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Bifurcation in Difference Approximations

to Two-Point Boundary Value Problems

By Richard Weiss*

Abstract. Numerical methods for bifurcation problems of the form

(*) Ly = Xf(y),       By = 0,

where/(0) = 0 and /'(0) ^ 0, are considered.   Here y is a scalar function, A. is a real

scalar, L is a linear differential operator and By = 0 represents some linear homoge-

neous two-point boundary conditions.   Under certain assumptions, it is shown that if

(*) is replaced by an appropriate difference scheme, then there exists a unique branch

of nontrivial solutions of the discrete problem in a neighborhood of a branch of non-

trivial solutions of (*) bifurcating from the trivial solution and that the discrete branch

converges to the continuous one.   Error estimates are derived and an illustrative nu-

merical example is included.

1. Introduction. One of the key assumptions in the analysis of numerical methods

for nonlinear problems is that the desired solution be isolated, i.e., the linearized prob-

lem be nonsingular.  This implies that the nonlinear problem is locally (at the desired

solution) well posed.  For instance, the assumption of isolation is fundamental to the

theory of difference approximations for nonlinear boundary value problems in ordinary

differential equations given in Keller [4].

In this paper, we investigate the application of difference methods in a situation

where the condition of isolation is not satisfied, namely, that of bifurcation from the

trivial solution in certain nonlinear two-point boundary value problems.

In particular, we consider problems of the form

m

(1 -la) Ly = Z aAt)d'yldt' = \fiy),      0 < t < 1,
/=0

(1.1b) By = 0,

where yit), a At) and f(y) are real-valued scalar functions, X is a real scalar and (1.1b)

are m real linear homogeneous boundary conditions which contain derivatives of v up

to order m - 1 at t = 0 and t = 1. We shall assume that am(t) = 1, t E [0, 1], a At),

0 </ < m - I, axe continuous on [0, 1] and that there exists a complex value X such

that the homogeneous problem [L - î\]y - 0, By = 0 has only the trivial solution.

Furthermore, we require that /satisfy a certain smoothness condition,/(O) = 0 and

/'(0) # 0.

Clearly,^ = 0 is a solution of (1.1) for all X.  Let X0 be a value for which the
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linearized problem

[L - Xo/'(0)]^ =0,      Bxp = 0

has a nontrivial solution.  If, as will be assumed throughout the paper, the nullspace as-

sociated with X0" is one dimensional and the index of X0 is one, then a branch of non-

trivial solutions of (1.1) bifurcates from the trivial solution at X = X0.

For computational purposes, (1.1) is replaced by a family of difference equations

(1-2) Lhyh = \Fhiyh),      Bhyh = 0,      ft > 0.

The aim of the paper is to investigate the behavior of yn for X in a neighborhood of

X0. Under natural conditions on the discretization (1.2) we shall show that there is a

branch of nontrivial solutions of (1.2) bifurcating at a value \Qh "close" to X0 and

that, as ft —► 0, XQh —> X0 and the branch of (1.2) "converges" to that of (1.1).

The organization of the paper is as follows.  In Section 2 we consider the contin-

uous problem (1.1) in more detail, while the existence and uniqueness of solutions of

(1.2) is discussed in Section 3.  Error estimates are derived in Section 4. In Section 5,

we shall indicate how the results can be extended to equations in which the parameter

X appears nonlinearly, i.e.,

Ly=fÇK,y),      By = 0.

Finally, numerical results illustrating the theory are given in Section 6.

Recently, Atkinson [1] examined bifurcation from the trivial solution in collec-

tively compact approximations to nonlinear compact operators. The connections be-

tween his theory and the results derived here will be discussed at the end of Section 4.

2. Bifurcation in the Differential Equation. In this section we will give a proof

of the existence of a branch of nontrivial solutions of (1.1) bifurcating from the trivial

solution. The reason for including this proof is that it will aid in the understanding of

the continuous problem as well as the discrete problem (1.2) and that it will allow a

less detailed treatment of the discrete case.  The proof will be based on the construc-

tive theory developed in Keller and Langford [5].

