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A Galerkin Method for a Nonlinear Dirichlet Problem

By Jim Douglas, Jr. and Todd Dupont

Abstract.   A Galerkin method due to Nitsche for treating the Dirichlet problem for a

linear second-order elliptic equation is extended to cover the nonlinear equation

V • (a(x, m)Vm) = /.   The asymptotic error estimates are of the same form as in the

linear case.   Newton's method can be used to solve the nonlinear algebraic equations.

1. Introduction. We shall present asymptotic error estimates for a Galerkin

method for the approximate solution of the nonlinear Dirichlet problem

- V • (a(x, w)Vw) = f(x)   on £2,

u(x) = g(x)    on 3£2,

where £2 is a bounded domain in R" with n < 3.  Assume that £2 is locally on one side

of its smooth boundary 3£2, that a(x, u) is a twice continuously differentiable mapping

of £2 x R into [a0, o¡j ], where 0 < a0 < a. <°°, and that the derivatives of a(x, r)

through second order are bounded on £2 x R.  As we shall see later, it follows from

well-known regularity results and a uniqueness theorem of Douglas-Dupont-Serrin [1]

that if, for some a G (0, 1), / G C°(£2) and if g can be extended to £2 to be in C2"1"0^),

then there exists a unique weak solution u of (1) and, moreover, u G C2+a(£2).  (The

class C*+a(£2) consists of all functions whose derivatives through order k axe Holder

continuous of order a on £2.)

The Galerkin method we shall employ is the straightforward generalization of a

method of Nitsche [3] to this nonlinear case and the form of the asymptotic error

estimate produced for this method is essentially the same as in the corresponding linear

case.  The primary tool used in proving these error estimates is the fact that the formal

derivative,

(2) Lw = - V • (a(x, u)Vw + wau(x, u)Vu),

of the elliptic operator in (1) is a linear elliptic operator for which the Dirichlet problem

has a unique solution; this (nonobvious) fact follows from [1].  The nonsingularity of

the Dirichlet problem for (2) is also used in showing that the nonlinear algebraic equa-

tions arising in the Galerkin method can be solved by Newton's method provided a

sufficiently good approximation of the answer can be found with which to begin the

Newton iteration.

2. The Approximate Solution.  For 1 < p < °° and k a nonnegative integer, let

rV*(£2) be the functions in Lp(£2) whose distribution derivatives through order k axe

also in Ip(£2). Take INI^/km) to be the natural norm on M^(£2):
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P

Adopt the following notations:

llr1Lin    =    SUD    ||£»aHI
Wn(il)       \a\ik L    (il)

m = «FiLa(0),    in-mxW   ii^ = imi^(n).

Set

H = {u G ^(£2):   for almost every x G 3£2 there is an open

(3) ball B(x) about x such that u G W2(£2 n 5(x)),

and such that 3u/3<v G L2(3£2)},

where dv/dv denotes the derivative of v in the direction of the outward normal to 3£2.

For each ft G (0, 1) define a norm on H by

IIMII2 = IIMlß = IMI2 + ft-1M2 + h\dxp/dv\2.

We shall consider a family {Mft}0<ft<1 of finite-dimensional subspaces of H

satisfying the following assumptions:

(4i) There exists a positive integer r and a constant c. such that, if 2 < s < r + 1

and v E ^(£2), then

inf   {ftlllu - xllU + h2\\v - X\\wl.} < C^IMI,.

(4ii) For each v G C£(£2),

inffjlw -xH,:  X G M„, supp(x) CC £2} - o(l)

as ft tends to zero.

(4iii)ForallxGMft,

lax/a^i <c1/i-%iixili-

The assumptions (4i)—(4iii) are satisfied by many finite element spaces that contain

piecewise polynomials of degree r.   The condition (4ii) is satisfied by almost all finite

element spaces that satisfy (4i) with o(l)  replaced by 0(hr); thus, it is a very mild

constraint.  Condition (4iii) is an inverse hypothesis on the family.{Mft}0<ft<1; together

with the hypothesis that 3£2 is smooth, this condition effectively excludes tensor prod-

ucts of spaces of piecewise polynomials in a single variable. The conditions (4i) and (4iii)

are needed for the analysis of Nitsche's procedure even in the case in which the operator

is linear, but the need for condition (4ii) is special to the nonlinear problem.

Let (•,•) and <•,■> denote the scalar products on L2(£2) and L2(3£2), respectively.

