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Nonelliptic Approximation of a Class

of Partial Differential Equations

with Neumann Boundary Condition

By V. Girault

Abstract.   This paper is devoted to the numerical resolution of a class of linear partial

differential equations with an inhomogeneous Neumann boundary condition.   A first

order quadrilateral finite element method is used, together with a one-point integration

formula.   The resulting scheme is simple and widely used but its theory is not classical,

in a sense described as "nonelliptic".   An important boundary value theorem is derived,

in order to handle the Neumann condition.   An error bound shows that the scheme is

of order one.

1.   Introduction.   Let O be a bounded domain in the (x, .y)-plane with sufficiently

smooth boundary T.  The purpose of this paper is the approximation of a general

elliptic equation in £2 with an inhomogeneous Neumann boundary condition:

Continuous Neumann's Problem.   Find a function u satisfying

_ b_(       bu <^A_iL^       ^4-        àu_
(1 1} bx\a" bx     °12 by)    byV21 bx     °22 by,

+ 6, Ir +&7 ̂  +du=f   inn
1 bx        2 by

with the boundary condition

(1-2)    («n ¿ + «i2 ¿)cos("'x) + (a2i ¿ + «22 -§)cos&, y) = g on r,

where

(1.3)

a¡-, b¡ and d are given functions in ¿°°(Í2), / is

given in ¿2(Í2) and g is given in ¿2(f),

and where cos(n, x) and cos(n, y) denote the direction cosines of the exterior normal

to r.  d

We propose to approximate this problem by an isoparametric quadrilateral finite

element method of order one, coupled with a one-point integration formula.  This

method gives rise to a very simple scheme which, originally, was derived by several

authors as a generalization of finite differences on irregular networks.  Since then, it
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has been widely and successfully applied in practice to a variety of problems (cf. for

instance, Hirt, Amsden & Cook [5] ). In a previous work, we have studied its ap-

plication to a Dirichlet boundary value problem (cf. Girault [4] ).

The main originality of our method is that it violates Strang's ellipticity condition

(cf. Strang & Fix [10]), and for this reason, we shall call it nonelliptic.   Because of the

nonellipticity, this method cannot be studied by the now classical theory of finite

element methods and numerical integration (cf. Ciarlet & Raviart [3]).  Therefore, its

theory must be carried out through an entirely different approach.   In order to explain

why Strang's condition does not hold, let us recall very briefly the main steps of iso-

parametric finite element methods.

(1°).  The continuous problem is put into an equivalent variational form:   Find a

function u in V satisfying

(1.4) a(u, v) = L(v)   yvGV,

for a suitable space V and form L, and a suitable positive definite form a.

(2°).  The domain Í2 is subdivided into finite elements which in our case are

quadrilaterals; and the variational problem is formulated in terms of a finite-dimensional

subspace Vn of V, consisting of simple functions defined on each finite element.  Thus,

problem (1.4) is approximated by:   Find a function ü~n in Vn satisfying

(1.5) a$h, v„) = L(vh)   VvnGVh.

It is now well known that isoparametric finite element methods are very well

adapted to the resolution of second order boundary value problems on domains with

curved boundaries.  However, such methods require the evaluation of a great many

integrals which are often difficult, if not impossible, to calculate exactly.  As an illus-

tration, in problem (1.1), (1.2), quadrilateral finite elements involve the integration of

rational functions over rectangles, and the Neumann boundary condition leads to line

integrals taken over curves which practically never coincide with sides of quadrilaterals.

None of these integrals can be calculated exactly.  Therefore, for all practical purposes,

finite element methods are nearly always coupled with one or more adequate integration

formulas.  Hence, a third step is added to the preceding two.

(3°).  The integrals occurring in (1.5) are computed with suitable integration

formulas, and (1.5) is approximated by:   Find a function un in Vh such that

(1.6) aniuh,vh) = Lhivh)   WvnGVh.

Now, if the quadrature formula uses enough integration points, then ah(vn, vh)

is uniformly equivalent to a(vh, vh) on Vh and Strang's ellipticity condition is satisfied.

Otherwise, if the quadrature formula, however precise, has too few points then this

equivalence is practically never uniform; and, therefore, scheme (1.6) is nonelliptic.

Our approximation falls into the last category because a one-point integration

formula does not have enough points to make the resulting scheme elliptic.  As men-

tioned above, this is sufficient to break down the existing theory of finite element

approximation.  The major effort of this paper is to show that, nevertheless, the error

in our method is of the order of h.   A new theory is introduced, but the variational
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framework is maintained.   Because of the Neumann condition, this requires, in particular,

a careful analysis of the approximation near the boundary.

The next section states precisely what is meant by nonelliptic approximation

in general and sets problem (1.1), (1.2) in a variational frame.  Sections 3 and 4 are

devoted to the approximation of the resulting problem.   Section 5 gives an important

discrete boundary value theorem.  The results of these sections are used, in Section 6,

to derive an error estimate for our approximation.