We shall first collect some results on linear boundary value problems of the form

(2.1) [L-Xa]u=g,      Bu = 0,

where L, B axe as in Section 1, a i= 0, real, X complex and u, g G Cc, where Cc is the

Banach space of elements x = u 4 iv, u, v E C[Q, I] = C, over the complex field with

the norm llxllc = Hull + Hull. (II- II is the maximum norm in C.)  Let Cc be the sub-

space of Cc whose elements satisfy the boundary conditions, C™ the subspace of m

times continuously differentiable functions on [0, 1], and Cm = Cc n C™. Then we

can write (2.1) in operator form

(2.2) iL-XaI)u=g,      uEC™.

In the sequel, we shall use the notation N(A) and R(A) for the nullspace and the range

of an operator A.
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Lemma 2.1. Let X0 be an eigenvalue of (2.2) with index one.   Then

(i) Cc=NiL- \al) ®RiL- \al).

(ii) The projection from Cc to N(L - \al) corresponding to (i) is given by

Pc = -à-afr0(L-XaiyldX>

where T0 = {XIIX - X0I = Ô0 > 0} with 50 so small that there is no other eigenvalue

X wirft IX-X0I <<50.

(iii) The mapping

(L - \al): R(L - \al) n Ccm -* R(L - \0al)

has a bounded inverse which is given by the restriction to R(L - \al) of the operator

g  =_L f   —!— (L-Xo/Y-'dX.
c     2ttz -,r0X-X0v '

Proof. See Dunford and Schwartz [3, Chapter VII].

So far we employed the complex space Cc. However, since (1.1) is a real prob-

lem, we shall have to work in C, C = Cc n C and Cm = C? n C, respectively. If X0

is real, this provides no difficulty since we can then assume that N(L ~ \al) is

spanned by an element of C.  As an operator on Cm ,(L~ \al) has the nullspace N =

N(L - X0fl/) n C, the range R = R(L - \al) n C and C = N 0 R. The correspond-

ing projection from C to N, P, is the restriction of Pc to C and the mapping

(L - \al): R C\Cm —► R has a bounded inverse G given by the restriction of Gc to

R.

In the sequel, we shall not distinguish explicitly between complex and real spaces,

but assume that the reader uses the appropriate interpretation.

We now return to the nonlinear problem

(2.3) Ly = l\f(y),      By = 0

and make the following assumptions.

A2.l.fEC2+piU), p>0 where i/= {sis real, lsl<M= const > 0},/(0) = 0,

/'(0) ± 0 and af E Cp[0, 1], / = 0, . . . , m - 1.

A2.2. For X0 real and xp E C with lli^ll = 1 we have

[L - \a]xp = 0,      Bxp = 0,

where a = /'(0), X0 has index one and dim N = 1   (i.e. N = span{(¿>}).

We then rewrite (2.3) as

(2.4) [L - \0a]y = X/O) - X0av,      By = 0.

This problem has a solution if and only if X/(_y) - \0ay ER.  By Lemma 2.1, this is

the case if and only if

(2-5) Wf(y) = \?ay.

Hence, if P/(v) =£ 0, then X = A(j>) is uniquely determined and instead of (2.4) we

may consider
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(2-6) [L - \a]y = A(y)f(y) - \0ay,      By = 0.

We now proceed by considering for some positive constants e0 and p and all real e

with 0 < lei < e0 elements of the form

(2.7) w = e(xp4ev),      u G Vp = {u\u E C n R, Null < p}.

Then we obtain the following theorem which is the main result of this section.

Theorem 2.1. Let L, f and X0 satisfy the conditions A2.1, A2.2. Then there are

positive constants e0 and p such that for each e with 0 < lei < e0 there exists a unique

pair [X(e),y(e)] where

Me) = \+ eX(e),      (X(e)l < K0,     K0 = const > 0,

and y(e) has the form (2.7) and is a nontrivial solution of (2.3) with X = X(e).

Before we can prove this theorem, we need certain estimates for A(w) and

S(w) = A(w)f(w) - \aw, which are collected in the following lemma.

Lemma 2.2. Let w = e(xp 4 ev), w' = e(xp 4 ev') where v, v E Vp.  Then, for

e0 sufficiently small, Pf(w) ¥= 0 and

(i) lA(w)-X0K/:ilel,

(ii) lA(u>) - A(w')l < lel2K2 llu - i/ll,

(iii) H5(w)ll < \e\2K3,

(iv) Il5(w) -S(w')\\ < \e\3K4\\v - v'W,

where K-,K2,K3, K4 are positive constant.

Proof, (i) By Taylor's theorem,

f(x) = ax4 r(x),      llxll < M

with

(2.8) \\r(u)-r(u)\\ <Ks(\\u\\ 4 \\u'\\)(\\u - u'W),      \\u\\, llu'll <M,      Ks = const.