For parameters 7 > 0 and z G ¿2(£2) define a bilinear form B on H by

(5)
B(z; v, w) = (a(z)Vv, Vw) -(*Gf)|,w)

• (v, a(g) -^- - yh l w\,      v, w G ff,
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where we have suppressed the writing of the x argument of a.  Note that, if we use

z = v = u, then B reduces to data in the sense that

(6) B(u; u, w) = (/, w) ~(g, a(g) ̂ - - 7*_1 A      vv G ff.

The following lemma is an easy consequence of the inverse hypothesis (4iii).

Lemma 1 (Nitsche).   There exist positive constants p and y0, depending only

on £2, n, c., a0 and a., such that, ify-^y0,

(7) PIIMII2 < B(z; v,v),      u G Mft, z G L2(£2).

For each y > 0 there exists c2 = c2iy, at) such that

(8) \B(z; v, w)\ < CjllMH Ml,      v,wEH, zE ¿2(£2).

We shall assume henceforth that 7 ^ 70 and is fixed; hence c2 is also fixed and

(7) holds.

Define an approximate solution uh to be an element of M„ satisfying

(9) B(uh;uh,w) = (f, w) -(g, aig) ^~ - yh~lw),      w E M„.

To see that there exists at least one solution un of (9) consider the map S: Mft —► Mft

defined by

(10) B(y\Syfw) = (f,\v)-(g,a(g)^-yh-1J),      w E M„.

The condition (7) implies the nonsingularity of the finite set of linear equations that

define S, and choosing w = Sy in (10) shows that the range of S is contained in a ball.

Since S is clearly continuous, the Brouwer fixed point theorem implies that (9) has a

solution.

3.  Convergence Result.   Our main result for the procedure given by (9) is the

following theorem.

Theorem 1.  Suppose that, for some a E (0, 1), / G Ca(£2) and g can be ex-

tended to be in C2 + Ci(£2). Suppose also that u E ^(£2) for some s satisfying 2 < s <

r 4 1.   Then there exists a constant c3 such that for ft sufficiently small

00 \\u-uh\\4h\\\u-ufl\\\<c3hs.

Proof.   Because of the finite dimensionality of the Mft's the infimum in (4i) is

actually assumed; let x G Uh be such that |||« - xlll + ftll« _ ^wl(si) 's mmmial- N°te

that (7), (9) and (5) imply that

pIIK - xlll2 < B(uh; uh -x,uh-x)

= B(u; u-X,"h~X)4 ((a(u) - a(uh))VX, V(uft - x))

< (e2llki - xlll + IK") - <uH\Ha)Mwt6{n))\K - Xlll.

Thus, by (4i) and the choice of x,

(12) |||uA - «III < C[hs~l 4 IK«) - aK)HL3(n)] •
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Using the fact that a is uniformly Lipschitz continuous with respect to u and the inter-

polation result (since dim(£2) < 3)

(13> MZ3(n) < CIMI^MI?,
we see that

(14) UK - "III < C[fti_1 + \\u-uH\\].

In order to bound ||u - u„|| we use a duality argument. Note that it follows

directly from well-known elliptic regularity and Theorem 2 of [1] that any Dirichlet

problem for the linear elliptic operator L defined in (2) has at most one weak solution

in rV2(£2).  It then follows that for any f G ¿2(£2) there exists a unique xp G w\ (£2)

such that

(15) L*xp = f    on £2,      xp = 0   on 3£2,

where L* is the formal adjoint of L:

L*w = -V • (a(x, «)Vw) + au(x, «)V« ■ Vw.

Also there exists a constant C independent of f such that

(i6) imi2 < aim.

Take f = u - uh in (15).  A short computation shows that

(17)      liril2 = (f, L*xp) = B(u; u, xp)-B(uh\ uh,xp)4 (fr„vf - a~u¿2m, V<¿),

where

««(*) = S0au(x> "(*) - tÇ(x))dt,

auu(x) = JO - 'K„(*, "W - t$(x))dt.

With X G Mft appropriately chosen we see from (17), (6), (9), (8), Holder's inequality,

the Sobolev imbedding theorem and (4i)  (in that order) that

lim2 = B(u; u, xp - x) - B(uh; Uft, xp - x) + (fo Vf - ¿"u„f2 V«, V¿)

= B(uh; f, V - X) + (K V«, Vfo> - X)) + (fa„ Vf - auuf2 V«, V<¿)

< cillflll 111^ - xlll + cilfllL3(íí)llirill IMIM/1(n)

<qiB1ll [ft + HfllL3(n)] IMI2.