The presentation of this paper differs from that of our previous one (cf. Girault

[4] ) in that we follow here more closely the finite element formalism. Although the

two papers are independent, we have tried, as much as possible, to use the same nota-

tion.

2.  Theoretical Framework.

2.1. General Nonelliptic Approximation. Let F be a real Hubert space, with

norm denoted by ||-||, L a member of the dual space V' of V, and a(u, v) a bilinear,

continuous and elliptic form on V x V, that is,

(i) there exists a constant P such that

\aiu, v)\ < P\\u\\ Hull    V«, v G V,

(ii) there exists a constant a > 0 such that

aiv, v) > a\\v\\2   \/vGV.

We propose to approximate the following problem:

Abstract Continuous Problem.   Find u in V satisfying

(2.1) aiu, v) = Liv)    WvGV.    D

Thanks to the above hypotheses, this problem has a unique solution u

(cf. Lions [6] ).  We assume that u belongs to some subspace 1/ of V; this amounts in

fact to making a regularity hypothesis on u.

Let h he a positive parameter intended to tend to zero, and for each h, let Vh be

a finite-dimensional subspace of V.   Let vn I—► l|uftllA be a mapping defined on 1/ + Vn

such that ||-||A is a norm on Vh.  Let ah{uh, vn) be a bilinear form defined on (1/ + Vn)

x (1/ + Vh) satisfying conditions similar to (i) and (ii):

(2.2) There exists a constant M, independent of h, such that

!«!,(«*. «fc)l < MIMftlMft    VWft G 1/ + Vh and Vu, G V„.

(2.3) There exists a constant ß > 0, independent of h, such that

Finally, let Ln be a linear form on 1/ + Vn satisfying the following condition:

(2.4) There exists a constant p, independent of h, such that

MtfKtfM*  WvhGVh-
We approximate our continuous problem as follows:

Abstract Approximate Problem.   Find uh in Vh such that

(2-5) ahiuh,vh)=Lhivn)   VvnGVn.    D

Definition 2.1.  We say that the above approximation is nonelliptic if form ah is
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not uniformly elliptic (with respect to h) on Vh for the norm ||-|| of V.    D

From now on, we shall assume that approximation (2.5) is nonelliptic.   Then, we

cannot apply the general theory of internal approximation (cf. Ciarlet & Raviart [3]);

but we have the following theorem, which is an easy extension of a result due to

Strang (cf. Strang [9]):

Theorem 2.1. Let hypotheses (2.2) and (2.3) be satisfied.   Then problem (2.5)

has a unique solution un, and we have the error estimate:

(2.6)   II« -uh\\h< c\   inf   \\u-vh\\h+        sup        ¡-f-p \Lh(wh) -aH(u, w„}i\
¡vhevh whBVh'wh*° »wh»h \

where u is the solution of problem (2.1) and C is a constant depending only on M and

ß.

Proof. As in the case of the continuous problem (2.1), the existence and unique-

ness of uh are a consequence of the continuity and ellipticity of ah and the continuity

of Lh (cf. Lions [6] ), but none of these properties need to be uniform with respect to

h.

Let vn belong to Vn.  Hypothesis (2.3) implies that

P wh&vh'wh*° "wh"h

Now

«*K - »*. wh) - «*K. wh) - ah(vh> wh)

= Lniwn) - ahiu, wh) + ahiu, wh) - ahivh, wh).

Therefore, \ahiuh - vh, wh)\ < \Lhiwh) - ahiu, wh)\ + \aniu - vh, wh)\, and thanks

to (2.2), we have:

IK - »A ^1 whe™?wh*o íkíü {I¿*(W*) ~a"{u' w»)] + mu ' vnh\KK}-

Formula (2.6) follows easily from this inequality.    D

Remarks 2.1. (Io) The expression inf„ GVJl" ~ vh^h rePresents the error

committed on projecting function u of 1/ on  Vn.   The second expression,

suPwjIeK,1(1/llvvftll/j)l¿/j(vv>j) ~ «/i(«. W/,)L gives a measure of the consistency of (2.5)

with the exact problem (2.1).

(2°) Although property (2.4) is not one of the hypotheses of Theorem 2.1, it is

included here since it is obviously necessary to the consistency of (2.5) with (2.1).    D

2.2. Variational Formulation. In order to apply the preceding approximation to

problem (1.1), (1.2), we must first write it in a weakly equivalent variational form (cf.

Lions [8]):

Variational Neumann Problem.   Find u in Hl (Í2) satisfying

(2.1) a(«, v) = L(v)   Vu G Hl(Çl),

where
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(2.7)

(2.8)

and

(1.3)

,      .       [    \ (      bu   . bu\ bv   .   {       bu   , bu\ bv

¿(u) = Jn/t;^(iy+ /r^r,

af/, b¡ and c/G ¿°°(Í2), / G L2(£2)    and   g£¿2(r).    D

As usual, //m(i2) denotes the classical Sobólev space of functions v such that v and all

its derivatives of order less than or equal to m belong to ¿2(Í2). For example, Hl(£l)

is a Hilbert space for the norm

IN,
Hl(Sl)

= <    V\
L¿(íl)

+
L2(íí)

+
¿2(íl)

Let us make the following assumption on the coefficients:

Hypothesis HI iellipticity). There exists a constant y > 0 such that

2 2

Z   «/A >0t, %j>lZ $    V(S,, £2) e tf2 and
!',/= 1 1= 1

dix, v) >

a.e. in £2.