According to (2.5),

(2.9) XP(ae(xp 4 ev) 4 r(w)) = X0?ae(xp 4 eu).

Let

(2.10) 7(e, v)xp = ?r(w).

Then from (2.8),

lT(e, u)l < lel2AT5(l +e0p)2IIPII

and if \e0\Ks(l 4 e0p)2 IIP«/ \a\ < % then (2.9) yields ?f(w) * 0 and (i) with K. =

4K5(l +e0p)2HPII/lal.

(ii) From (2.10),

(7(e, w) - y(e, w'))xp = ?[r(w) - r(w')],

and (2.8) yields

l7(e, w) - 7(e, w')\ <K6e3\\v - u'll,      K6 = const,

which, by (2.9), implies (ii).
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(iii) Using (2.7), (2.8) and (i) to estimate S(w) = [A(w) - X0]aw 4 A(w)r(w)

yields the result.

(iv) The estimate follows from

S(w) - S(w') = [A(w) - A(vv')]aw + (A(w') - X0)a[w - w']

4 [A(w) - A(w')]r(w) 4 A(w')[r(w) - r(w'))

and (2.7), (2.8), (i) and (ii).

Proof of Theorem 2.1.U y = e(xp 4 ev), v E Cm n Vp, then

(2-10 [L - X0a]e2v = Siy),      Bv = 0,

or, equivalently,

(2.12) u = GSiy)/e2 = H(v),      u G Vp.

We shall now show that H is contracting on V'   for 0 < lei < e0 and appropriate e0,

p.  From Lemma 2.2(iii), HH(u)ll < IIGHÄ3.  Looking at the explicit form of K3 in

terms of e0 and p (as was illustrated for ATj), we see that by making p sufficiently

large and e0 sufficiently small we can obtain IIGII#3 < p.  From Lemma 2.2(iv),

II H(u)-H(u')II < HGIIe/s:4llu-u'll,

and hence the theorem holds if le0IIIGII/£4 < 1.

Certain additional information about the branch constructed above is available.

In particular, the following two statements follow from Crandall and Rabinowitz [2,

Theorems 1.7, 1.18]: (i) If we define X(e) = 0 and v(e) = 0 for e = 0, then X(e), y(e)

are k times continuously differentiable with respect to e for lei < e0 if/G Ck+1[U].

(ii) There is a X > 0 and a sphere B = {xlx G C, llxll < 6 > 0} such that for X0 - X

< X < X0 + X the set of all solutions of (2.3) contained in B consists of the trivial so-

lution and the branch constructed in Theorem 2.1.

For the analysis of the following sections, a knowledge of the smoothness of the

solution of (2.1) and of _y(e) as functions of t is of importance.  Clearly, assumption

A2.1 implies that if X is not an eigenvalue of (2.1) and g E Cp[0, 1], then u E

Cp+m[0, 1].  In addition, it follows easily from the analysis given that xp E Cm+P[0, 1],

vie) E Cm+P[0, 1] and \\d'vie)/dt'\\ <E,, 0 < lei < e0, I = 0, . . . ,m 4 p, E, =

const.

3. Bifurcation in the Difference Equation. We shall first briefly consider the alge-

braic eigenvalue problem

(3.1) [A - XB]x = 0,

where A, B axe q x q matrices and x E Xq, the usual i,-dimensional vector'space. We

assume that A is nonsingular.  (This is no restriction, since, if X is such that A - XB is

nonsingular, then we may rewrite (3.1) as [A - pB]x = 0, where A = A - XB, p =

X - X and A is nonsingular.)

Instead of (3.1), we can then consider the ordinary eigenvalue problem
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(3.2) [A~lB - pl]x = 0,       p = 1/X.

The following lemma contains some results on (3.1), (3.2) which will be required fur-

ther on.

Lemma 3.1. Let p0 be an eigenvalue of (3.2) with index one.   Then
(i) X" = N(A~lB-pQI) © R(A~1B - p0I).

(ii) The corresponding projection from Xq to N(A~lB - p0I) is given by

P~-2¡¡íIrP-WílBdX

with T0 defined analogous to Lemma 2.1(ii).

(iii) x G R(A - X0B), X0 = l/p0, if and only if BQx = 0, where

Also, dimR(BQ) = dimN(A~XB - p0I).

