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Adaptive Integration and Improper Integrals*

By Seymour Haber

ABSTRACT.   Let R be the class of all functions that are properly Riemann-integrable

on [0, 1], and let IR be the class of all functions that are properly Riemann-integrable

on [a, 1 ] for all a > 0 and for which

am+!a ft*)**

exists and is finite.   There are computational schemes that produce a convergent sequence

of approximations to the integral of any function in R ; the trapezoid rule is one.   In

this paper, it is shown that there is no computational scheme that uses only evaluations

of the integrand, that is similarly effective for IR.

In this paper, I will discuss the convergence of the approximations that are pro-

duced by adaptive numerical quadrature methods.   An adaptive quadrature method is

one which does not use the same sequence of quadrature points (the points at which

the integrand is evaluated) for all integrands; after the first integrand evaluation it

chooses some or all of the succeeding points in a manner dependent on the integrand

values found at the points already used.  Such a method may be made "automatic" by

incorporating in it a stopping procedure, a procedure for deciding when to stop the

calculation and report a final value for the integral.   In order to discuss convergence, I

will deal, formally, with methods that are not automatic.   This distinction is not really

important; an automatic method can be thought of as part of a larger nonautomatic

method, in which the automatic method's stopping criterion is varied so as to produce

more and more accurate approximations to the integral.

The purpose of adaptiveness is the efficient handling of integrands which are

quite well-behaved in some part of the interval of integration and are ill-behaved in some

other part.  Thus, Rice has shown [1] that certain adaptive integration schemes can

integrate many functions that have singularities of the x~a type as quickly as they, or

the quadrature formulas that they are based on, integrate functions that are quite

smooth.   This is in contrast to what happens with a nonadaptive scheme such as the

trapezoid rule.  There the use of very closely spaced points in the neighborhood of the

singularity entails the use of equally dense points in the rest of the integration interval,

which is a waste of effort.  As a result, the trapezoid rule with TV points approximates

[qX~x/2 dx with an error of the order of magnitude of TV-1''2.  The adaptive schemes

discussed by Rice approximate this integral to within 0(N~2) when using the trapezoid

formula as their basic quadrature formula.
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A natural question is: How general are such schemes?  Can one find adaptive quad-

rature procedures that will handle the full range of integrable singularities?  We cannot

consider the generality of Lebesgue-integrable functions, where the integral is not deter-

mined by the values of the function on any countable set of points; but we may con-

sider improper Riemann integrals.   It is well known that many nonadaptive quadrature

schemes-the trapezoid rule, Simpson's rule, and the Gauss-Legendre sequence-have the

property of converging to the true integral for all properly Riemann-integrable functions.

Can any adaptive procedure do the same for all improperly-integrable functions?  To

make clearer the set of functions considered, let us define IR to be the set of all real

functions / that are defined on (0, 1], properly Riemann-integrable on [a, 1] for every

a in (0, 1], and for which

Cj\x)dx=   lim   Çj\x)dx

exists and is finite.  It is known [2] that no nonadaptive linear quadrature scheme con-

verges for all functions in IR.   I shall show that no adaptive scheme does, either.

Let me first describe more carefully what an adaptive procedure does:   It starts

by evaluating the integrand / at a particular point Xj.  Thereafter, whenever it has

evaluated the integrand, say, the nth time, at some point, xn, it goes through a finitely

long calculation involving the numbers x,, x2, . . . , xn and /Txj),/(x2), . - . ,j\xn)

and, as a result, specifies two things: first, whether or not to report, at this stage of the

overall procedure, a number that is an approximation to the integral (and specifies the

number itself, if the decision is positive); second, it specifies the next point, xn+l, at

which the integrand is to be evaluated.  Of course, for some n the decision procedure

may be almost vacuous; it may have been decided, after the 77 - 1st evaluation, to evalu-

ate the function at a certain set of, say, 10 points before doing any other arithmetic

or decision-making, so that after the 77th evaluation, the procedure automatically con-

tinues to the 77 + 1st.   Let me emphasize that we are considering only procedures in

which the decisions made-whether to report, what to report, the value of xn+. -depend

only on the numbers xv . . . , xn and/(Xj), . . . ,f(xn).  That is, if g were another

integrand with f(x¡) = g(x¡), i = I, 2, . . . , n, exactly the same decisions would be

made for g, at that stage, as for /.  (One may imagine the possibility of procedures for

which this would not be the case, namely ones in which the decisions were based, per-

haps, on some kind of analysis of the algorithm for calculating / rather than only on

the values found.) We need make no further restrictions on the nature of the decision

method, such as recursiveness.