With the above assumptions, it can be shown (cf. Lions [7]) that form L defined

by (2.8) belongs to the dual space of //'(ii); if, moreover, llö,llLoo(nj,  i — 1,2, are

small enough, then form a defined by (2.7) satisfies (i) and (ii).  This can be summa-

rized as follows:

Proposition 2.1. If F is sufficiently smooth, a¡j, b¡ and d G Z,°°(í2),/6 ¿2(Í2),

g G L2(T) and Hypothesis HI is satisfied, then problem (2.1) (2.7) (2.8) has a unique

solution, provided \\b¡\\ oo(n. are sufficiently small.    D

We shall take 1/ = //2(£2) D C'(Í2). Finally, in order to study properly the error

estimate (2.6), it will be convenient to strengthen the regularity of the coefficients and

boundary.  We shall add the following hypotheses:

Hypothesis H2 iregularity of coefficients).

a¡j G C2(ñ)    for i, j =1,2,      b, G C!(ñ)    for r = 1,2,

d and /G Cl(Ù) and g G C\C) for each arc C of V.

Hypothesis H3 (regularity of boundary).  V consists of a finite number of simple

arcs of class C .  At the angular points of T, the angle between the two tangents is

greater than an angle 90 with 0 < 90 < n  (cf. Figure 1).
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Figure 1

3.  Nonelliptic Approximation of Neumann's Problem.

3.1.  The Finite Element Method.   Let K denote the unit square, with vertices

{a,}?..,, of the reference space (x, y), and let K* be any plane quadrilateral with

vertices {aiK}f=1   (cf.  Figure 2).   Let Q¡ denote the space of bilinear polynomials in

x and>\  Then, there exists one and only one mapping fK in Q2 such that

a¡ K for 1 < / < 4.

(/ + 1./+1)

Figure 2

Now, let Q./, be a quadrangulation of Í2 made of quadrilaterals or cells K* with

sides smaller than h.   Let £2j* = IJj^eo., K* an^ Fh = ^^h-  ^e assume that the

quadrangulation is locally regular, that is (cf. Ciarlet & Raviart [3]):

(3.1) all quadrilaterals K* are strictly convex;

(3.2) there exists a constant a0 > 0, independent of h, such that

h'K > o0h    and    1 - yK > a0    VK* G Q^,

where h'K denotes the length of the smallest side of K* and yK = max|cos 0^-1 where

0^- represent the angles of K*.

Moreover, we assume that:

(3.3) Vh is a polygonal line of chords approximating T, and all angular points of

T are vertices of rh ;

(3.4) the vertices of Qh can be numbered by a pair of indices (/', /).

Hypothesis (3.3) implies that Í2A approximates £2; more precisely,

(3.5) sup      dist((x, y), Ü) = OQi2).
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Thus, there exists a compact set Ú containing both Í2 and ilfi.

Hypothesis (3.1) implies that each FK is invertible and we define space Vh as

follows:

vh = K G c°&*h)KKt =rFr' v«? g ai)-

AlsoJetK^HIrJ^GF,}.

Finally, for each real function w defined at the vertices of Vh, let rhu be the

function of Vh which takes the same value as u at the vertices of Qh.

Remark 3.1.   The situation here differs slightly from that of Section 2 since in

general Vh Ç //1(Í2).  In practice, this "variational crime" is not very important

because Í2 and £2£ are fairly alike.  Theoretically, the difficulty may be overcome by

replacing Hl(£l) by H*(Ù) and extending functions atj, b¡, d and / to obtain functions,

still denoted by a¡j, b¡, d and /, belonging, respectively, to C2(Í2) and C'fíí).  We

still denote by \1 the space //2(Í2) f~i Cl(Sl), and we extend continuously all functions

of Vn to ñ, so that Vh C Hl(ñ).    D

Let us define two integration formulas on K*:

JK, fix, y)dx dy ~ JK(B)^BK) = F.fr)

r 4     |

JK, f<x, y)dxdy ~ £ 4JK(äMai,K) = Fi(f)
1=1

V<pGC°iK*),

where JK denotes the Jacobian of VK, B the mean center of K and BK the mean center

of K*. On /£, these formulas are both exact for all polynomials of Q,. Let K' denote

a side of K*, for instance segment [a K, a K]. Let a K stand for its midpoint and

lK, its length.  Formulas Fj and F2 induce two formulas, -F', and F2, on K':

)K, fix, y)da ~ lK'fiapqK) = F[(v)

ÍK, fix, y)da ~ - lK> {f(apK) + y(aqK)} = F'2(v)

Vv e C°(K').