(iv) The mapping A - XQB: R(A~lB - p0I) —► R(A - XQB) is one-to-one and

onto; its inverse is given by the restriction of

G = T-^i  T1T[A-\B]-ld\
2m Jr0 X- Xq

to R(A - X0B).

Proof, (i) This follows immediately from the fact that p0 has index one.

(ii) It is well known (see, for instance, Dunford and Schwartz [3, Chapter VII])

that

(3-3) P=èïSr    IPl-^Br'dp
¿m     i u0

for an appropriate curve r    .  The result follows from the identity

p2(jxl - A~lB)-1 = pi + (A- XB)~lB

which can be derived proceeding as in Dunford and Schwartz [3, pp. 600—601] and a

change of variables p = 1/X in (3.3).

(iii) Clearly x G RÍA - XQB) if and only if ^l_1x G RiA~lB - p0I), i.e.,

PA~lx = 0.  But

(A - XBTlBA-1 = ((/ - XBA~l)ATlBA-1 = A~l(I~ XBA~lTxBA~l

= A-xBA~l(I - XBA~yYl = A~XB(A - XB)~l,

which yields the first result.  The second statement is obvious,

(iv) The mapping

A~XB - p0I:  R(A~lB - pQI) —> R(A~lB - p0I)

is one-to-one and onto and its inverse is the restriction of
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tf=¿-/   —— [A-iB-pirxdp
2m Jrßop-p0l

= ¿-f      —^—[B-pA]-xAdp
2m •,rMo/i-M0L

to R(A~XB - p0I).  Since

[A - X0B]x =y   if and only if [/ - X0A~xB]x = A~xy,

ox equivalently [,u0 - A~xB]x = p0A~xy, it follows that x = Gy where

G = ~)      —— [B-pAYxdp.

The change of variables p = 1/X now yields the result.

To derive a difference method for (2.3), we introduce a grid ttI =*

{t0, fj, . . . , tj\tj=ß, ft = 1//} on [0, 1].

We shall denote net functions (z0, . . . , z¡)T by zft EXI+X.  For later purposes,

we define two linear operators mapping C to XI+X and vice versa.   Firstly, let Ah be

the usual discretization operator, i.e. for x EC, Ahx = xh = (x(t0), . . . , x(t¡))T G

XI+X.   Secondly, assign to each zh a function z = z(t, ft) G Cm[0, 1] such that

z(t¡, ft) = zp     j = 0,...,I,

\\dvz/dtv\\ < dv(\\zh\\h 4 WD\zh\\h),      v = 0,...,m,

where dv are constants, £>+ is the forward divided-difference operator and II* II,, is the

maximum norm on XI+ x. Such a function can be constructed by Hermite interpola-

tion as in Kreiss [6, Lemma 2.1].  We shall denote it by z = Int zh.

The differential equation is replaced by the scheme

(3-4)       Z cv(t¡, h)yj+v = ft"* Xf(h;y,r, ...,y¡,... ,yj+s),     j = r,...,I-s,
v=—r

where y, denotes an approximation to y(t¡), r and s are natural numbers with r 4

s\>m,cv are continuous functions of t and ft and/ satisfies the following condition.

A3.1. /(ft; 0,. . . , 0) = 0 for ft < ft0 = const > 0 and / is twice continuously

differentiable with respect to (sl, . . . , sr+s+1) on U = {(si, . . . , sr+s+1), \s{\ <

M, I = I, . . . , r 4 s 4 1} for ft < ft0.    All derivatives are uniformly bounded in ft.

In addition to (3.4),V + s linear homogeneous boundary conditions are pre-

scribed. We write (3.4) after division by hm plus the boundary conditions as

(3*5) Lhyh = XFh(yh),      Bhyh = 0,

with obvious definitions of Lh,Fh and Bh. Together with (3.5), we have to consider

the problem obtained by linearizing (3.5) at the trivial solution,

(3.6) [Lh-XaEh]xh=0,      Bhxh = 0,

where Eh = F'n(0)la, and the related inhomogéneo us scheme

(3.7) [Lh-XaEh]uh=EhAhg,      Bhzh = 0,      g EC.
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Denoting by XI+ x the subspace of XI+ * whose elements satisfy the boundary condi-

tions, we can write (3.7) in operator form

[Lh-XaEh]uh=EhAhg,     zhEXI+x.

The following hypotheses will be required.

