the degree of this polynomial.

In order to determine W, up to a multiplicative constant, we must have (11) satisfied by at least s values of k. Hence we must have $2 s \leqslant n$. Our problem is to determine whether or not the sequence $\left\{t_{j}\right\}$ satisfies a linear recurrence of degree $\leqslant n / 2$, and if so to determine the linear recurrence of lowest degree that $\left\{t_{j}\right\}$ satisfies.

Let $h=[n / 2]$. Thus h is an integer and either $n=2 h$ or $n=2 h+1$. Let $x T$ be expanded in a continued fraction as indicated in Section 2 and Section 3. This gives us polynomials V_{i} and W_{i} and integers d_{i}. Let m be the integer such that $d_{m} \leqslant h<d_{m+1}$. This is equivalent to

$$
\begin{equation*}
2 d_{m} \leqslant n<2 d_{m+1} \tag{12}
\end{equation*}
$$

Now suppose that the sequence $\left\{t_{j}\right\}$ satisfies a linear recurrence W of degree s, where $s \leqslant n / 2$. Thus $s \leqslant h$. We suppose W chosen so that s is minimal. Set $V=\Sigma_{j=0}^{s-1} v_{j} x^{j}$, where

$$
v_{j}=\sum_{i=0}^{j} w_{i} t_{j-i}
$$

Then $x^{n} \mid T W-V$ by (11) so that V / W is an approximation of T of degree h. More precisely it is an approximation of T of degree d for any d such that $s \leqslant$ $d \leqslant h$. By Lemma 1 and the choice (12) of m we have $V / W=V_{m} / W_{m}$. Since W is of minimal degree, we have $(V, W)=1$. Moreover $\left(V_{m}, W_{m}\right)=1$ by Lemma 3, so that $W=\lambda W_{m}$ for some nonzero element λ of F.

More generally, suppose only that the linear recurrence W holds for those k such that $h \leqslant k \leqslant n-1$, that $\operatorname{deg} W \leqslant h$, and that W is a linear recurrence of minimal degree with these properties. As above there is a polynomial V such that V / W is an approximation of T of degree $h,(V, W)=1$, and $W=\lambda W_{m}$ for some nonzero λ in F.

It is easy to see that there need not be such a linear recurrence. For example, we may take $\left\{t_{j}\right\}=\{0,0, \cdots, 0,1\}$. However, we have shown that if there is one, then it must be W_{m}, up to a multiplicative constant.

Now

$$
x^{d_{m}+d}{ }_{m+1^{-1}}^{\| T W_{m}-V_{m}}
$$

by (10). Hence if $n \geqslant d_{m}+d_{m+1}$, then $\left\{t_{j}\right\}$ does not satisfy the linear recurrence W_{m}, in fact W_{m} fails to hold for $d_{m}+d_{m+1}-1$. Thus we have the following result:

Theorem 1. If $d_{m}+d_{m+1} \leqslant n<2 d_{m+1}$, then the sequence $\left\{t_{j}\right\}$ does
not satisfy any linear recurrence of degree $\leqslant n / 2$. In fact, there is no linear recurrence of degree $\leqslant n / 2$ that holds for all k such that $h \leqslant k \leqslant n-1$.

Now suppose that $n<d_{m}+d_{m+1}$. Then the linear recurrence W_{m} holds for all k in the range $d_{m} \leqslant k \leqslant n-1$. We have $\operatorname{deg} W_{m} \leqslant d_{m}$. If $\operatorname{deg} W_{m}=$ d_{m}, then $\left\{t_{j}\right\}$ satisfies the linear recurrence W_{m}. However, if $\operatorname{deg} W_{m}<d_{m}$, then $\operatorname{deg} V_{m}=d_{m}-1$ by Lemma 4, and, therefore, the linear recurrence W_{m} fails to hold at $d_{m}-1$. Thus we have the following result:

Theorem 2. Suppose $2 d_{m} \leqslant n<d_{m}+d_{m+1}$. If $\operatorname{deg} W_{m}=d_{m}$, then W_{m} is a linear recurrence of minimal degree satisfied by $\left\{t_{j}\right\}$. If $\operatorname{deg} W_{m}<d_{m}$, then there is no linear recurrence of degree $\leqslant n / 2$ which is satisfied by $\left\{t_{j}\right\}$. However, W_{m} is a linear recurrence of minimal degree that holds for all k such that $h \leqslant$ $k \leqslant n-1$. It holds for all k in the range $d_{m} \leqslant k \leqslant n-1$, and fails to hold for $d_{m}-1$.
5. In this section, we shall describe an efficient method of computing the polynomial W_{m}. As before, let $\left\{t_{j}\right\}=\left\{t_{0}, t_{1}, \cdots, t_{n-1}\right\}$ be the finite sequence we are interested in. We start with $N_{1}=0, \Delta_{0}=-1$, and