Here, F[ and F2 are exact for all polynomials of degree one.

Remarks 3.2. (1°) Let S* denote the area of K*.  Then /^(F) = S%.

(2°)  Let !>„ G Kft, then

1   4 1
»A) =¡Z   "„(«i,*)      and     Vh(apq,K) = ô (U/.(flp,A:) + VhKKÏÏ-

1=1

(3°)  From (3.1) and (3.2), it follows that there exist two positive constants,

c0 and a0, independent of h, such that

inf    JK(x, y) > c0h2    WK*Gdn, and
(x,y)<=K

iK>>a0h   vrsrft.
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Moreover, it is obvious that there exists a constant C0, independent of h, such that

sup„ JKix, y) < C0h2   VK*G£„.
(x,y)<EK

Thus we have the important bounds

(3-6) c0h2 < S* < C0h2    VK*Gdh,

(3-7) o0h<lK,<h WK'Grh.    a

We approach Neumann's problem as follows:

Approximate Neumann's Problem.  Find un in Vh such that

(2-5) aH(uh, vh) - Lh(vh)   VvnGVn,

where

*<*.*>-    Z     j^[^i^+«i2^
**H2„

/     aw,, 3«h\    "1 )
+  {bl-¿+b2^-)Vh\+F^dU^h)    .

(3.9)

or

(3.9') ¿a(»*)=    Z      F2ifvh)+    Z    ^'(äwä).    □

Remarks 3.3.  (1°)  Strictly speaking, as ij is only defined on V, formula F[ can

only be used when a    K belongs to T.  However, according to (3.5), there exists at

least one point a    K on T such that dist(a    K, a    K) = OQi2). We then agree to use

tôpq.K)™ F'\-

(2°)  It will be shown in Section 6 that the use of (3.9') instead of (3.9) does

not change the error estimate.    D

3.2. Preliminary Analysis of the Approximation.   Let us define on Vh the scalar

product

("/,, vh)H -    Z     F2iuhvn)

K*Gin

and the norms

I«* U =("*'"*)»'



76 V. GIRAULT

Similarly, we define on V'h the scalar product

K. vh\h =   Z     F'2(uhvh)
ic'er„

and the associated norm \uh\rf¡ = (uh, uh)rh-

Thanks to the choice of the integration points in F2 and F2, we have the follow-

ing lemma:

Lemma 3.1.   The mappings un I—> \un\n and un I—► \\un\\n are norms on Vn.

Similarly, un I—► lwj,lrft is « norm on V'h.    D

It can be shown by counterexample (cf. Girault [4]) that the norm defined above,

\\-\\h, is not uniformly equivalent on Vh to norm ||-||; hence our approximation is non-

elliptic.

The following notation will be useful: let

[f,ip]h=     £    F^^)     for ip, \p defined on ¿2,

K*^h

[f,4>]r   =    Z    F\(ip\¡i)    for if, \p defined on rh,
K'erh

[«J*88 K»«*]*    and    Klrfc = K."Jry

Lemma 3.2.  There exists a constant C, independent of h, such that

(3.10) [un\H<C\uh\h    VuhGVn.

Moreover,

(3.11) K]r„<Klr/¡    Vu.GF;.

Proof.   For (3.10), it suffices to show that, for each K* in Qh,

Fliu2n)<C2F2iu2h).

But

Fliu2n) = u2niBK)S*K=     ^Z "*(«,,*)[   Sk
1 -

»4 r=

<Z^Z   "£(«,-,*) <^F2(W2).
4 ,= 1

Thus, (3.10) holds with C = (C0/c0)y2.  The proof of (3.11) is obvious.  It is easy to

show that [•] h  (respectively [•] r ) is not a norm on Vh  (respectively V'h).   D

The next lemma follows easily from (3.10) and H2:

Lemma 3.3.  There exists a constant M, independent of h, such that

!«*("/,. v„)\ <MKIL>A    Vun G Vn + V and Vvn G Vh.    D

MA 3.4.   IfWbsW^fo   (
ß > 0, independent of h, such that

Lemma 3.4. // ll*,!!^«,,^  (/ = 1, 2) are small enough, there exists a constant

an(vh,vh)>ß\\vjn    VvnGV„.
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Proof.