A3.2. Let Í2 denote a compact set in the complex X plane which does not con-

tain any eigenvalue of a~x L- Then for X G Í2 and ft < h0 the problem

[Lh-XaEh]xh=b,      Bhxh=0

has a unique solution for all b E xI~r~s+x and

\\xh\\h<KA\\\b\\.,      Ka\= const,

where II* \\. denotes the maximum norm on xI~r+s+x.

This condition implies that

sup      K^-XaE^W^K^.
XGii,/l</l0

A3.3. For every x G C, X E S2,

lim IIInt(Lft .- XaEh)~xEh A x - (L - Xairxx\\ = 0.
/i->0

A3.4. Let hß —* 0, g(,i) E C with sup^ II^(m)II < °°. Then the sequence

*<"> = lnt(L„ - XaEhTxEhAhg^\      X E Í2, ft = hß,

has a convergent subsequence.

A3.2, A3.3 and A3.4 are the stability, convergence and compactness assumptions

as used in Kreiss [6].  A3.2 and A3.3 imply the convergence of the "eigenvalues" of

(3.6) to the eigenvalues of a-1 L-  A3.4 guarantees that the invariant subspaces also con-

verge.  Kreiss [6] has shown that if r 4 s = m and (3.7) is consistent with (2.1) then

A3.2—A3.4 are satisfied.  For r 4 s > m, he provides conditions for A3.2 and A3.4 in

terms of the roots of a polynomial associated with (3.7).  A3.3 then follows from con-

sistency and A3.2.

The following two conditions will also be required.

A3.5.Let£GCp[0, 1], p>l,and

x = (L-XaI)-xg,    xh=(Ln-XaEhrxEhAhg,      X G £2, ft<ft0.

Then

\\Ahx - xh\\h <K^ max \\d'g/dt'\\hp,      AT2 = const.
0</*Cp

A3.6. For zhEXI+x,uEC, define rn(zh) = Fn(zh) -aEhz„, r(u) - f(u) - au

and let

x = (L - Xaiyxr(u),    xh = (L„ - XaEhTxrn(Ahu),      X G Í2, ft < ft0.

If u G Cp[0, 1 ], p > 1, and /G CP(U), then
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\\Ahx-xh\\h <Ka\  max \\d'r(u)/dt'\\hp,      K^ = const.
0</<(p

We now return to the problem of constructing a family of nontrivial solutions of

(3.5). From the assumptions A2.1, A2.2, A3.1-A3.4 and Kreiss [6], there is a unique

"eigenvalue" X0n of (Lh - XaEn) in a neighborhood of X0 independent of ft and by A3.5,

(3.8) IA0 - X0„l < C.hP,      ft <ft0, Cl = const.

The invariant subspace Nh associated with X0n has dimension one and is given by

Nh = ?hXI+x, where

Ph=-^"fro[Lh-^EhrxEhdX.

The space Nh is spanned by xph = VhAhxp and

(3.9) Wxph - Anxp\\n <C2hp,      ft < ft0,  C2 = const.

Proceeding as in Section 3, we rewrite (3.5) in the form

(3.10) [Lh - XohaEh]yh = XFh(yh) - XohaEhyh,      Bhyh = 0.

From Lemma 3.1 (iii) this problem has a solution if and only if

(311) ™h (lhFh(yh) = XohEha(lhEhyh

where

We now look for solutions of the form

(3.12) wh = e(</>„ + evh)

where vn E V~ = {un \uh G /?(/- Xoh_aL~hx En) CXI+X, Wuh\\h < p > 0}.  Clearly,

from Lemma 3.1 (i) every element of XI+X can be represented in the form (3.12).

We then obtain the following theorem which is the discrete analogue of Theorem

2.1.

Theorem 3.1. Let the conditions A2.1, A2.2 and A3.1-A3.4 be satisfied.   Then

there exist positive constants e"0, p and ft0 such that for all e with 0 < lei < ê~0 and

all ft < ft0 there exists a unique pair [Xft(e),yft(e)] where

\(e) = \h + eMO,      frfc(e)1 < C3, C3 = const,

and yn(e) is of the form (3.12) and is a nontrivial solution of (3.5) with X = Xft(e).

Proof. The proof proceeds as for Theorem 2.1 and is therefore only sketched.

