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Coupled Sound and Heat Flow

and the Method of Least Squares

By Alfred Carasso

Abstract. We construct and analyze a least-squares procedure for approximately solving

the initial-value problem for the linearized equations of coupled sound and heat flow,

in a bounded domain Í2 in Ä   , with homogeneous Dirichlet boundary conditions.   The

method is based on Crank-Nicolson time differencing.   To approximately solve the re-

sulting system of boundary value problems at each time step, a least-squares method is

devised, using trial functions which need not satisfy the homogeneous boundary condi-

tions.   Certain unknown normal derivatives of the solution enter the boundary integrals.

By using suitable weights, these unknown derivatives can be set equal to zero without

impairing the 0(k: ) accuracy of the Crank-Nicolson scheme.   However, one must use

smoother trial functions to obtain this accuracy.

1.  Introduction.   In a recent paper, [4], Bramble and Thome'e discuss least -squares

methods in the numerical computation of the homogeneous Dirichlet problem for the

heat equation in a bounded domain SI in RN. The technique is to first discretize the

time variable, using an implicit scheme, to obtain a sequence of elliptic boundary value

problems at each time step.  This latter problem is then approximately solved by "least

squares".  The importance of this work, in the context of the approximation of time-

dependent problems by variational methods, rests in the fact that the trial functions

need not satisfy the boundary conditions, so that one can treat problems in general do-

mains.

While only the heat equation is discussed in [4], the ideas would seem to have

application to other evolution equations.  In the present paper, we consider a mixed

initial-boundary value problem for a coupled system of two evolution equations, the

linearized equations of coupled sound and heat flow, in a general domain £2 in RN,

with a smooth boundary 3Í2.  This problem is the best known example of a class of

problems important in the applications.  Other concrete instances of coupled hyperbolic-

parabolic equations exist and are mentioned in [1], [6], [13], and [14].  A class of

coupled equations is investigated in [7].  Mathematically, the problem involves consider-

ation of two or more unbounded operators of different strength.  Consequently, the

study of the stability properties of explicit schemes (in one space dimension) has inter-

ested several authors.  See [7], [8], [11] and [12].  In [17], a Crank-Nicolson Galer-

kin method is proposed for the one-dimensional problem, using trial functions satisfying
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the boundary conditions.  Since the semiboundedness of the spatial operator is then

automatically preserved, there are no stability difficulties with this procedure.

Very little seems to have been published in connection with the above problem

in more than one space dimension.   In this paper, we analyze a least-squares procedure

based on the Crank-Nicolson time discretization.  Since the trial functions do not satisfy

the boundary conditions, the problem of formulating the fully-discrete scheme so as to

obtain stability, turns out to be rather interesting.  While we follow closely the organiz-

ation of [4], there are major differences both in the formulation of the fully discrete

scheme and in the type of results we obtain.  In the problem treated in [4], the analy-

tic solution operator, etA, is a holomorphic semigroup satisfying the characteristic esti-

mate

(1.1) \\AmetA\\L2<Cmrm,      r>0,m = l,2, ••• .

This smoothing property of etA plays an important role in several places in [4].  In par-

ticular, in the convergence theorems, [4, Theorems 5.1, 5.2], it is used explicitly to es-

timate the L2 norm of the error at time t with the order of the best approximation to

the solution by functions in the approximating subspace.   In the problem treated here,

the solution operator is a CQ semigroup, but not a holomorphic one, and we are not

able to obtain the order of the best approximation for the L2 norm of the error at

time r.   Beyond that, other difficulties arise inevitably, due to the fact that one has a

coupled system of boundary value problems at each time step rather than a single ellip-

tic problem.   In constructing the norm in which to approximate the solution at each

time step, we find that we must include more boundary data than are actually supplied

in the analytic problem.  For example, although only the value of the temperature-

zero—is prescribed on bfl, one needs both the temperature and its Laplacian in the

boundary integral, due to the fact that operators of different strength are involved.  We

show that if the initial data are sufficiently smooth, the Laplacian of the temperature

is also zero on 3Í2, so that these extra data are actually known.  More serious is another

coupling effect, originating in the hyperbolic problem, which forces us to include the

normal derivatives of certain components of the solution in the boundary integral.

These extra data are unknown.   We show that by using suitable weights, these deriva-

tives can be taken to be zero without impairing the Oik2) accuracy of the Crank-Nicol-

son scheme.  A penalty must be paid for being able to use such wrong values.  It turns

out that one must employ smoother trial functions than in [4], in order to obtain the

same accuracy.   See the remarks after Theorem 5.1.

We use the letter C to denote a generic constant.