Z
bvh bvh I bvh

^ÁBK)-¿{BK) + a,2(BK)^iBK)\^- bx

\       ,       ^vh àvh /3wi, \
+ j«2i(^) a7 (BK) + a22iBK) -± (BK)^(BK)jS*

+   b
1  bx by + (.dvh'vh)h>

bvl bvl
«*0v»*)>\Zi {^W + -^-(Bk)\sí + y\vH\l

-c '111,"
L°°(ñ)

bvh

bx
+

•(ñ)^*!1"*1*'

thanks to Hl, H2 and (3.10).  Hence

«*Gfc. »h) > y\K\\l - CöML-(5) + Bfta»L-(8))*'i.lfi-

If, for instance, 110,11^-^ + IIMl-íí.) < ^2C' then a*(V vh) > rllüABf/2.    □

Lemma 3.5. ¿er Lh(vn) be defined by (3.9) or (3.9').  77zere exist two constants

Xj and X2, independent of h, such that

\Lh(Vh)\<\K\h+h\"h\ Vu, G V,

Proof.   Let, for instance, Ln(vn) be defined by (3.9).  Then it follows from (3.10),

(3.11) and H2 that

M«fc)l < ^llco(ñ)^mes àt\vn\h + ll^llco(r)(mes OXliy   D

We have thus shown that ah satisfies (2.2) and (2.3). However, Lemma 3.5 does

not suffice to prove that Lh satisfies (2.4). To achieve this, we must find an estimate

for \vh\rh in terms of ¡|uftllft.  This is the object of Section 5.

Remark 3.4.  To guarantee that ah is positive definite, it is necessary to integrate

the expression dunvn by formula F2.    D

3.3. 77i<? Projection Error. This section gives estimates for infU/jel^ II« - vh\\h.

We shall use the following seminorm for u in //m(i2):

luim,2,iî

o   u

a/1 a/2 ¿2("V

Lemma 3.6. Let u be defined on Í2 and let rhu be the "projection" of u on Vh,

as in subsection 3.1.   We assume that (}n is locally regular.

(1°) If u G //3(Í2), there exists a constant C, independent of u and h, such that,

(3.12) \\u-rhu\\h<Chi\u\22a<ñ + h2\u\\t2~)v\

(2°) Ifu belongs only to V = H2(Ü) n C1^), then
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(3.13) H«-^"IU<C'A|«l2>2(ñ,

where C' is another constant independent of u and h.

Proof.   Since \u - rhu\n = 0, it suffices to consider

Let « G //3(ñ).  Let K* be a cell of (¿h, let û = u ° VK, and let F^0 and F^2)

denote the components of TK. Then

{¡-xiu-rhu)}iBK)

(3.14)

^iiè^-^l^-è^-^è^)'
and a similar equality holds for the derivative with respect to y.   With the notations

of Figure 2,

(¿7^)(ß) = \ [(û3 - ö4) + (ß2 - a,)].

Thus, the mapping ü I—► [9(û - rhu)/bx]iB) is a linear and continuous form on //3(/T)

which vanishes for polynomials of degree 2.  Therefore, by the Bramble and Hubert

lemma (cf. Bramble & Hubert [1] ), there exists a constant c, independent of u and h,

such that

Now, since (),, is locally regular,

(3.15) l«ll.2^e <^h2(\u\l2Jct +h2\u\23t2tK.),
Lo

where c is another constant independent of u and A.   As there is no loss of generality

in having considered derivatives with respect to the first variable, (3.12) follows from

these last inequalities, (3.14) and (3.6).

The proof of (3.13) is much the same as that of (3.12).   D

Hence, if Qft is locally regular, then, for fixed u in f:

(3.16) inf    \\u - vh\\n < Ch,
vh^vh

where C is a constant independent of h.

Remark 3.5. When K* is a parallelogram, the coefficient of |«|2 2 K, in the

right-hand side of (3.15) vanishes, and if K* deviates slightly from a parallelogram, this

coefficient is small.  More precisely, if

(3.17) Wa.jr +«3^-«2^-«4jfH = ^2),

then

I"|23,2je<^4(l"l2,2^*  +I"|23,2,K*),
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where again c is a constant independent of u and h.   If, moreover, u G C3(Í2), then

[9(m - rnu)lbx¡\ iBK) = OQi2), i = 1,2, where x¡ denotes either x or y.   It is interest-

ing to note that this last property has a converse stated in the next lemma.

Lemma 3.7.  Let Qn be locally regular and let K* G QÄ. //, for all functions u

in C3(£2), {9(m - rhu)lbx¡}iBK) = OQi2), for i = 1,2, then K* is nearly a parallelogram,

that is, its vertices satisfy (3.17).    D

The proof of this lemma is straightforward.

4.  Study of the Approximation.

4.1. Notations Concerning the Quadrangulation.   Let Ôh denote the set of vertices

of Q./, and tn the set of vertices of Tn. Let Ùh = Ôh - tn. According to hypothesis

(3.4), we can number the nodes of Ôh with a pair of indices (/, /).  This numbering

induces obviously another one on the cells K* of Qh (cf. Figure 2).  Let Ù% = {mean

center of K*\K* G Qft}.  If (/, /) is the index of K*, we agree to denote this cell by

Kfj and its area by Sfj.  Also, it will be convenient to denote its mean center by (/, /)

and by fy, the value of a function y at (/', /').  Similarly, if (/, /) is the index of a node

of Ôh, we agree to denote by <p¡ • the value of if at (/, j).