Thus (16) and (13) imply that

urn < ciiiriii [ft + nrnL3(n)] < c[inriiiÄ + iiirin3/2iirii,/2]-

Hence,

(is) iirii<c[iOTft + iiiriii3]-

Using (14) in (18), we see that for ft sufficiently small

(19) llfll + ftlllflll < C[hs 4 Hfll3].
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The inequality (19) proves the theorem provided we can show that ||f|| —► 0 as

ft —► 0; this is done via a compactness argument.  From (12) and the fact that \a(x, z)\

< a. for (x, z) E £2 x R we see that there is a constant independent of ft such that

|||u„ - «III < C.  Hence

(20) \uH-g\<Ch*

and

(21) \\uh\\. <C+||«||1.

From (21) we see that from any sequence of ft's tending to zero we can choose a sub-

sequence {hk}k=l such that for some w E W\(Sl), uh/c —► w in L2(£2) and weakly in

W2(Q). It follows from (20) and the trace inequality

W<CMIHMli*,      ^eM/2(£2),
that

(22) w = g   on 3£2.

We want to show that w = u by showing that w is a weak solution of (1). Take u G

C^(£2) and uftfc E Mftfc such that vhk has compact support in £2 and

Hu~%lli = °(1)   as k~yo°-

Then

|(a(w)Vw, Vu) - (/, v)\ = |(a(w)Vw, V(u - uftfc))

4 (a(w)Vvv - a(uhk)Vuhk, Vuftfc) - (/, (u - uftfc))|

< Cllu - vhk\\. 4 |(a(w)Vw - a(uhk)\/uhk, Vu)|.

Rewriting the last term as

(a(w)V(w - uh), Vu) + ((a(w) - a(uh))Vuh, Vu)

and using the convergence of un   to w, we see that

(23) (a(w)Vw, Vu) = (/, u),      u G C£(£2).

Thus we see from (22) and (23) that w is a weak solution in W2(^) °^ 0)- Assume for

the moment that such weak solutions are unique.  Then w = u, and it follows by a

standard argument that un —■*■ u in ¿2(£2) as ft —► 0. Hence, ||f|| —► 0 as ft —* 0, and

the conclusion (11) follows from (19).

To show that weak solutions of (1) are unique we shall first use a "boot-strap"

argument to see that weak solutions are smooth solutions and then apply the results of

[1].  Suppose that w E W2(£2) satisfies (22) and (23). Then by results of de Giorgi

and Nash (see [2, Theorem 5.3.7]) w is in fact Holder continuous on £2. (We always

choose the smooth element of the equivalence class in W2(£2) if there is one.) It then

follows from a result of Morrey (see [2, Theorem 5.5.4]) that w G rVp(£2) for 1 < p <

°°; in particular, w G ^(£2).  This then implies that w G ^(£2), since w is a weak

solution of
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- A</> = (l/flXVa&e)) • V<¿> + /   on £2,
(24)

xp = g   on 3£2.

Finally we can apply the Schauder estimates (see [2, Theorem 5.6.3]) to see that w E

C2+a(£2).  Thus, weak solutions of (1) are in fact classical solutions of (1) and belong

to C2(£2); therefore, Theorem 1 of [1] implies that these solutions are unique.  This

completes the proof of Theorem 1.

4.  Newton's Method.  Using an additional hypothesis on the function spaces Mft,

we shall find conditions under which Newton's method can be used to compute the

solutions un of the nonlinear algebraic equations (9).

For z G Z,2(£2) define a bilinear form N(z; y) on H by

(25) N(z; v, w) = B(z; v, w) 4 D(z; v, w),

where B is defined in (5) and

(26) D(z; v, w) = (au(z)v\Jz, Vw).

Given z0 G M„,the Newton approximations to uh form a sequence {zk}k=0 in M„

satisfying

(27) N(zk;zk+l-zk,v) = (f,v)-^,a(g)^-yh-l^-B(zk;zk,v),      uGM„.

For each Mn let

(28) a, = sup {Hull /Hull j:   0*uGM„}.
Li        \\\u )

We shall assume throughout this section that un converges to u sufficiently rapidly that

(29) """ "*"/.-(«) +CTftH"-"ftUi ~+°    asft^O.

In addition, we shall assume that there is a constant c4 independent of ft, such that

(30) II«. II   .        <c4;

in many cases this can be verified by using Theorem 1 together with approximation and

inverse assumptions which are slightly stronger than those made in (4).

Our main result for Newton's method is the following.

Theorem 2.  There exist positive constants ft0, ô and cs such that, ifO < ft <

ft0 and on\\z0 - un\\. < 5, then {zk}k=0 exists and vk = \\\zk - uh\\\ is a decreasing

sequence satisfying

(*) vk+i < cs°h\\zk - "ftHl < c5aft"fc-

The proof of Theorem 2 relies heavily on the following lemma.