2.  The Analytic Problem.  We consider the infinitesimal motions of a compres-

sible fluid in which the transfer of energy by thermal conduction is a significant aspect

of the flow.   Let p0, E0, V0 and u0, respectively, denote ambient values of the pressure,

specific internal energy, specific volume and material velocity, and let p, E, V and u de-

note small deviations from these quantities.  Let c = V p0 V0 be the isothermal sound
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speed, y > 1 be the ratio of specific heats, and o > 0 the thermal conductivity.  In

terms of the auxiliary variables w = cV/V0, e = (7 - l)E/c, the linearized equations

expressing conservation of mass, momentum, and energy, are, cf. [6] and [13],

(2.1) bw/bt = cV.u,

(2.2) bu/bt = cVw - cS/e,

(2.3) be/bt = a Ae - iy - l)cV - \x.

We assume the disturbance confined to a fixed spatial domain £2, in RN, and that,

for simplicity, the ambient conditions prevail on the smooth boundary 9Í2 of £2, so that

e = w = 0 on 9Í2, for all t > 0.  Taking the divergence of both sides in (2.2) and elim-

inating V • u from the resulting system, we obtain two equations for the unknown scalar

fields w(x, 0 and e(x, 0, namely,

(2.4) wtt = c2Aw - c2Ae,      x G il, t > 0,

(2.5) et = oAe - (7 - l)wf,      x 6 Í2, r > 0,

together with,

(2.6) e = w = 0,      xGbSl, t>0.

We shall show that, given initial values of e, w and wt, the resulting initial-bound-

ary value problem is well posed in an appropriate function space.  It is convenient to

make use of the spaces Hs, s > 0, introduced in [4].  Let {Am}~ = 1 be the eigenvalues

of the negative Laplacian in Í2, with zero Dirichlet data on 9£2, and let {<Pm}^,=1 be

the corresponding orthonormal sequence of eigenfunctions. For a given v G Z,2(S2), let

{ßm}m = i De tne sequence of Fourier coefficients' of v relative to the {0m}.  For each

s > 0, the Hilbert space IP is defined to be the subspace of ¿2(ÍT) consisting of all u's

for which the norm

(00 1/2

Z     ^m\ßm\2)
m-\ /

is finite. H°° = I \S>0HS is dense in every Hs and consists of all C°°(f2) functions

which vanish on 9Í2 together with all powers of their Laplacian.  If s is a nonnegative

integer, and v G H°°, the s-norm is equivalent to the usual Sobolev norm, ||u||    .  It

follows from the trace theorems, see, e.g., [10], that if s > 1 and v G Hs, then i> = 0

on d£2.  If v G Hs, s > 3, then both v and Au vanish on 9Í2.

Returning to (2.4), (2.5), put wt = v in (2.4), (2.5), and let G be the 3 x 3 matrix

(2.8) G

A A

Let G = G(Km) be the 3x3 matrix

r   0 I 0
c2A 0 -c2A

0     - (7 - 1)1       o A J
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I"?
1 0     H

o      c2K

(1-7)    -a\m.

Let Í/ be the three component vector U = [w, v, e]T.  The initial-boundary value prob-

lem for (2.4), (2.5) may be equivalently written as

(2.10) Ut = GU,      x G a, t > 0,

(2.11) uix, o) = [fix),gix), h(x)]T,    x e a,

(2.12) e = w = 0,      xGbSl,t>0.

We now introduce the Hubert space ff = Hs+1 x Hs x Hs+1, s > 0, consisting of all

three component vectors Uix), for which the norm

(2-13) 111/11,= |e2||w||2+1 +H< + ;^£nlHI2+1}1/

is finite.  In general, the components of U will depend on both x and r.  We set

(2.14) IIC/(0ll2 = c2||w(.,0ll2+1 +Wvi-,t)\\2 + -^r. lk(.,oil2+1.

We have the following

Theorem 2.1. Let I > 0. For each initial value Uix, 0) G Hl, problem (2.10)-

(2.12) has a unique solution and the following estimate holds:

(2.15) 111/(011, < lli/(0)ll,.

Proof. We construct the solution by expanding in the eigenfunctions of - A. Let

(2.16) t/(x,0) = [   Z    amt>m,   Z    bm<Pm,   Z    àm<l>m\    ,
Lm = l m = l m = \

and put

(2.17) Uix, t) = [Z««(O0m, Z<UO0m. ̂ 5^O)0m]T-

Substitution of (2.17) in (2.10) leads to an initial-value problem for a linear system of

ordinary differential equations, for each fixed m, namely

(2.18) [«m(0, j3m(0, 5M(01T = G(\m) [amit), ßm(0, bm{t)\T,

with

(2.19) [am(0),ßm(0),6mi0)]T= [am,bm,dm]T.