I shall consider only infinite adaptive procedures-those which must report an

infinite sequence of approximations to the integral.  Denoting the successive approxima-

tions reported, for the integrand /, by A1(f), A2(f), . . . , we say that the procedure

"converges for /" if

lim Ai(f)= Cfix)dx.
|-»oo J O

Theorem.   777e7*e is no adaptive procedure which converges for all functions in

IR.
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Proof.   Suppose the contrary.   Let/j be twice the characteristic function of

[&, 1].  Since f. E IR and fx0fx = 1, there is an integer n. such that AnAJx) > 1/2.

Let S. be the set of all those positive values of x at which f. was evaluated by the

procedure before it reported An (f.), and let Xj be the least element of 5r   Define the

function £ on [xl, 1] by

\f.(x),      xGS.',

\0, x€[xp l]-5r

Set g(0) = 0.  We shall later define g on (0, x^; but however we define it there, it is

the case that An (g)> 1/2.

Choose numbers b2 and a2 such that 0 < a2 <b2 <xt. Define f2 by:

Ig(x), xG[Xj,l],
ll(b2-a2),      xE[a2,b2],

0, xE[0,x.)-[a2,b2].

Thus,/2 G IR and /¿/2 = 1.  There is, therefore, an integer n2 > n. such that

An (f2) > 1/2.   Let S2 be the set of all those positive values of x at which the proce-

dure evaluated f2 before reporting An (f2), and letx2 be a number less than or equal to

the least element of S2 and less than or equal to xj2.  Extend the definition of g to

[x2, Xj) by defining

j/2(x),      xES2n[x2,x.),

*^~¡0, xG[x2, Xj)-52.

Then g and f2 axe equal on S2, so that An ig) > 1/2.  Continuing so, we extend the

definition of g to [x,, 1] U [x2, xx) U [x3, x2) U • ■ ■ U {0} = [0, 1].  At the same

time we find a sequence of integers ny < ti2 < tî3 < * * * such that

An.ig)> 1/2,      f-1,2, ....

The function g is in IR, and its integral is zero—so the procedure does not converge for

g, and the Theorem follows.

The g constructed is discontinuous at infinitely many points, but this is not

essential.    One could modify the construction along the following lines:    Let

t. > t2 > • • • > tm   be the elements of S. and set t0 = 1. For / > 1, let /,. be an interval

of length less than min {1/(5 • 2'), t¡_. -t¡, t¡-t¡+v í,.}, centered on t¡. On each/,-, let ^

be zero at the endpoints and equal to f. at t¡; and let g be linear on the right half of /,- and

on the left half of/,-. Let x. = x. - 2      -     . Then g is defined on [x1,1 ], and it remains

the case that An (g) > 1/2.  This g is continuous, and fx- g < 1/5.   Similarly modifying

the remaining steps of the construction, we can obtain a g E IR which is continuous on

(0, 1 ] and is such that

An.(g)>U2,      i =1,2,...,

while fx0g< 2/5.

By "rounding the corners" of the g thus constructed, we could make it as smooth

as desired (even C°°) on (0, 1].

The theorem is perhaps a bit surprising, because of the following considerations:



ADAPTIVE INTEGRATION AND IMPROPER INTEGRALS 809

The integral of a function in IR is determined, in principle, by the values of the func-

tion on any dense set of points, for example, the rationals.  An infinitive adaptive

procedure can make use of the values of the function at all the rationals.  It would

seem that the weakest sense that can be given to the phrase "calculate the integral" is

the sense used above, in which one asks for a convergent sequence of approximations

but does not ask for bounds on the errors of these approximations.  We may for the

moment call this "/l-calculability".  Another definition of calculability asks that, for

each positive integer 77, there be some stage in the calculation at which the integral is

definitely known to 77 significant figures.  Let us call this Ä-calculability; it is equivalent

to asking for a sequence Av A2, • • ■ of approximations, with associated rigorous error

bounds Bv B2, . . . , the latter converging to zero.  (There are of course other "cal-

culabilities" familiar to numerical analysts.  One may ask that the 5's be sharp, that

BJ\An - lim An\ be bounded or even approach 1 as 77 approaches infinity or that

\An - lim An\, or Bn, go to zero rapidly as some measure of the calculation effort

goes to infinity.)  Now for the class of functions that are properly Riemann-integrable

on [0, 1 ], the integral is .4-calculable-the trapezoid rule does it-but it is not 5-calcul-

able.  That is easy to see directly since even in principle the integral is not determined

to any accuracy by the values of the integrand on a finite set of points.  Furthermore,

it is easy to see that if the proper Riemann-integral were 5-calculable, then the im-

proper one that we have dealt with would be ^-calculable.  However, the improper

integral is not ^-calculable.  The information that determines the integral when it is

known all at once does not permit the determination of the integral when it is made

known item by item.
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