For ?0 sufficiently small, it follows as in Lemma 2.2(i) that Eh QnFh(wh) =£ 0; and

hence, X = Xn = Ah(wh) is uniquely determined.  Defining

Sn(wh) = Ah(wh)Fh(wh) - X0haEhwh

and using (3.12), we write (3.10) as

iLh - \haEh\e2vh = sh(yhl      Bhvh = °*
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Then, by Lemma 3.1 (iv),

<3-13> »h = GhSh(yh)le2 = Hn(vh)

where

It is straightforward to establish a discrete equivalent of Lemma 2.2 and to prove that

Hh(vh) is contracting on V~ for appropriate p and e"0.

From Crandall and Rabinowitz [2], we can obtain results about the smoothness

of Xn and vn as functions of e analogous to those quoted at the end of Section 2.  Al-

so, a uniqueness result corresponding to the one stated there holds.

4. Error Estimates. The main result of this section is contained in the following

theorem.

Theorem 4.1. ¿er the conditions A3.1, A3.2, A4.1-A4.6 be satisfied.   Then

there are positive constants h. and e. such that for lei < e1 and ft < h.,

\\vh(e)-Ahv(e)\h<Dxhp,      IX„(e) - X(e)l <D2hF,     D.,D2 « const.

Proof. Firstly, recall the results on the smoothness of xp and u as functions of t

stated at the end of Section 2.

We shall now derive an estimate for (X(e) - X0) - (X^(e) - X0ft).  From (2.5),

(4*1) (Me)-X0)Pay = -X(e)Pr(y)

and, from (3.11),

(4.2) (X„(e) - Xoh)EhPhayh = - Xh(e)Eha(lhrn(yh).

Premultiplying (4.1) by ?hAh and (4.2) by aQh yields

(X(e) - X0)aexph = - X(e) P„ Ah ?riy),

(Ve) - \h)ae*h =-\(e)?haQ.hrh(yh)>

and hence,

[(X(e) - X„(e)) - (X0 - X0„)]aev;„

(4.3)
= - {(X(e) - Xn(e))Ph Ah?r(y) 4 Xhie)?h[Ah?riy) - a(lhrh(yh)]}.

Clearly, VhAh?r(y) = yn(e, vh)xph, where

(4*4) l7„(e, u^)l < D3 lei2,      L\ = const.

Also,

\Pr(y)-a(lhrh(yh) = 8xh4 82 = ôh

with

Si = AftPr(y) - aQhrhiAhy),      52 = aHhrhiAhy) - aQ^^iy^.
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By A2.1 and A3.6,

(4.5) \\Ôxh\\n <D4e2hp,     D4 = const

and using A3.1,

(4.6) Hô2llft <D5e2hp 4D6e3\\vh - Ahv\\h,      DS,D6 = const.

From (4.3), (4.4), (4.5) and (4.6),

(4.7) (X(e) - Xft(e))a(l + 7ft(e, vh)/ea) « (X0 -,X0> + Vn,

where

\r¡h\ < eD7(ftp + ellu„ - Ah v\\n),      Dn = const.

We thus obtain the desired estimate,

(4.8) X„(e) - X0„ = X(e) - X0 + 0(e(ftp + e\\vh - Ahv\\h)).

From (2.12) and (3.13),

(4-9) vh - Ahv = (GhSn(yh) - AhGS(y))/e2,

where

Sh(yh) = «(-Ve) - \h)Ehyh + hSß)rh(yh)

and

S(y) = a(X(e) - X0)y 4 X(e)r(y).

From (3.9) and (4.8),

(4.10)    Shiyh) = aiXie) - X0)Eh Ahy 4 Xie)rhiAhy) 4 0(e2(ft" + ellu„ - Ahv\\h)).

Also, from (3.8),

GhSh(yh) = ¿ J^ ïè^lU - XaEfcl-'^O^dX + 0(hpe2).

Hence, using (4.9) and (4.10),

«fc - V - -~ 1   r4r [(*-„ - AwE^r1 (a(X(e) - X0^ Ahy 4 X(e)rh(Ahy))
2me2  ro P    Ao

- A„(L - paiyx(a(X(e) - X0)y 4 X(e)r(y))] dp

4 0(hp 4e\\vh-Ahv\\h),

which, by A3.5 and A3.6, yields

lluft - Anv\\h <D8(hp 4 e\\vh - Anv\\h),      D8 = const.

Thus, if lei <Z>8/2, then \\vh - Ahv\\h <D.hp.