For each fixed m, equip three-dimensional Euclidean space with the inner product

(2-20) (*. V) = C2>Wl+ ^2^2 + 7^7 *3^3-

A

Then, for each m, the matrix G(km) is dissipative, i.e.,

(2.21) Re(Cx, x) < 0.
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It follows immediately from (2.21), that (2.18), (2.19) has a unique solution, and

c2Xm|am(0l2 + lßm(0l2+^-|Sm(0l2

(2.22) 7    1 c2^
<c2\m\am\2 + \bm\2 +^\dm\2,

for each m.   The estimate (2.15) now follows from (2.22) and (2.14).  This proves the

theorem.

3.  The Semidiscrete Problem.    Let k > 0 be a small increment in the time vari-

able.  Leaving the space variables continuous, we discretize the time in (2.10), using the

Crank-Nicolson scheme, to obtain a sequence of boundary value problems at each time

step nk, namely,

(3.1) Q-kG/2)W" + 1 =Q + kG/2)W",      x € Í2, n = 0, 1, 2, •••,

(3.2) w? + 1 = w%+l =0,      xGbïl,

(3.3) W° = Uix, 0),      x G Ü,.

Here W"(x) = [w"(x), w2(x), w"(x)]T is a three-component vector which pre-

sumably will approximate £/(x, nk), where <7(x, 0 is the solution to (2.10)—(2.12).  This

discrete initial-value problem is also well posed.

Theorem 3.1. Fix s>0 and let W° G Hs.  Then, there exists a unique solution,

{Wnl of i3.l)-i3.3) and

(3.4) lir,||(<l|H'0||,,      n = 0,1,2,—.

Proof. We may again construct {Wn} by expanding in the eigenfunctions of-A.

Put

(3.5) Wn

and let

Z<*nm*m,Zßm<Pm,Z?>m<t>m]7
m J

(3-6) y" = [a"m,ß"m,8"m]T.

Then, for each fixed m, the coefficients y" satisfy

(3.7) [I-kGl2]y"+1 = [I + kG/2]yn,     n = 0,1,2,"-.

We again use the scalar product (2.20) for the space of vectors y".  Forming the scalar

product on both sides of (3.7) with the vector y"+1 + y", we get

Hy"+1ll2-ll7"ll2-0",j'"+1) + 0"+1,>'n)

= ik/2) iGiyn + 1 +yn), (y" + 1 + y")).

Using (2.21) in (3.8), we have

(3.9) \\yn +11|< H/11|.

This proves that (3.1)—(3.3) has a unique solution and establishes the estimate (3.4).
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Lemma 3.1. Let y = \yv y2, y3]T be a vector in three-dimensional space.   Then,

there is a constant C, independent of y and m, such that, in the norm induced by (2.20),

\\ekây - iI-kG¡2)-\l + kG/2)y\\

(3.10) < \\iI-kG/2)ekây - (/ + kGI2)y\\

< Ck3{\5m \y. |2 + \sm \y212 + X¿, \y312}1/2.

Proof.   To begin with, since Re(Gy, y) < 0, we have ||(7 - kG¡2)~1 \\ < 1, so

that

(3.11) IKZ-fcrj^r^lKUzll.

If we now apply (3.11) to the vector

(3.12) z = (/ - kG\2)ek^y - (/ + kG\2)y,

we obtain the first inequality in (3.10).

Next, by Taylor's theorem, for some r with 0 < r < k,

(3.13) iI-kG/2)ekG =1 + kG/2 - (rfc2/4)G3eT^.

Hence, for any vector/,

IK
A

since ||eTG|| < 1, independently of m, due to the dissipativity of G(X   ).

(3.14)     ||(/ - kG/2)ekôy - (/ + kG/2)y\\ < ik3/A)\\eTOG3y\\ < (fc3/4)||G3;y||,

It remains to calculate ||C7 ,y||.  We have

(3.15)    G3 =

o, ~yc2\m, -oc2\2m

yc*\2m, (7 - l)ac2\2m, o2c2\3m - yc4X2m

L(l - y)c2o\2m,    7(7 - l)c2\„ ~ o\y - 1)J&,    2c2a(7- l)X2m - o3^ J

Hence,

IIGVll2 = c2Xm|c2TXm72 + c2oX2my3\2

(3 16) + lTC4X^, + (7 - l)oc2\2my2 + o2c2\3my3 - yc*\2my3\2

+Y=\ Ki - i)<?°>&i + y(y - i)c2xm72 - a2(7 - i)\2my2

+ 2c2a(7-l)X^3-a3X3„^3l2.

Since Xm t °°, we have from (3.16), with a constant C independent of m,

(3.17) \\G3y\\2 <C{\5m\yi\2 +\5m\y2\2 +\7m\y3\2}.

The lemma follows from (3.14) and (3.17).