Now, let (/, j) be a node of Ôh, let Rtj C Í2* denote the region consisting of the

triangles of Í2£ with common vertex (/, /) and let B¡ ;- stand for the boundary of R¡ •

(cf. Figure 3).  Let

S¡j = KiareaofR¡¡)

and, for (/, /) in Vh, let ltj = ViQength of Bt] n rh).

O-i,/)

ft/ + D

(Í + !./■)

ow-i)
(b)

Figure 3

With these notations, we can express easily the scalar products (•, -)h and (■, )yh.

Lemma 4.1.

(4.1)

(4.2)

(Uk>vn)h=    Z.   Hjvißui
a,iyeoh

Vuh,vhGVn.   D

(i./)erA

Remark 4.1.  It follows from Remark 3.2 that
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(4.3) c0h2 < 5,., < C0h2 Wii,j)GÙh,

V(/,/)GÏy    D
(4.3') Cf>%<StJ<\coh>

(4.4) a0h < l¡j < h

Finally, let Vfi C Z,2(S2£) denote the space of real step functions which are con-

stant on each cell of Qn. With each real function if defined on £l%, we associate the

function rfa of V% which takes the same value as if at the nodes of Í2j*.

4.2. Difference Quotients and Averages.

Definition 4.1.  Let if he a function in V%.  We define its discrete derivative with

respect to x as follows:

(4.5) ftWu'jhfa   *x'y)dy   W>f)EÔh>

and its discrete derivative with respect to y by:

(4.6) W*\i = -é-k    <tíx,y)dx   V(/,/)€ÓA
**U   Bi.i

It can be easily checked that, for (/, /) in tlh,

U

(4.7)
+ ^i-i¡2,1-1 i2(y¡,j-i -yt-ij) + *i+1/2,/-1/2(^+1,/ -y¡,j-0^

(V2^)/,/ _ 9Ç       (Vi+l/2,/+l/2(xi+l,/     Xi,/+l) +l^<-l/2,/+ 1/2(**,/+1      Xt-l,/)
i.j

(4.8)
+ ^i-l/2,/-l/2(X/-l,/ _Xi,/-l) + fi+\/2,j-l/2(Xi,j-l      *<+l,/)j-

These formulas are, of course, different when (¿, /') G rft.  As an example, if (z, /) is

located as in Figure 3(b), then (4.5) yields:

(v»i,/ " Tï~ fo>/-i/2,/-i/20'i,/-l "J'i,/) + ^¡+i/2,/-i/2(>'I+i,/ "Az-i)
z,3í./

+ ft+1/2,1+1 i2(y{,/-y i+i,f)}-

The usefulness of these difference quotients appears in the following result:

Proposition 4.1. Let if be a function defined on Í2j* and vn a function of Vh.

Then the following "discrete Green's formula" holds:

bvh

[•■
= -(rH(Vf<p), vn)n + [r*if ■ cos(nh, x¡), vh]Th,      i =1,2,

where x¡ denotes either x or y and cos(«ft, x¡) denotes the ith direction cosine of the

exterior normal to Th.    D

The proof is omitted since it is rather long and technical.
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Definition 4.2.  Let if be a function in V%.  We define its average p*if as follows:

(4.10)   iß*f)ij = J~ Z *,&.  v(/,/)e<V  d
°i,j (r,s)ei! £ ;r= (±1/2 ;s=j± 1 ¡2

This formula yields, when (i, /) G Ùh:

ÍP*f)i,j = 4<¡— if¡+ 1 ¡2,/+ 1 /25*+ 1 /2,/+ 1 ¡2 + fi-l/2 ,j+ 112S*-1 ¡2 ,j+ 1 /2

+ Vi-l/2,/-l/25f-l/2,/-l/2  + *1+ 1/2, j-l/2Si+ 1 /2,/-l/2J" •

If (/, /) G f^, as in Figure 3(b) for instance, formula (4.10) becomes:

("V),;/ = 7^—  ÍV,-l/2,/-l/25*-l/2,/-l/2   + V,+ l/2,/-l/25*+l/2,/-l/2
°l,/

+ ^í+l/2,/+l/25f+l/2,/+l/2J"-

The averaging operator u* is related to Vh in the following way:

Lemma 4.2. Let if be defined on £2£ and let vh belong to Vh, then

(4.12) [if,vh]h = irhip*if),vn)n.   O

The proof is much like that of Proposition 4.1.

4.3. Some Properties of Difference Quotients and Averages. Regularity Conditions

on Qh.  The next lemma follows easily from the regularity hypothesis H3 on T:

Lemma 4.3. Let if G C\ñ) and vh G V'n.  Then, for i = 1,2,

(4.13) [r*if ■ cos(nh,x¡), vh]Th = [if cos(7T, x¡), vh]rf¡ + 0(h)\vh\rf¡.    D

Besides the local regularity condition (3.1) (3.2), let us introduce two additional

regularity conditions on Q^h.

Definitions 4.3.  (1°) We say that quadrangulation Qh is globally regular if, at

every node (/', /) of £lh, the following holds:

(4.14) (V£c,)f>/ = 8fe/ + OQi)   fork, 1=1, 2.