The second statement of the theorem follows from (4.7).
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Combining the results of Section 3 and Theorem 4.1 we find that for ft < h.

and 0< lei <e1,

(4.11) ||^(e) - Ahy(e)\\h/e <D9hp,     D9 = C2 + e.Dv

(4.12) IXh(e)-X(e)l<D2ftp.

Thus the parameterization of the solutions of (2.3) and (3.5) by e has led to a satisfac-

tory convergence theory.

In computations, one usually determines the solution yh of (3.5) for a given val-

ue of X and not yh(e), Xh(e) for a given e. But we can still apply our theory once we

observe that there is a unique e such that yh = vA(e), X = Xn(e).

Under appropriate conditions, it is possible to show that Xh(e) and yn(e) possess

asymptotic expansion in powers of ft (or ft2) for a fixed e with coefficients which are

continuous in e. However, one cannot, in general, make such a statement for the case

when X is kept fixed.

Under the assumption that /G Cp+2+k[U] and / G Cp+2+k[U], k > I, one

can extend Theorem 4.1 to obtain 0(hp) convergence of the first k derivatives with re-

spect to e of Xnie) and ^(e) to the corresponding derivatives of X(e) and j-(e). This is

accomplished by differentiating (2.6) and (3.10) with respect to e and basically repeat-

ing the proof of Theorem 4.1.

Denoting V = (Í. - XI) ',we may write (2.3) as an integral equation bifurcation

problem

py = V{y 4 ((1 4- pJ)la)r(y)) = W(p, y),

where p = l/(Xa - X). Similarly, with Vh = (Lh ~ XE,,)    , problem (3.5) can be writ-

ten as

pyh = Vn(Ehyh 4 ((1 + pX)/a)rn(yh)) = Vh^h(p,yh).

The assumptions of Section 3 (with condition A3.6 modified to include the case where

u(t) is only continuous) imply that the family of operators

(4*13) lntVh4th(p.,Ahx):   C^C,

forms a collectively compact sequence which converges pointwise to VÜ(ß, x). The

theory of Atkinson [1] can be applied to (4.13) and yields results corresponding to

Theorems 3.1 and 4.1.  However, an accurate interpolation procedure Int (consistent

with the order hp) combined with a refinement of Atkinson's techniques, is needed to

obtain exactly our results. (Note that the approximations on the grid are, of course,

independent of the interpolation procedure.)  The alternative approach chosen in this

paper has the advantage of being completely within the framework of differential equa-

tions and difference methods.

5. Extensions. A generalization of (1.1) is given by the problem

(5.1) -Ly = f(X,y),      0<t<l,      By = 0,

where the nonlinear operator/(X, v) has the decomposition f(X,y) = £(X)v + -"(^.-JO-
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For X ED, an open interval, and all s EB = {s\s real, Lsl <M> 0} the following

conditions are assumed to hold.

(i)g(X)EC2(D),

(ii) r(X, s) G C2(D x B),

(hi) r(X, 0) = 0, rs(X, 0) = 0, rK(X, 0) = 0, rsX(X, 0) = 0, rxx(X, 0) = 0.

For some X0 ED withgx(\) # 0, let the problem

Lxp = g(X0)xp,      Bxp = 0,      M = l,

have a solution and let the related invariant subspace have dimension one. Then it is

straightforward to extend Theorem 2.1 to (5.1). The only difference in the proof is

that the equation corresponding to (2.5) is now nonlinear and must be treated in the

same way as equation (2.21b) in Keller and Langford [5].

The difference scheme for (5.1) is assumed to have the form

(5-2) Lhyh = g(X)Ehyh 4 rh(X,yh),     Bhyn = 0,

where rn(X, yh) satisfies conditions analogous to (ii) and (iii) above.  If the assumptions

corresponding to A3.2-A3.6 are satisfied, then the arguments of Sections 3 and 4 im-

mediately generalize to include (5.1), (5.2).  The details may be safely left to the read-

er.

The results of this paper are extendable to systems of the form

Ly=f(X,t,y,y<-x\...,y(m-xî),      0 <f < 1,      By = 0,

where L is a linear differential operator of order m, f and y axe vector valued functions

and By = 0 are linear homogeneous boundary conditions involving derivatives up to or-

der 771 — 1.  Details will be given elsewhere.

6. Numerical Results. We report some calculations with the problem

(6.1) y = X[v+^2],     y(0)=y(l) = 0.