We denote by E(t) the solution operator at time t associated with the analytic

initial-boundary value problem (2.10)-(2.12), and by Ekit) the solution operator asso-

ciated with the semidiscrete problem (3.1)—(3.3).   Both of these operators are bounded

from rf into itself, s > 0, as follows from Theorems 2.1 and 3.1.
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Theorem 3.2. Let VG H°°.   Then there exists a constant C independent of k

and V such that

(3.18)      \\Ekik)V-Eik)V\\0 < W-kG/2) [Ek(k)V- E(k)V] ||0 < CA:3||K||6.

Proof.   Put V = [S-=1 am(j>m, S~=, bm<pm, 2~=1 dm<pm]T and for each m =

1,2, '•• ,letym be the point in three-dimensional space given by

(3-19) ym = K,bm,dm]T.

Then, using Lemma 3.1,

\\Ekik) V -Eik) VU2

= Z H^("m)>'m-[/-(V2)Ô(Xm)]-1[/ + (A/2)G(Am)]/m||2
m = l

(3.20) < %, UiI-kGl2)ekôym - (/ + kG/2)ymf

= W-kG/2)[Ekik)V-Eik)V]\\2

<Ck6\Z   *mK\2+*m\bm\2+*m\dm\2}
\m = l )

<a6imi2.

This proves the theorem.

4.  Some A Priori Estimates.  Equations (3.1)—(3.3) define a convergent "method

of lines" where only the time variable is discretized.  At each time step, one must solve

a coupled system of boundary value problems.  We shall construct a "least-squares"

procedure for approximating the problem at each time step, and eventually obtain a

"fully-discrete" algorithm for the initial-boundary value problem (2.10)—(2.12).  The

construction rests on certain a priori estimates which we develop in the present section.

We will be dealing with arbitrary elements of the Sobolev spaces Hsi^ï), s a non-

negative integer.  Such functions will not usually belong to IP.  We use the notation

iu, v)    , || « ||    , to indicate scalar products and norms in iPi^l).  We also introduce the

Hubert space If, of three component vectors U = [w, v, e]T, with the norm

(4-1) IIC/|lKS = ic2llw||^+14- IMI^ +^-1H<i+i}1/2-

Note that by the previously mentioned equivalence of norms, if U G Hs, s a nonnega-

tive integer, then

(4.2) c^m^^ww^cjiüWjf,,

for some positive constants cs and Cs, independent of U

Let L\ denote the operators I ± kG/2 of Section 3. We have

Lemma 4.1. Let U be an arbitrary element of H2. Let a = 2Max{c2, 1, (7 - 1)}.

Then
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(1 - oÄOlli/H2 0 < HI- í/||2h0 + k jdn c2v ̂ > ds

+ *f    (SlR1\e + Ae)^ds.
JdSiKy - l/v ' bv

Proof.

WLk~uW\o = c2Hw - (*/2)ü|l¿, + ||c2(*/2)A(e - w) + u||22

+ ~ïIK*/2) (j-l)v + e- iok/2)Ae\\2Hl

(4.4) = c2||wl£i + INI22 + -4] IHI2,! +^- Nj, +-^-||Ae - Aw||22

+ -fzri IQtfi) (y - 0» - (^/2)Ae|i2/1

+ c2^, (w - e))H, - c2fc(u, A(w - e))L2 -ic2ok/iy- l))(e, Ae)Hl.

Hence

(4.5) IIC/II2 0 - \\Lk £/||2 0 < c2^, A(w-e))¿2 - c2^, (w - e))ffl +^Í (e> a^.

Next, we. make use of Green's formula,

(4.6) (W,Aw)i2 = J8ß «§*<*-/>(«,,*),

where v is the exterior unit normal on 9Í2, and Dip, w) is the Dirichlet integral

Since,

(w, (w - e))H. = iv, iw - e))L2 + D{v, (w - e))

(4-8) 9
= (u, iw - e))i2 + Jan u — (w - «?)<& - (v, A(w - e))i2,

and,

ie, Ae)H. = ie, Ae)L2 + Die, Ae)

(4.9)
= L(e + Ae)9f*-jD(e-e)-|IA<2'

we obtain on using (4.8), (4.9) in (4.5),

||i/||2K0 - \\LkU\\\0 < c2A:(i;, (w - e))¿2 + c2fc J^ v^—1 ds

(4.10) So
+ c2*f     (^)ie + Ae)^ds.

JdSiKy- l/K ' bv

Finally,
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(v, iw - e))L2 < 2 Hull2 2 + IMI2 2 + ||e||22

(4.11)
< 2 Hull2 2 + \\w\\2Hl +\\e\\2Hl < — Ht/Hjo,

where a > 0 is as in (4.3).

Hence, (4.3) follows on using (4.11) in (4.10).

