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An Efficient Method

for the Discrete Linear L1 Approximation Problem

By Nabih N. Abdelmalek

Abstract.   An improved dual simplex algorithm for the solution of the discrete linear

Lj approximation problem is described. In this algorithm certain intermediate iterations

are skipped.   This method is comparable with an improved simplex method due to

Barrodale and Roberts, in both speed and number of iterations. It also has the advantage

that in case of ill-conditioned problems, the basis matrix can lend itself to triangular

factorization and can thus ensure a stable solution.   Numerical results are given.

1. Introduction.  Consider the overdetermined system of linear equations

0) Ca=f,

where C is a given real n x m constant matrix of rank k < m <n, and /is a given real

«-vector.  The Lx solution of (1) is to determine the 777-vector a which minimizes the

Lx norm

(2) R(a) = Z I'll.
1=1

where the residuals

(3) 7*,. = cn a, 4 ci2a24 ■ ■ ■ + cimam - f¡,        7=1,...,«.

Wagner [10] reduced this problem to a linear programming problem in either the

primal or the dual forms.  The dual form is

(4a) Maximize z = ¿ fi(bi - 1),
1=1

subject to the constraints

(4b) CTb = Z Cf,
i=i

(4c) 0<bi<2,       i = 1.n.

CT is the transpose of matrix C, Cf is the ¡"th column of CT and the bounded vector

b = (&,).

In [1], a dual simplex algorithm for solving problem (4) is given, where no arti-

ficial variables are used.   It was also shown that the algorithm in [1] is completely
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equivalent to a modified version of a method due to Usow [9] for solving the discrete

linear L. approximation problem. Except that one iteration in the latter is equivalent

to one or more iterations in the former.

Meanwhile, Barrodale and Roberts [5], [6], [7] described an efficient algorithm

for the present problem.  This algorithm improves an earlier simplex method [4], for

the primal of problem (4).  The main improvement is that their algorithm is able to

skip certain intermediate iterations and this makes their method a fast one.

In the present work, it is shown that such improvement could be implemented in

a natural manner, in our method [1].  Thus the algorithm in [1] is here developed

such that certain intermediate iterations are skipped.  Hence according to Lemma 7 in

[1], this makes each iteration completely equivalent to a corresponding iteration in

Usow's algorithm.

2.  The Description of The New Method.  We shall use most of the notations

given in [1].   Let the basis indicator set for b be the index set 1(b) C {1, 2, . . . , 77}

with the property that the variables {b¡\i E 1(b)} axe basic variables.  Let also the index

sets Lib) and i/(Z>) be indicators for the nonbasic variables b¡, which are respectively at

their lower and at their upper bounds.  B denotes the basis matrix and the basic variables

are denoted by bB = {bB.}, i = 1, . . . ,m.

As usual, the simplex tableau is formed by calculating the nonbasic vectors y- and

the parameters {z■ - fZ, where

(5) y,=B-xcf

and

<6) */-/ÎJ>
Hence since some of the nonbasic variables may be at their upper bound (= 2), from

(4b),

(7) bB=B-x\±Cf-2    Z    Cf
|_/=1 i(EU(b)

= bB0-i Z  yf-
i^U(b)

From now on, bB. will denote the basic variable under consideration. Let C, be

associated with bB. and let Cf be the nonbasic column which replaces Cj in the basis.

In view of (7), steps 3.1-3.4 of [1], are analyzed as follows*. When a nonbasic column

CT at its upper bound enters the basis, as in cases 3.2 and 3.4 in [1], it is no more at

its upper bound and according to' (7), we add 2yr to bB, or in effect, we add 2 to bB..

Also when a basic column Cj goes from the basis to its upper bound, as in cases 3.3

and 3.4, we subtract 2y- from bB.

We also notice, that the process of adding the 2yr and/or subtracting the 2y¡ is

done after the simplex tableau has been changed by applying a Gauss-Jordan elimination

step.

The modification to the algorithm in [1], consists simply of making the following

two changes. (1) Reverse the order of the mentioned two processes. The Gauss-Jordan

step may follow the process of adding the 2yr and or subtracting the 2y-.  (2) Further-
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more, the changing of the tableau, may be postponed, until further 2yr have been added

to and/or 2y • have been subtracted from bB.  That is until some nonbasic columns, each

enters and then leaves the basis, as the corresponding bB. does not yet satisfy (4c).