The difference method used is

y¡+i ~2y¡+ y¡-i   ,,      2l    .   ,       r  ,. , _ 1/f-;-= X[v,. + v,2],      i=l,...,I-l; h-III,
(6.2) ft2

y0 = 0,     yj = 0.

This scheme satisfies the assumptions of Section 3   (p = 2).

The eigenvalues and eigenfunctions of the linearized problems corresponding to

(6.1) and (6.2) are of course well known.

In Table 1, we give the value of yh at t = 0.5 on the branch corresponding to the

eigenvalue XQ = -tt2 for X = -it2 + AX using various ft and AX.  Similarly, Table 2

contains the value of yh at t = 0.25 on the branch corresponding to the eigenvalue

X0 = - 47T2.  In the last row of Tables 1 and 2, we give X0n - X0, i.e., the difference

between the discrete and the continuous eigenvalue.

In the case of X0 = - 4tt2, there are two nontrivial solutions yn for the negative



BIFURCATION IN DIFFERENCE APPROXIMATIONS 759

AX and all ft.  Nontrivial solutions for the positive AX exist only for large enough ft.

There are two nontrivial solutions for AX = 0.1, AX = 0.2 and ft = 1/20, but none for

the smaller ft.  (Where no solutions exist, we have left a blank field.)  The reason for

this is that X(e) - X0 = 0(e2), i.e., the linear term in e is missing.  This difference be-

tween the two cases is best made apparent by plotting the entries of Tables 1 and 2 as

is done in Figs. 1 and 2 respectively for certain values of ft.

Table 1

AX\
-0.2
-0.1

0.1
0.2

1/20
■2.5763 E-2
-1.4210 E-2

9.6146 E-3
2.1902 E-2

1/40
-2.3985 E-2
-1 .2414 E-2

1.1448 E-2
2.3755 E-2

1/80
-2.3540 E-2
■1.1965 E-2

1.1907 E-2
2.4219 E-2

1/160
-2.3429 E-2
-1 .1852 E-2

1 .2022 E-2
2.4335 E-2

■^OrT^o 2.0277 E-2 5.0723 E-3 1.2683 E-3 3.1708 E-4

Table 2

-0.2

-0.1

0.1

0.2

1/20
1.2013 E-l

-1.3064 E-l
1.0881 E-l

-1.1733 E-l
8.0329 E-2

■8.4838 E-2

6.0315 E-2
■6.2811  E-2

1/40
8.9102 E-2

•9.4773 E-2
7.2156 E-2

-7.5815 E-2

J¿80_
7.9178 E-2

■8.3627 E-2

5.9091 E-2
■6.1524 E-2

1/160
7.6473 E-2

■8.0616 E-2
5.5304 E-2

■5.7430 E-2

^■oh-^o 3.3236 E-l 8.1108 E-2 2.0289 E-2 5.0731 E-3

In Figs. 1 and 2, we do not know the curves e = const exactly; but it is clear

from the theory that they are nearly parallel to the AX axis.  Particularly Fig. 2 demon-

strates the usefulness of expressing convergence via (4.11), (4.12).

The nonlinear system 6.2 was solved by Newton's method. Partial pivoting was

used for the resulting linear equations.  Accurate starting iterates can be obtained by

the following consideration: For a value X close to Xoh (either X < X0^ or X > X0h ox

both), there is a value eXn such that yn(X) *> eKhxph, i.e., the net function eXhxpn is a

very good starting iterate for this particular X.  If Newton iteration is performed with

different starting iterates e<ph, e = ± Ae, ± 2Ae, . . . , where Ae is small, some e will be

close to eXft and the iteration will converge. Once the solution is known for a certain

X, one can use continuation with respect to X to obtain starting iterates for other X val-

ues.  Similarly, one can use continuation with respect to ft for obtaining starting iterates

for different ft values. This strategy was used successfully in all our calculations.  For

all AX and ft, 5 to 7 iterations were needed to give the solution to 10 digits. It should

be noted however that a theoretical analysis of iterative schemes for the solution of

(3.5) for X "close" to X0h has yet to be given.

To employ the above method for obtaining starting iterates in the general situa-

tion, it is first necessary to solve the eigenvalue problem for the linearized equation.
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Figure 1

h = 1/20

Figure 2

Remark. The computations were done in double-precision arithmetic on the IBM

360/158 computer at the California Institute of Technology.
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