Lemma 4.2. Let U be in H2.   77ie« with a as in (4.3),

(1 - o*)||£+£/||2HO < (1 + ak)\\LkU\\\ 0 + 2* f     c2u 3°?~ &) &
(4.12) Jdn dv

+ 2k(     f^-)ie + Ae)^-ds.
Jan \y- l/v ' 9p

/Voo/   We have

IILjf t/H^o - \\LHUW\o = 2c2Kv, A(w - e)) 2
(4.13) 2

Using (4.8), (4.9) in (4.13), we get,

\\Lt i/||2o - lllfc U\\\0 = 2c2kiv, iw - e))L2

+ 2k(     c2vb-^-ds + 2k(    (^)ie + Ae)^ds.
Jbsi bv Jdn\y- 1/ v ' bv

Next, as in (4.11),

(4.15) 2c2Är(u, iw - e))¿2 < 2afc||i/||2Ko.

If we now use (4.15) together with Lemma 4.1 in (4.14), Lemma 4.2 follows.

5.  The Fully-DiscTrete Problem.  For the approximate solution of (3.1)—(3.3) for

each n, we shall employ a finite-dimensional subspace, S^, of H2, consisting of three

component vectors ^ whose entries are piecewise polynomials.   The elements of S^ will

not, in general, satisfy the homogeneous boundary conditions (3.2).   However, S% will

have the property that given any three-component vector K£n2+sC H2, there is a

vector * in S% such that

(5.1) IIK-*||H/<Oii+2-'||F||J+2,      0</<2,

for all 0 < s < q.   Here, C is a constant independent of V and h.   The construction of

such spaces is discussed in [2], [3], [4], [16], and their references.  Computational in-

vestigations of least-squares procedures for elliptic boundary value problems are reported

in [15].  From (5.1) we deduce that

(5.2) Inf   ¿ft'||K-*|| wZ<CV+2||K||s+2.
i/es? ;=o n

h

At each time step in (3.1), one must approximately solve

(5.3) LkW = LtV   in  £2,



456 ALFRED CARASSO

(5.4) Wj = w3 = 0    on   9Í2,

where V is known and is obtained from the preceding time step.  We now introduce

the bilinear form

where ttkh, ßkh, \kh are weights which will be chosen later.  See (5.19)—(5.21) below.

We always assume that

(5.6) irkh,ßkh,\kh>Uk4.

The bilinear form (5.5) is well defined for all $, ^ in the Hubert space H2■  In-

deed, if <ï> is in H2, its third component, 03, lies in the Sobolev space //3(£2), and the

trace theorems (see e.g. [4, Section 4]) guarantee that 903/9iv, A03 exist and belong

to ¿2(9Í2).

On H2, the form (5.5) defines an additional scalar product.  That is, ||$||A =

{(<!>, <ï>)A}1'2 is a proper norm on H2 for all sufficiently small k.   This follows from

Lemma 4.1 and (5.6), on using inequalities such as

/b<S>\ tc^   a.
c20, -r1 ds < Zr f

an     *2   bv 2 J a

etc.

Lemma 5.1. Let VG H2 and let W be the corresponding solution o/(5.3),

(5.4).   77ie«, there is a unique element U in Sn minimizing ||4> - W\\A over all $ in

Sg.   It is given by the equations

~ .      Vbw. bf.      bw, 9/, 1
(5.8) (i/,F)A = (Ik+F)L-F)H0+4^J3nL——+ —-J*,

VF in S^, where w¡, f¡ are the ith components of W and F, respectively.

Proof.   By the Pythagorean theorem, the unique U in S^ minimizing || <3E> — W\\A

satisfies

(5.9) iÜ, F)A = iW, F)A    VF in Sg.

Now if V is in H2, then, by Theorem 3.1, so is W.   Thus W G H3 x H2 x H3. Hence,

w. = w2 = w3 — 0 on 9iî and Aw. = Aw3 = 0 on 9Í2.  Consequently, from (5.5),

, r     Vbw. bf.      9w, 9/,~|

(5.10) iW, F)A = iL-W, L-F)k0 + Ak'fdn[-^ — + ̂ J ds.

Since LkW = LkV, the result follows.

We shall now describe a family of fully-discrete schemes for approximating the

initial-boundary value problem (2.10)—(2.12).  The schemes differ from one another

ds+— f     c4102 |2 ds,
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only in the choice of the weights nkh, Akh, and ßkh in (5.5).  We first remark that

Eqs. (5.8) are not suitable for defining an approximate solution of (5.3)—(5.4), because

the right-hand side of (5.8) involves unknown boundary data, namely, the normal deriva-

tives of the solution W.   Our strategy will be to replace these unknown derivatives by

zero and to choose, as an approximation to W, an element of S% different from the U

defined by (5.8).  It is evidently crucial to be able to control the growth of the error

introduced by using such wrong boundary data.  This is the reason for the factor k6 in

(5.5).  We have

Lemma 5.2. Let V G H2 and let W be the corresponding solution o/(5.3), (5.4).