(2°)   Qn is said to be regular in the mean if, at each node (/, /) of Ùh, we have

SUi  = I {5'*+ 1 /2 ,/+ 1 /2 + St-112 ,/+ 1 /2 + St-1 /2 ,/-1 /2 + St+ 1 /2 ,/-1 /2 >

(4.15)
+ 0(7i3).    D

Proposition 4.2. Lei if G C2(fi). // Q.Ä is globally regular, the following

equality holds at each node ii, /') of Ùh :

(4.16) iV*kf)Uj = ibiflbxk\j + Oih),      k=\,2.   D

The proof of this proposition is straightforward (cf. Girault [4] ).

Lemma 4.4. Let if G C (Í2) and vn G Vh. If Qh is regular in the mean, we have

(4-17) [if, vn]n = (if, vn)n + Oih)\vn\h + Oih)\vh\Th.   D

Proof.   According to Lemma 4.2, we must study p*if.  Let (/, /') G Ùh and let us

apply (4.11); we get
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Oi*^l,/ = 4C~~ iSf+ 112,/+ 1 /2   + 5*-l 12 ,/+ 112
U

+ SU ,2 ,/-l /2 + Sf+ , /2 (/_,/2 }0y + 0(A)).

Since Q.ft is regular in the mean, this implies that

ip*f)u = ifu + 0(/O)0 + Oih)).

Now, let (i, /) G T^; for instance, let us consider the case of Figure 3(b), then

0*V)W = Zj" W-lftJ-lfl  + Sf+1/2,/-l/2   + Sf+ll2J+ll2}ifU + Oih)).

No assumption has been made on the quotient of areas in the neighborhood of Fh,

but by virtue of (3.6) and (4.3'), we find that

1 ^o
7 [^1/2,/-1/2  + ^i*+l/2,/-l/2   + S?+l/2,/+l/2i   * c     •«y

Obviously, this last inequaUty holds at any point of rft.  Hence,

iP*f)u = f,j + pu  V(/,/)Gf„,

where \p¡ A < C and C is independent of h and (/, /').  Thus, thanks to (4.12) and (4.1),

[f,vn]n=     Z.    (P*P\j»i,ihj
a,moh

=     Z    fi,jVuSU+     £     °<-h»tjSu+     Z,   Pi,r>i,iSU-
(ijyeôh (tf)enA (i,/)er„

Hence [if, vh]h = iif, vh)h + Oih)\vh\h + R, where

\R\ =

Now, by virtue of (4.3') and (4.4),

Z.    Pi,jVi,jSij
(¡,;)erA

3 coh     v-
m<c^-¡-   Z.  wu\iu.

4 CTo (ijysrh

Therefore, R = OQi)\vh | r ft.    D

In the sequel, we shall assume that besides satisfying hypotheses (3.1) to (3.4),

Qh is also globally regular and regular in the mean.

Lemma 4.5. Let if G C2(?2) and vh G Vh.  Then, for i = 1,2,

(4.18) MVJV), vn)n = Üj¡£-, vh\   + Oih)\vh \h + Oih)\vh \Th . D

The proof, which makes use of Proposition 4.2, is similar to that of the preceding

lemma.

We derive the next proposition on combining Proposition 4.1 with Lemmas 4.3

and 4.5.
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Proposition 4.3. Let if G C2(ñ) and vnGVh.  Then, for i = 1,2,

83

(4.19) r^l" (Ü2.
lax,,vn)    + [ifcos(n,x¡),vh]r

+ Oih)\vn\h+Oih)\vh\rh.   D

5.   Boundary Value Theorem.

5.1. An Upper Bound.   Let K he a cell of Q^h with mean center BK, as in Figure

2.  For the sake of simplicity, we denote by ¡f¡ the value of a function if at the vertex

aiK of K.

Lemma 5.1. Let vh G Vh.  With the above notations, we have

v,=v3+ (*j - x3) -^ (BK) + (y, -y3) -^ iBK),

bvu bv„
v2=v<+ ix2 - x4) -^ iBK) + (y2 - v4) -£ (BK).   D

Now, let A be a positive integer and r an integer such that 0 < r < N - 1.  Let

us introduce a function of Vh, 9n r, defined on K by:

r + 1 r
Wh.rh = i°h,r)3 = l KT'        (e/i,r)l  = (dh,r\ =  lN  ' N'

and, for r > 1, a function of Vh, 9n r, which coincides with 9n r at the vertices of K

except at node ax K  (or a4 K) where 0n r = 1 - (r - 1)/A.  This type of function has

already been used by Cea (cf. Cea [2] ) in the proof of boundary value theorems in the

case of finite differences on regular meshes.

Lemma 5.2. Let vh G Vn and 0 < r < N - 1.  Then, for i = 1, 2,

(5.1)

l[|-<^](fc)

<4ÑcTh^+V2+V'+^

+ ^(|WiI + |ü2I+Iü3I + Iw4I)
bx, (BK) (r * 1).