This process continues until the last nonbasic column for which bB. satisfies (4c), is

found.  This ensures that the maximum decrease in z in replacing the basic column Cj',

has been obtained [9], [1].

Let the last nonbasic column which enters the basis for which bB. satisfies (4c) be

the kth one.   Let us also assume that we start the procedure of the previous paragraph

from a basic solution given by a simplex tableau, tableau 1 say.  Then this method

suggests that we skip calculating the (i*c - 1) intermediate tableaux, tableaux t = 2,3,

. . . , k, which correspond to the ik - 1 ) nonbasic columns which entered and then left

the basis.  We calculate only tableau t = k 4 1.

We show here that all necessary data needed for pursuing this procedure is con-

tained in the 7th row of Tableau 1 and the marginal costs of this tableau.  In particular

we need to know the values of the parameters {bB.} and the pivot elements {yiri, for

the ik - I) intermediate tableaux.

We notice that each of the intermediate tableaux is obtained by pivoting over an

element yir in row i of the previous tableau.  For simplicity, assume that tableaux

t — 2, 3, . . . , k 4 1, are obtained by pivoting over the element in column (t — 1) of

row i in tableau (t - 1).  Obviously row /' in tableau f = 2, . . . , Jt + 1, is simply ob-

tained by dividing over the pivot element in row i of the previous tableau.   By working

this out, we see that the ith component of the basic variables and the pivot element in

tableaux t = 2, . . . , k, axe simply ibB lyi t_, ) and (yit/y¡ t_ x ) respectively.  The fol-

lowing fact is also known.  The (k 4 l)th tableau is itself the tableau we obtain had we

changed tableau 1 once by pivoting over yik.  Let

(8a) b'B. = bB, and   yit = yiv      t = 1,

(8b) bB. = b'BJyit_.    and   yit = yit/yit_ „,      t = 2,3,...,k.

Here b'B. and yit represent the 7'th component of the basic variables and the pivot in

tableaux t = 1,2, . . . , k.  The vector b'B is bB added to it some 2yr and or subtracted

from it some 2y-.  The element b'B. is its ith component.

We also need to know the sequence of the k nonbasic columns which enter the

basis, and may then leave the basis, in an iteration.  This may be determined from the

following theorem, whose proof may be established by working out two consecutive

tableaux in the method of [1].

Theorem 1. Let us start a certain iteration from a basic solution given by

tableau 1 say.   Let {zs - fs}, s = 1,2, ... ,n, be the marginal costs in tableau 1.

Then the sequence of the nonbasic columns assumed to enter the basis and may then

leave the basis is determined as follows.

If bB. > 2, the sequence is given by the columns corresponding to the parameters

rr = (zr - fr)lyir >0,r EIQ)), starting from the smallest one.
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If bB. < 0, then the sequence is given by the columns corresponding to the param-

eters dr = izr - fr)lyir < 0, rEI(b), starting from the algebraically biggest one.

The new algorithm modifies step 3 of [1], as follows.

Step 3':   Scan bB  fox I = 1,2, ... ,m, and consider

(9) bB¡ = xxún{b.,b2},

where b. = min.{bB , bB < 0} and b2 = minj{2 - bB , bB > 2}.  This corresponds

to choosing (z¡ —f¡) = min;{z, - f¡} in the simplex method.   Let Cf replace Cj accor-

ding to one of the steps 3.1'-3.4' below and calculate the new b'B..  If this new b'B.

still violates (4c), this last vector Cf leaves the basis and another nonbasic vector enters

the basis.  This is repeated, a finite number of times until b'B. satisfies (4c).

Case l'.   b'R.<0 and Cf is determined from Theorem 1.

3.1'.  If yir < 0, do not change b'B, go to 3.5.

3.2'.  If yir > 0, add 2yr to b'B and go to 3.5.  Remove the mark from column

Cf to indicate that br is no more at its upper bound.

Case 2'.   b'B. > 2 and Cf is determined from Theorem 1.