Let U be defined by (5.8), and define the approximation W of W by the equations

(5.11)

Then,

(5.12)

iW,F)A=iLÍV,L-kF)H0    VFinSg,       ICeS¡¡.

Proof.  We have

|<7-IV||A<CA:3||K||1.

~    ~ r    r^Wi 3/i      3w, bf,~]
(5.13)       iU - W, F)A = 4k* j^ — + ̂  _J ds    VF ta ^

Hence, since U- WGSqh,

~      ~ r       \ awx    b aw*    b
\U- W\\l =Ak6\ -     -   iu. - w,) + -r1 ~- («, - w,)A Jan L bv   bv v  1       l'      bv   bv v 3       3 J

(5.14) < 2k3\\¿Jan

|9wj

1* +
9w,

bv
ds]

ll/2

2k3{f    (If («i-iv.)\Jan\|9iv v i       i
+

9f («3 " W3) H"
on using Schwarz's inequaUty.  Next, from (5.5),

<5-15>   2^{/an

Therefore,

9  ,~      ~ -J2 j_I 3 t~      ~ \
bv bv' w <\\u-

(5.16) \u- <2k x(r   /fe
\Jan\| bv

+
~dv\

Next, we use the trace inequality,

(5.17) Jan
|9h>

\bv
ds<C||w||2/2,

ds}112.

in (5.16).  This leads to

(5.18) \\u-w\\A<œ «i
<Ck: i •

Finally, by Theorem 3.1, < \V\\1.  This proves the lemma.

Let u be a real number greater than 2 and let the weights itkh, Xfc/l, ßkh in (5.5)

satisfy
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(5.19) l/k4 <nkh <Ck2h~2»,

(5.20) l/k4<\kh<Ck2h-2tl + 2,

(5.21) Uk4<ßkh<Ck2h-2>i + *.

For each choice of ¡i, the fully-discrete algorithm for the initial-boundary value problem

(2.10)—(2.12) is as follows.  Given any initial data W° in H2, we define the sequence

{W"}, of approximate solutions at time r = nk, of (3.1)—(3.3) by means of the march-

ing procedure

(5.22) iW"+1,F)A = iLk-W",LkF)H0   \/F in S«,     n = 0,1,2,3, — .

(5.23) W° = W°,

with W"+ ' being sought in S%.  Thus, given a basis for S%, finding W" necessitates solv-

ing a system of linear equations for the coefficients.  This system always has a unique

solution because Sg is finite-dimensional and || ||A is a norm on S^.  It should be noted

that the scheme is defined only for initial data in H 2 rather than in the larger space

H°, wherein the analytic problem (2.10)—(2.12) is well posed.  We shall comment on

this phenomenon at a later stage.

With W" as in (5.22), put Wl = EkflW°, W" = E^W"'1 = E"khW°. We shall

now show that the fully-discrete schemes (5.22) are unconditionally stable, that is, the

family of discrete solution operators {EkfJ} is bounded in an appropriate norm, uni-

formly, as k, h —*■ 0, n —> °°, nk < T   This is

Lemma 5.3. For all W° in H2 and sufficiently small k with 0 < nk < T, we have,

independently of h as h —*■ 0,

(5-24) ll£^Ä«'0llHo<Csa7'||K'0||A.

Proof.  By (5.22) and Schwarz's inequality,

(5.25) ||ÍVn+1|lA < ll¿ÍÍH|R0 \\Lk Wn+1\0 < II¿¿WHIK0II^"+1IIA.

Hence, ||ÎÏ'"+1||A < ||Z,+ ÍP"||20.   Next, from (4.12) and (5.5), (5.6),

(5-26) H¿:^o<(f^)llíniA.

n+li|2   ^ (I  + ak\ i\uin\\2
'A'

so that

(5.27) IIW" + 1llA<(j-I^JIIW'

Hence, if 0 < (n + l)k<T,

(5.28) ||F^1IV°||A<Cear||Ii/0||A.

FinaUy, from (4.3) and (5.5), (5.6),

(5.29) \\Enk+h « IV°||h0 <y^ ||F^+ ' W°\\

This proves the lemma.
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Lemma 5.4. Let 0 < s < q and let W G H2+s.  Fix ¡i > 2 and let (5.19)-(5.21)

be satisfied.   Then there is a constant C independent of W and h such that,

(5.30) Inf   \\*-W\\A <Ckhs+2-ß
oes*

2 + i-

Proof. We have for any U = [w, v, e]T in H2,

+
be_

bv
dsiiMii-iu.,-wi5„+««;jn(||s

+ cVían"" ds.

From (4.4),

(5.32)
ll¿fcí/||20 <C||Í/||20 + Ck2{\\v\\2Hl + HAe||22 + ||Aw||22} + Ck2\\Ae\\2Hl

<C||t/||20+C^||t/||^ + Cfc¿||<7||¿2.