$$
\Delta_{1}=x T-N_{1}=\sum_{j=0}^{n-1} t_{j} x^{j+1}
$$

For $i \geqslant 2$, (6) and (7) give us

$$
N_{i}+R_{i}=1 / R_{i-1}=-\Delta_{i-2} / \Delta_{i-1}
$$

where $x \mid R_{i}$ and N_{i} is a polynomial in $y, y=1 / x$. Thus N_{i} can be obtained from Δ_{i-2} and Δ_{i-1} by an ordinary division process. Then Δ_{i} is given by (5): $\Delta_{i}=N_{i} \Delta_{i-1}+\Delta_{i-2}$. In this way, the N_{i} and the Δ_{i} can be successively obtained. We must continue this out to $i=m$ where $2 d_{m} \leqslant n<2 d_{m+1}$. Since $x^{d_{i}} \| \Delta_{i-1}$ by (9), we know at once when we have reached $i=m$. If $d_{m}+d_{m+1} \leqslant n$, then there is no solution. If $d_{m}+d_{m+1}>n$, then we calculate Q_{m} from the N_{i} and the relations $Q_{0}=0, Q_{1}=1, Q_{i}=N_{i} Q_{i-1}+Q_{i-2}$.

If Q_{m} has a nonzero constant term, then $\operatorname{deg} W_{m}=d_{m}$ and $W_{m}=x^{d_{m}} Q_{m}$ is the required linear recurrence. If Q_{m} has no constant term, then $\operatorname{deg} W_{m}<d_{m}$ and $\left\{t_{j}\right\}$ does not satisfy a linear recurrence of degree $\leqslant n / 2$. However, in this case, $W_{m}=x^{d_{m}} Q_{m}$ is a linear recurrence that holds for all k such that $d_{m} \leqslant k \leqslant n-1$.

We note that $x^{d_{i}}\left\|\Delta_{i-1}, x^{d_{i-1}}\right\| \Delta_{i-2}$, and $d_{i}=r_{i-1}+d_{i-1}$. Hence in performing the division $\Delta_{i-2} / \Delta_{i-1}$ we need only use the first $r_{i-1}+1$ terms of Δ_{i-2} and the same number of terms of Δ_{i-1}. This is sufficient to determine N_{i} completely.

Finally we note that it is only necessary to calculate Δ_{i} out to the term in $x^{n-d_{i}}$. This corresponds to the fact that $\Delta=x T$ is known only out to the term in x^{n}. To see this, consider the division of Δ_{i-2} by Δ_{i-1}. We need $r_{i-1}+1$ terms of each. More terms of Δ_{i-2} are assumed known than of Δ_{i-1}. The number of terms of Δ_{i-1} that we have is $n-d_{i-1}-d_{i}+1=n-2 d_{i}+r_{i-1}+1$. Since we
may suppose $i \leqslant m$, this is at least $r_{i-1}+1$ terms. Thus N_{i} may be computed exactly. Clearly if we know Δ_{i-2} out to the term in $x^{n-d_{i-2}}$ and Δ_{i-1} out to the term in $x^{n-d_{i-1}}$, then once N_{i} is known as a polynomial in y of degree r_{i-1}, we may calculate Δ_{i} out to the term in $x^{n-d_{i}}$.

Tables 1 and 2 give examples of the calculation for small n and $F=G F(2)$. The unnecessary terms of Δ_{i}, i.e., those beyond $x^{n-d_{i}}$, are given in parenthesis. In the first example $n=12, m=3, d_{3}=3, d_{4}=7, d_{m}+d_{m+1} \leqslant n$, so there is no solution and the Q_{i} are not calculated. In the second example, the sequence satisfies the linear recurrence $x^{4}+x+1$.

Table 1

$$
F=G F(2), n=12,\left\{t_{j}\right\}=\{100101110111\}
$$

\[

\]

There is no linear recurrence of degree $\leqslant 6$.
Table 2
$F=G F(2), \quad n=8, \quad\left\{t_{j}\right\}=\{11101011\}$

\[

\]

The linear recurrence is $x^{4}\left(y^{4}+y^{3}+1\right)=x^{4}+x+1$.
6. We now consider the system

$$
\begin{equation*}
\sum_{j=0}^{s} t_{i+j} \lambda_{j}, \quad 0 \leqslant i \leqslant s-1 \tag{13}
\end{equation*}
$$

of s linear equations in $s+1$ unknowns. This system must have at least one nontrivial solution in F. If we set

$$
\Lambda=\sum_{j=0}^{s} \lambda_{j} x^{s-j}
$$

then we can write $\Lambda=x^{r} W$, where W is a polynomial with nonzero constant term,
and $\operatorname{deg} W \leqslant s-r$. If (13) holds, then there is a polynomial V such that $\operatorname{deg} V<$ $s-r$ and $X^{2 s-r} \mid T W-V$. Thus V / W is an approximation of T of degree $s-r$. Hence $V / W=V_{m} / W_{m}$ for some m with $d_{m} \leqslant s-r$ and $d_{m}+d_{m+1}-1 \geqslant$ $2 s-r$, so that $d_{m} \leqslant s<d_{m+1}$. Thus we see that our algorithm can be used to solve the system (13) for any positive integer s.

Institute for Defense Analyses
Communications Research Division
Princeton, New Jersey 08540

1. NEAL ZIERLER, "Linear recurring sequences and error-correcting codes," Error Correcting Codes, edited by H. B. Mann, Wiley, New York, 1968, pp. 47-59. MR 40 \#2438.