3.3'.  If yir > 0, subtract 2y¡ from b'B and place a mark over column Cj to

indicate that it is now at its upper bound.  Go to 3.5.

3.4'.  If yir < 0, add 2yr to and subtract 2k- from b'B.  Remove the mark from

column Cf and place a mark on column Cj.  Go to step 3.5.

3.5.  Calculate b'B. from (8).  If the answer violates (4c), replace Cj by Cf and

go to either Case l' or Case 2' depending on whether the new b'B. is < 0 or > 2, re-

spectively.  If the answer satisfies (4c), change the tableau in the usual manner.  Go to

step 2 in [1].

This constitutes one iteration, which again consists of k steps.   The number of

skipped iterations would be (k - 1).

3. The Occurrence of Degeneracy.   As usual, no provisions are made to resolve

degeneracy.  However, one difficulty arises from the occurrence of initial degeneracy.

That is if there exist one or more nonbasic column r for which (zr - fr)lyir — 0.  It

should be decided whether Tr = 0 or dr = 0.  This is resolved as follows.  If br = 0,

we suggest to replace (zr ~fr) by a very small number 5 say, and if br = 2, we replace

izr - fr) by - 5.  We then recalculate the ratio (zr - fr)/yir, and it will definitely be

either > or < 0, and the mentioned difficulty is resolved.  The quantity <5 is of the

order of the precision of the computer.

4. Organizing the Computation.  The computation may be divided into two

parts.  In part-1, a numerically stable initial basic solution is obtained.  Also in case of

rank deficiency, linearly dependent rows of CT axe detected and discarded. Part 2,

constitutes the main body of the algorithm.  This is explained by the following ex-

ample.  However, in order to illustrate the details of the present method, in this ex-

ample, part 1 is obtained differently.  This point is mentioned later.

Solve the following system of equations in the L. norm.
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- 2flj - 2a3 = 6,

8flj + 9a2 + 17a3 = 6,

36a, + 18a2 + 54a3 =-48,

(1°) - 8flj - 8a3 = 24,

21a, + 18a2 + 39a3 = 3,

12ax - 9a2 + 3a3 = -6,

- 32aj - 13.5a2 - 45.5a3 = -9.

In this example, C is a 7 x 3 matrix of rank 2.  The third column equals the sum of

the other two.  Shown are the initial data for programming problem (4) and the simplex

tableaux 2 and 3 for the solution.

Tableau 1 is obtained by pivoting over the first nonzero element in row 1 of CT

and applying a Gauss-Jordan step.  Tableau 2 is obtained likewise by pivoting over the

first nonzero element in row 2 of tableau 1.   It is seen that the third row in tableau

2 consists of zero elements and thus it is discarded from the computation.  This ends

part 1 with columns 1 and 2 of CT forming the initial basis and column 3 of C discarded.

Tableau 3 is itself tableau 2 added to it the marginal costs {z- -/,-}, / — 1.

7, calculated from (6) and (7).  Column bB   is modified by subtracting 2(y5 + y6),

of the columns having negative marginal costs.   A mark x is placed over each of these

two columns.  The objective function z which equals Ria) of (2) is calculated from

(31)of[l].
Initial Data

fj 6      6     -48   24    3     -6   -9

Z **i ct    C2   c3   c4   Cs   C6   C7
/=!

35 -2     8     36    -8    21     12    -32

22.5 0     9      18        0    18    -9-13.5

57.5 -2    17     54    -8    39      3  -45.5

bB() Tableau 2 (Fart 1)
-7.5 1     0     -10     4 -2.5  -10   10

2.5 0     12        0      2-1   -1.5

0 0000000

bB b'B Tableau 3 (Part 2)
-7.5 + 5 + 20 = 17.5 -17.5 1     0   -10     4   -2X5 -10    10

2.5-4 + 2= .5 2.5 0     1       2       0        2-1-1.5

z=126 -6(Zf-ff)      0     0      0       0-6-60    60

rr 0      2.4      6     6

By applying (9), to bB in tableau 3, C\ should leave the basis and we have Case

2' of the algorithm.  We have an initial degeneracy, as (zr — fr)\yir = 0 for r = 3 and

r — 4.  Thus from Section 3 above, since each of ft3 = 0 and b4 = 0, we replace each

of (z3 ~/3) and (z4 _/4) by 5, and recalculate the two ratios.  The new (z3 - f3)ly13

< 0 and thus C\ cannot enter the basis, but the new (z4 -/4)/y14 > 0 and thus CT
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replaces Cf in the basis.  Also shown in tableau 3, are the initial values of tr for this

iteration.  Hence according to Theorem 1, the sequence of the columns which enter the

basis and may then leave the basis is CT, Cf, Cf, CT.