To estimate the boundary integrals in (5.31) we use the inequalities,

(533) Jandfíf + ||f)*<C|l<* +Ql<2 <Qmv>

(5.34) jdn \e\2 ds < CHell2! < C||t/||J0,

(5.35) |an |Ae|2 ds < C||e||23 < C\\U\\\2,

(5.36) jdn \v\2 ds < CIMI2! < CHÍ7II2!.

Hence,

\\U\\2A<C{il+irkh)\\U\\2K0+ik2 +k6+ Xfc„)||t/||2K1 + ik2 + ßkh)\\U\\2K2}

(5.37) < C{7rfcJ|í7||20 + X^llí/H2! + ^lit/Il2»}

and

(5.38)

<CA:2ft-2'x{||C/||20 +ft2||í/||2H1 +ft4||t/||22}

||t/||A< CAr/T^Ç h'\\U\Ù.

From (5.38) and (5.2), we have,

(5.39) Inf   ||<ï»-H'||A<afti+2-*i||Ii'||2 + a
*esï

as required.

Recall that F(0 is the solution operator for the analytic problem (2.10)-(2.12),

Ffc(0 that for the semidiscrete problem (3.1 )—(3.3), and EkfJit) = Ekh is the fully-discrete

solution operator.  In Lemma 5.3, the stability of the fully-discrete problem was estab-

lished.  The next lemma shows that the fully-discrete scheme is consistent with (2.10)—

(2.12).
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Lemma 5.5. Fix u > 2 in (5.19)—(5.21) and let q > ju - 2 > 0 ib (5.1). Let

VG H°°.   Then

(5.40) \\EkhV-Eik)V\\A <C{kh« + 2-»\\V\\2 + q +k3\\V\\. + k3\\V\\6}.

Proof.   Since VG H2,U defined by (5.8) minimizes ||<ï> -Ek{k)V\\A over Sqh.

Hence, using Lemma 5.4 and Theorem 3.1,

(5.41) \\U-Ekik)V\\A <Ckh« + 2->l\\Ekik)V\\2 + q <Ckh" + 2-fi\W\\2 + q.

Next, W = EkhV, defined by (5.11), satisfies (5.12).  Hence,

(5.42) \\EkhV-Ekik)V\\A <Cikhq + 2-tl\\V\\2+q + k3\\V\\x).

From Theorem 3.2,

(5.43) \\LkiEik)V- £k(*WIIHo < C*3||F||6.

From (5.5), since VG H2,

\\Eik)V-Ekik)V\\2A < ||££(£(*.)r-£"*(*) F)!!2,»

2
(iS(5.44) +4fc6/J^(F(A:)F-Ffc(fc)I01    + ^(F(*)K-Fk(fc)I):

< ||Lk(F(A:)K-Ffc(^)IOII^o + a6||fJ(fc)H|2 + 06||Ffc(A:)HI2.

Hence, using (5.43) and Theorems 2.1 and 3.1,

(5.45) \\E(k)V-Ek(k)V\\A < C^OIKIIi + ||K||6).

The lemma now follows from (5.45), (5.42) and the triangle inequality.

We may now state and prove the following theorem concerning the convergence

of each of the schemes (5.22), (5.23).

Theorem 5.1. Fix p > 2 in (5.19)—(5.21) and let q > u - 2 > 0 ib (5.1). Let

W° G HMax(2 + fí,6)    Then< with a as in (43^ we hav£ for all 0 < f = nk < T

(5 46)        "Ekh(t)W° - Eit)W°\\K0 <C\\Ekhit)W0-Eit)W°\\A

< crear{^+2-^iin/0ii2+£? + *2iiw°ii6}.

Proof.   We use the identity

(5.47) Ekhit)W°-Eit)W° = Z E%?-t [Ekh - Eik)]E(jk)W°.
/=o

By Lemma 5.5 and Theorem 2.1,

\\EknEi}k)W° - Eik)Ei/k)W°\\A

(5.48) < Ck{h« + 2->i\\Eiik)W0\\2 + q + k2\\E(jk)W0\\. + k2\\E(jk)W°\\6}

<Ck{h« + 2-nW°\\2+q + *2||IV°||6}.

Next, by Lemma 5.3, \\Enkh\\A < CeaT.  Hence, from (5.47), (5.48),
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(5.49) \\Ekhit)W° -Eit)W°\\A <CTeaT{hcl + 2->l\\W0\\2+q + k2\\W°\\6}.

Finally, from (4.3),

(5.50) \\Ekhit)W° - Eit)W\0 < j4^ WEkh(t)W° - E(t)W°\\A.

The theorem follows from (5.49), (5.50).

Important Remarks.   The assumptions (5.19)—(5.22) about the weights jtkh, Xkh

and ykh, require that

(5.51) h<Ck3(ß-2)    ask,h-^0.

