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Convergence of the Fraser-Hart Algorithm

for Rational Chebyshev Approximation

By Charles B. Dunham

Abstract.   The Fraser-Hart variant of the Remez algorithm is used to determine

the best rational Chebyshev approximation to a continuous function on an interval.

A necessary and sufficient condition for the matrix of the associated linear system

to be nonsingular at.the solution to the approximation problem is given.   It is shown

that the Fraser-Hart method may fail even if started arbitrarily close to the solution

of the approximation problem.   Use of the secant method in place of the Fraser-Hart

iteration is also considered.

1.   Introduction.   Let [a, ß] be a finite interval.  Let w be a positive continuous

weight function on [a, ß].  Let R^ [a, ß] be the set of ratios r = p/q of polynomials

p of degree at most n to polynomials q of degree at most m, q(x) > 0 for a < x < ß.

The approximation problem is:  given / continuous on [a, ß], find r* G R"^ [a, ß] to

minimize

e(r) = max{|w(x)(/(x) - r(x))\: a<x<ß}.

Such an element r* is called a best approximation to /.

It has been shown that a best approximation exists, has a characteristic number

of alternations, and is unique [1].  One of the most popular methods of finding the

best approximation is Fraser and Hart's variant of the Remez algorithm [3], [4],

hereafter called the FHR algorithm.   In the rational Remez algorithm, we attempt to

solve the system,

(0 /(*,) - rix,) = (- l/XM*/),      i = 0,...,n + m + l,

where a < x0 < • ■ • < xn + m + l < ß.  From (1) we obtain

P(*,) + <7(*,)P,(X) = 0.      i = 0, . . . ,n + m+ I,

where p,(X) = (-l)'\/w(x¡) - f(x¡).  Fixing the constant term of q equal to one, we

get

(2) p(x¡) + q(Xi)PiCK) + (- íy'XM*,.) - /(*,-),      i = 0,...,n + m+l,

where q is a polynomial of degree m with constant term zero.  If we knew X, we

could evaluate p(-(X) and then (2) would be a linear system, which we could easily

solve.  The approach of Fraser and Hart involves making a guess X0 at X and solving

(3) p(x¡) + qQcfrfa) + (- l/X/wíx,.) = /(*,•),      t*0,...,it + m + l.
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We then set X0 = X and iterate until |X - X0| is sufficiently small.

2.  Singularity of the Matrix.   It would be desirable for the coefficient matrix

of (3) to be nonsingular whenever {x0, . . . , xn + m + 1} is an alternant and X0 =

(f(x0) - r*(x0))w(xQ).  Unfortunately, this is not the case when r* = 0, for in this

case the factors [(— l)'X0/w(x¡) - f(x¡)] drop out and the matrix of (3) is singular.   In

particular, in the trivial case where /= 0 and we set X0 = 0, the factor p,(X0) =

[(- l)'\0/w(x¡) -/(*,)] vanishes for any choice of x¡ and the matrix of (3) is singular

if m > 0.  The theorem to follow shows that the matrix may be singular for degenerate

r* and possibly some nondegenerate r*.

Theorem 1. Let w(f~ r*) alternate n + m + 1 times and suppose we can write

r* as p0/q0, p0 of degree at most n, q0 of degree at most m with constant term zero.

Let {x0, . . . , xn + m + x} be an alternant of (f - r*)w and X0 = (f(x0) - r*(x0))w(x0).

Then the matrix of the FHR algorithm is singular.

Proof.   We have

(4) /(*,.) - p*(x,)/q *(*,-) = (-1 )''X0Mx,.),     i = 0,.. ., « + m + 1.

The FHR matrix corresponding to (3) is singular if there exists p of degree n, q of

degree m with constant term zero, and X such that at least one of p, q, X is nonzero,

but

(5) P(Xi) + foi) [(- l)\/w(Xi) - /(*,.)] + (- l/XMx,.) = 0,

i = 0, . . . , n + m + 1.

We use (4) to replace [(-l)'\Jw(x¡) -/(*,)] by -p*(x¡)lq*(x¡), and by the hypothe-

sis on r*, we obtain

Po(*,) + <7o(*«)[-P*(*»)/?*(*i)j = °>      i = 0,...,n + m + l,

and (5) is satisfied.

In case the linear system (3) uses the power basis for polynomials, degenerate r

can always be written as p0/q0, q0 with constant term zero; we reduce r to lowest

terms, then multiply numerator and denominator by x.   In the case 0 ^ [a, ß], there

exist pole-free nondegenerate rational functions with constant term of denominator

equal to zero.

A consequence of the theorem is that if we start the FHR algorithm where it

should end, namely on the alternating error extrema and with the optimal value of

X, the matrix is singular and the algorithm fails.  Another consequence is that if the

algorithm does converge to the best approximation, the matrices become closer and

closer to singular, giving numerical problems.

In practice, the best approximation r* to /is unlikely to be expressible in the

form p0/q0, q0 with constant term zero.  However, if r* is close to such an element,

the FHR matrix of (3) at the extrema of w(f- r*) with X0 = (f(x0) - r*(x0))w(x0)

will be near singular.

Theorem 2. Suppose r* is best to f and r* cannot be expressed as p/q, p of

degree at most n, q of degree m with constant term equal to zero.  Let {x0, . . . ,

xn + m+x} be an alternant of (f - r*)w and X0 = (f(x0) ~ r*(x0))w(x0).  Then the
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matrix of the FHR algorithm is nonsingular at the solution to the approximation prob-

lem.