From (8a), the pivot yl4 = 4 > 0, and according to 3.3', 2y. is subtracted from

bB, and a mark is placed above Cf. The new b'B   = (17.5 - 2)/4 = 15.5/4 > 2, and

we still have Case 2' of the algorithm.  Now Cf leaves the basis and Cf enters the basis.

Again from (8b), the pivot yiS = -2.5/4 < 0.  Hence from 3.4', 2_y4 is subtracted

from and 2ys is added to the previously calculated b'B.  Also a mark is placed over CT

and the mark over Cf is removed.  The new b'B   = (15.5 - 8 - 5)/- 2.5 = 2.5/- 2.5 <

0, and we have now Case l' of the algorithm.

Now Cf leaves the basis and either Cf or Cf enters the basis, as they both have

the same initial rr.  Let Cf enter the basis.  The pivot y16 = -10/- 2.5 > 0, and from

3.2' we add 2y6 to the previously obtained b'B and we remove the mark of Cf.  The

new b'B   = (2.5 - 20)/- 10 = 1.75, and we thus change the tableau.  This ends this

iteration which consists of 3 steps.

The same procedure is followed in the next iteration which consists of one step

in which Cf replaces Cf in the basis.  The solution in tableau 5 is optimal and feasible.

Hence, this example required 4 iterations, 2 in part 1 and 2 in part 2.  The final answer

of this example is R(a*) = 90, a\* = -0.2, a\ = 0.4 and a^ = 0. The {a?} axe obtained

by solving the 5th and 6th equations in (10) and taking a3 = 0.

It is mentioned earlier that in part 1 of the present algorithm, a numerically

stable initial basic solution is obtained.  This is done as follows.   In part 1, tableau t

is obtained by pivoting over the largest element in absolute value in row t of tableau

(r - 1).  The final result of the problem is obtained much faster.

Again consider the example given by (10).  Tableau 1 is obtained by pivoting

over the largest element in absolute value in row 1 of CT.  Tableau 2 is obtained like-

wise by pivoting over the largest element in absolute value in row 2 in tableau 1.  Here

columns 3 and 6 form the initial basis.

The final tableau is obtained in one more iteration which consists of 1 step in

which Cf replaces Cf in the basis. This is instead of the two iterations which con-

sisted of 4 steps, in the previous solution.

5.  Numerical Results and Comments.   Over 50 test problems were solved by

both the present method [2]   and that of Barrodale and Roberts [7] ; each is coded in

Fortran IV.  The results show that the two methods are comparable in both the speed

and the number of iterations.  The execution time required by both methods differ by

less than 25% either way (referee's confirmation).

The examination of the two methods shows that, apart from part 1 of the present

method, the computational procedures of the two methods are very similar.

However, in obtaining part 1 of the present method, in tableau t, t = 1, . . . , k,

where k is the rank of C, we attempt to obtain the smallest possible, in absolute value,

of the initial basic variables bB .  That is, we attempt to bring these variables near to

their values for the optimum solution, 0 < bB. < 2.  Hence we expect to start part 2

with the best possible initial basic solution.  While part 2 constitutes the active part of
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the algorithm, the optimal solution is obtained by the accelerating process of

skipping certain intermediate iterations.   On the other hand, in the method [5] —[7],

the active role of the algorithm starts from tableau 1.  This might explain why the two

methods are comparable.

Finally, we remark that, unlike in the method of [5] —[7], the basis matrix B has

the order of the rank of matrix C.  Therefore, if necessary, we can apply to it triangular

factorization techniques [8], [3].  This ensures stable solutions for ill-conditioned

problems.
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