This requirement is a consistency condition rather than a stability condition.  As a con-

sequence of this requirement, the error bound (5.46) has the form

(5.52) \\Ekhit)W° -Eit)W°\\KQ < CTe^i^WX + k^-3^6»^-2) \\W°\\2 + q}.

Thus, the smallest possible error is Oik2) and it occurs if p and q are such that

(5.53) q = 5(ju - 2)/3.

Assume now that the initial data W° ate sufficiently smooth. Given any positive inte-

ger value of q, we see from (5.52), (5.53) that we get Oik2) accuracy by choosing p in

(5.19)-(5.22) so that

(5.54) p = (3<7 + 10)/5.

Thus, for example, if we choose q = 1 in (5.1) and let 5^ be the space of three-compo-

nent vectors where the first and third components are cubic splines, and the second is

a quadratic spline, we obtain Oik2) accuracy in the //¿ x L2 x Hl0 norm on choosing

p = 13/5.  Notice however that this means h must be chosen so that

(5.55) h < Ck5    as h, k -*■ 0.

Such a constraint on h is obviously impractical from the computational standpoint.  We

elect instead to use larger values of q, in order to obtain Oik2) accuracy with a more

favorable mesh inequality (5.51).  Thus, with p = q = 5 and S^ chosen to be splines of

degree 7 x 6 x 7, we get Oik2) accuracy with h satisfying

(5.56) h < Ck   as k, h —*■ 0.

Other combinations of q and p which yield Oik2) accuracy under sufficient smoothness

of W°, are listed in the following table.

The nature of the penalty which must be paid in order to be able to use the

wrong values for the normal derivatives of the solution in the fully discrete scheme, is

now clear.  In the Crank-Nicolson least-squares scheme for the heat equation discussed

in [4], one has h < Ck2!3 so that quartic splines are needed to obtain Oik2) accuracy

in the L2 norm.  Here, using a comparable mesh inequality, i.e., h < Cfcs/7, we see

from Table 1 that we need splines of degree 9 x 8 x 9 to obtain Oik2) accuracy in the

Hq x L2 x Hi norm.
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Table 1

Degree of Splines Mesh Inequality

in Si q p

4x3x4 2 16/5 h<Ck5'2

5x4x5 3 19/5 h<Ck5/3

6x5x6 4 22/5 h<Ck5/4

7x6x7 5 5 h<Ck

8x7x8 6 28/5 h < Ck5'6

9x8x9 7 3/5 ft < 0;5/7

10 x   9 x 10 8 34/5 ft < CÄ;5/8

11 x 10 x 11 9 37/5 h<Cks'9

12 x 11 x 12 10 8 ft <CT:1/2

The above remarks concerning Oik2) accuracy assume that IVo is sufficiently

smooth, i.e., W° G f,Max(<jr+.2,6)   More generaiiy) we have

Theorem 5.2. Let W° G Hs, s> 2. Choose a positive integer q in (5.1), and

let p in (5.19)—(5.21) satisfy (5.54).  Then forO<t<T,

(5.57)     \\Eknit)W° -E(f)W°\\   0 < Cexp(a7'){/t2Min(1'(s-2>/'?>(í-2)/4)}||IV0||í.

Proof.  If W° = [w,v,e]T G H2, then

bw

bv

<C{\\W% + ik2 + k6)\\W% + k2\\W°\\2} <C\\W°\\22.

From Lemma 5.3, Theorem 2.1, (5.58), and the triangle inequality,

(5.59) WFkn(t)W° - E(t)W°\\K0 < CeaT\\W°\\2.

If W° G fVMax<9 + 2,6)> then with M as in (5 54^ we have from (5^

(5.60) \\Ekh(t)W-°-E(f)W\0 < CFexp(ar){Â:2 ||M/° llMax(q + 2,6)}-

Next, the spaces Hs have the interpolation property discussed in [4, Lemma 2.2].

Hence, if W° G Hs, s > 2,

(5.61) \\Ekhit)W° -F(0IV°||H0 < CexpiaTOiA:2"'"0^-2^-^-2)/4)}!^0!!,.

Remark.   While the analytic problem (2.10)—(2.12) is well posed in fif°, the fully-

discrete scheme requires W° G H2 in order to obtain convergence.  A similar phenom-

enon occurs in [4].   For initial data in Hs, 0<s<2,a convergent least-squares pro-

cedure can be constructed based on the pure implicit scheme, rather than the Crank-

l|IV0ll2, = II^H/°||J0+4^J3n

(5.58)

2
+

de

bv

2N
ds

Nicolson.  For the case of the Dirichlet problem for the wave equation, such a procedure
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is discussed in [5], and similar difficulties are encountered in connection with unknown

normal derivatives.
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