Proof.   Suppose the matrix is singular, then (5) is satisfied for at least one of

p, q, X nonzero.  Using (4), we can rewrite (5) as

(6)      p(xf) + q(x,)[-p*ix,)lq*(Xi)] + (-ly'XM*,.) = 0,      i = 0, . . . , n + m + I.

Suppose (6) is satisfied.  First suppose that X = 0, then p(x¡)/q(x¡) = p*(xi)/q*(xi).

This violates our hypothesis on r*.  Next let X =£ 0, then p + q(~p*lq*) has n + m + 1

sign changes.  But pq* - p*q is a polynomial of degree at most n + m and so we can

have only n + m sign changes.  Hence (6) is not satisfied and the matrix is nonsingular.

3.   Convergence of the Fraser-Hart-Remez Algorithm.  Convergence of the rational

Remez algorithm for sufficiently good starting points is guaranteed by the theory of

Barrar and Loeb [2] if the best approximation is nondegenerate.  Thus if the FHR

algorithm solves all systems of the type (1) encountered, it has the same convergence

properties.  Unfortunately, this is not the case as is shown below.

We assume in this section that {xQ, . , xn + m + 1} is fixed.  Let X be a number

X.  Then the same is true for X0 insuch that (3) has a nonsingular matrix when X0

a neighborhood of X. We consider only X0 in such a neighborhood.  The solution X

of (3) depends only on X0 and hence is a function of X0.  Cramer's rule gives X(X0) :

N(\0)lD(f\0), where D(X0) is the determinant of the matrix of (3) and A(X0) is the

determinant of the same matrix with the last column replaced by a column of values

off.  Let

(7) h(X0) = (9/3X0)X(X0) = A'(X0)//3(X0) - N(K0)D'(\0)lD2(X0)

and it is seen that h is a continuous function of X0 in a neighborhood of X.

As X depends only on X0 for fixed {x0, . n + m
+ j}, the Fraser-Hart tech-

nique of solving (1) via (3) is a linear iteration, as described by Henrici in [5, Chapter

4].  Let us assume that (3) has a nonsingular matrix when X0 = X*, the solution of

(1).  Then by the argument of Henrici [5, p. 71], the (local) convergence of the

Fraser-Hart iteration depends on the magnitude of |ft(X*)|.  If it is less than one, local

convergence occurs; but if it is more than one, divergence must occur.  An example

where [h(K*)\ is large is now given.

Let n = 0, m = 1, then we have 3 points {x0, xx, x2}.  Let x0 = 0 and w = 1.

Then by Cramer's rule we have

(8) X(X0)
N(\0)

£>(X0)

i       o        f0
i  Pi(x0)*i  A
1    P2(X0)x2    f2

0

Pi(X0)*i

P2(X0>X2

if £>(X0) =£ 0. £>(X*) is the determinant of the matrix of (3) with X0 = X*. If it is

zero, the Fraser-Hart method of solving (1) will have a singular matrix in solving (3)

with X0 = X* and will fail.

Let /be a nonzero approximant, then the optimal X is X* = 0.  By the second
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theorem, D(X*) + 0.  As X(X*) = X*, we must have by Cramer's rule N(X*) = 0.

We have by (7)

A(X*)=iV'(X*)/D(X*).

Expanding the determinant of A(X0), we get

W(\>) = f2PiQ^i -/iP2(Xo>;2 +/0(p2(Xo)x2 -Pi(X0>i);

and since (9/dX0)pi(X0) = (-1)', we have

A'(X0) = xxf2 -fxx2 + f0(x2 + xx).

It is clear that we can make N' as large as we like by choosing / to be a rational large

at x2 and small at x0 and xx. Hence N'(0) can be made as large as we like, and hence

h(0) can be made arbitrarily large.

In the case that the best rational approximation is a polynomial p of exact degree

n and {x0, . . . ,xn + m + x) is an alternant of w(f-p), the optimal X is obtained after

solving (3) once.   To see this, observe that the right column of the numerator deter-

minant (as in (8)) is of the form

f(xi) = p(xi) + (-l)iX*lw(xi).

By adding multiples of the columns corresponding to the polynomial basis to the right-

hand column, we can change this column to (- l)'X*/w(x/) and the value of the deter-

minant is not changed.  But this determinant is just X* times the denominator deter-

minant and so we get X = X* regardless of the value of X0.

This suggests that if the denominator of the best rational approximation is near

constant, the convergence of the Fraser-Hart iteration for X* will be rapid. We recall

that the case of nonconvergence of the previous section involved a denominator

which was not near constant.

We have seen that for fixed {x0, . . . , xn + m + x}, the X obtained by solving (3)

depends only on X0 and is, therefore, a function of X0.  Define F(X0) = X(X0) - X0.

For X* a solution of (1) we have F(X*) = 0.  It seems, therefore, that we can use any

method of solving F(X0) = 0 to try to get X*.  Ralston [7, p. 274] uses the secant

method to solve F(\0) = 0.  The secant method has superlinear convergence and con-

verges given a sufficiently good starting point if F'(k0) = h(X0) - 1 is continuous in a

neighborhood of X*.  This happens if the matrix of (3) is nonsingular with X0 = X*;

a sufficient condition for this is that the solution r to (1) satisfies the condition on

r* in Theorem 2.

Whereas the secant method has superlinear convergence, the previously cited

analysis of Henrici [5, p. 71] suggests that in general, the Fraser-Hart technique of

solving (1) via (3) has only linear convergence with convergence factor |/z(X*)|.  Ex-

periments with programs using the Fraser-Hart technique appear to confirm this ex-

pectation.  Theory thus appears to favor the secant method over the Fraser-Hart itera-

tion, as the secant method has a faster rate of convergence and converges if the starting

point is close enough.
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