Lemma 2.  Given r > 0, there exist positive constants 5, ft0 and c6 such that the

following holds.  If 0 < ft < ft0, if z E Wl(Sl) satisfies

Mwl (n) < T   and    ||z-m||1oä<8,

and if G is a linear functional on H with norm \\\G\\\, then there exists a unique v E M/,

satisfying the equations
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(31) N(z; u, w) = G(w),      w E M„.

Furthermore, u satisfies the bound

(32) lllulll < c6|||G|||.

Proof.   It suffices to show that (32) holds, since it implies that solutions of (31)

are unique and hence exist.

From Lemma 1 it follows that

pllMII2 < B(z; u, v) = G(v) - D(z; v, u)

< [IIIGIII + llfl„(z)Vz||  „      Hull] lllulll.
L    (SI)

Hence,

(33) lllulll < C[|||G||| + Hull].

Let L* be as in (15), and let xp satisfy

L*xp = v   on £2,      xp = 0    on 3£2.
Then, for x G M„,

Hüll' = N(u; u, xp)
(34)
V    ' = {Niz; v,xp-x)4 Gixp 4 (X - xp))} 4 [N(u; u, xp) - N(z; v, xp)].

Using (4i) and the bound IMI2 < C||u||, we see that

(35) {'••}< C(h\\\v\\\ 4 \\\G\\\)\\v\\.

A short computation shows that

[•••] <C\\u-z\\ \\v\\.\\xp\\. 4Q\v\\ Jlii-zlljIMI,
Li        K**) Li        (")

(36)
<C(||«-«J|£00(n) + aÄ(||«-«Ä||, + IK -zllj»Hull!Hull.

Thus (34), (35) and (36) imply that

(37) Hull < qiiGin + flllulll,

where

F = CQl + II" - uh\\L 4 ohi\\u - uh\\. 4 IK - zll,))-

From (33) and (37) it follows that

(38) (-1 - CF)\\\v\\\ < CIIIGIII.

If ft0 and S are taken sufficiently small that CF < 1/2, then (38) implies (32).  This

completes the proof of the lemma.

Proof of Theorem 2.  First we show that, if ft0 and S are sufficiently small, if

0 < ft < ft0, and if a„||zfc - uh\\ < 5, then there exists a unique zk+.. It suffices to

show that, if u G Mh satisfies

N(zk\ v, w) = 0,      wEUh,

then u = 0.   To see this, note that

N(uh; v, w) = G(w),      wGM„,
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where

G(w) = ([a(uh)-a(zk)] Vu, Vw) + ([(a(uh) -a(zk))\/uh -a(zk)l(zk - uh)]v, S/w).

It is easily checked that |||G||| < Co„IK ~ ZfcllilMli.  Hence, by Lemma 2, |||u||| <

c6CffftH"ft -ZfclliHMII; thus, v = 0 if c6C5 < 1.

To verify (*), note that

N(uh'>zk+i ""ft. w) = N(uh; zk - uh, w)4N(zk;zk+l - zk, w)

+ [N(uh\zk+i ~zk> w) ~N(zk>zk+i ~zk> w)]

(39) = W("ft ; zk - «ft-w)+ 5K ; "ft. w) - Kzk ; **. w)>

+ \Muh>zk+i- zk> w) -N(zk'> zk+1 - zk> w)]

= G.(w) 4 G2(w) = G(w),      wEUh,

where the braces and brackets indicate the decomposition of G into G. and G2.  Since

G.(w) = (täuu(zk - uh)2luh 4 au(zk - uhMuh -zk), Vw),

where a~uu and a~u are certain averages of auu and au, respectively, it follows that

(4°) \\\G.\\\<Coh\\zk-uh\\\<Cohv2.

Similarly, since

G2(w) = ([a(uh) - a(zk)] V(zfc+, - zk), Vw)

+ (KauK) -°u(zk))V"h + °u(zkMuh -zk)i(zk+i ~zk)> vw),

we see that

|||G2 III < Cah \\zk -uh || .(\\zk -«„ H , + llzfc+1 -uH\\x)
(41)

■^^"»("fc +^+i).

The conclusion, (*), then follows from Lemma 2, (39), (40), and (41).

In the cases where Mft is obtained from piecewise polynomial functions over a

quasi-regular triangulation of £2, one can show that

oh « In ft-1,      n = 2,    or   çh « h~Vl,      n = 3.
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