Proof.   The lemma follows immediately from the fact that

W.WJ <
Nc0h

and ¿VÄ) <
Nc0h

(r ¥= 1).    D

Definitions 5.1.  (1°)  Let M be a vertex of Qn and k a positive integer.  An

elementary path of length k and origin M in Qh is a broken oriented line, without

double point, starting at M, and consisting of k consecutive and distinct diagonals of

cells of Qh.  The endpoints of these diagonals are called vertices of the path.  We agree

to number the vertices from 0 to k, beginning with M.

(2°)  A string of length k in Qh is an ordered sequence of k distinct cells of Qn,

Kv K2, . . . , Kk, such that K¡ and ^i+j share a common side or vertex, for 1 < i <

k-\.    D
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Remark 5.1. The set of cells crossed by an elementary path of length k and

ordered in a natural fashion by the orientation of the path forms a string of length

k.    D

Lemma 5.3. Let vhGVh. Let M be a vertex of Qh,N a positive integer and P

an elementary path of length N and origin M in Q_ft. Let KQK1 ■ ■ • KN_, be the

string of cells crossed by P and let iip,jp) be the indices of the mean center of Kp.

Then,

iV-l

v2iM)<h £

p=0 r=,p±l/2;S=/p±l/2
r,s'

bv„

bx
+

bvu

by

(5.2)
+

Ne h 1 i-1 r's
VC0« W=/p±l/2;S=/p±l/2

Proof.   Let M0 = M, Mx, M2, . . . , MN denote the vertices of P and let &h be a

function of Vh defined on K0, Kx, . . . , KN_, by:

®hiMr) « 1 - r/N   and )

@, = 9h.r     or     ®h = eh,r     0nKr

0<r<N,

where, for obvious continuity reasons, 9h r is used instead of 9h r when Kr, Kr_l and

Kr_2 share a common vertex (r > 2).

Let wh = v2l@n.  Then

(5-3) wniM0) = v2niM)    and    wft(%) = 0.

Applying Lemma 5.1 to K , for 0 < p < N - 1, we find:

\whiM)\<\wniMp+1)\ + 2h
YxW" by~W»

It can be easily shown by induction that this inequality and (5.3) yield

N-l

v2niM) <2h Z
p=0

ele™»
+

'rip

b
by-™»•p-'p-

The desired result is obtained on substituting (5.1) in the last inequality.    D

5.2.  Continuity of Boundary Values for Norm \\-\\n of Vh.

Lemma 5.4. Let C be one of the arcs of T. There exist a finite covering cf C,

{Fj, r2, . . . , r„}, a set of directions, {d,, d2, . . . , dv}, and two positive numbers,

t and T? such that, for 1 < i < v.

(1°)  the cylinder of length t borne by T¡ in direction d¡ is contained in £2;

(2°)  r,- n ri+, ^ 0  (i^v) and the length of the chord to r¡ n T/+, is greater

than r¡.

Proof.   Let 0O be the angle of hypothesis H3 and let us choose an angle X such

that 0 < 2X < 0Q.  Let f: [a, b] —> Che the intrinsic parametric representation of C.

According to H3,/' G C°[a, b] ; hence, there exists a step Ax > 0 such that:
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for any r and r* in [a, b], \t - t*\ < At implies that the

angle between/'(t) and/'(r*) is smaller than H(0o/2 - X).

Let Ar < (ft — a)/4.  We shall construct a finite covering of [a, b] with overlapping

intervals:

{[«. t, ], [7,, t2] , . . . , \f   ., b]}    such that

Tk - Tk = At   for 1 < k < v - 1.

A direction <ifc will be associated with each interval [Tk_1, Tk], 1 < k < v. Let ifk(T)

denote the angle between dk and f'(f) on [ffc_j, rfc]. The covering and set of direc-

tions will be chosen so that

(5.5) X < ifk(T) < 7T - X   on [ffc_,, Tk] for 1 < * < P.

Let the first direction cfj (respectively, last direction dv) he that of the interior

bisector to the angle between the tangents at the intersection of arc C and its preceding

arc (respectively, following arc).  Then

■^ <if,(a)<n--f   and    -f <^>p(b)<it-^.

Therefore,

X<^j(a)<7t-X   and    X < (¿>j(ft) < 7r - X.

The choice of At implies that the first inequality holds on an interval [a, t\ ] and the

second on an interval [b', b], where:

t\ - a > 2At   and    b - b'> 2At.

• If r'j < b' + At, we take t, = t\ ,f1 = t, - At, and we choose for a2 the

direction of the interior normal to C at t.. Then (5.5) certainly holds at Ti   (since

f2(j,) = tt/2), and we can repeat the process with starting point Tt and direction <i2.

Since the length of each interval is greater than 2Ar, we reach b' + At after a finite

number of steps.

• If Tk ~> b' + At, we end the process by taking v = k + 1, tv_, =

max(zV + At, a + 2At) and fv_l = tv_, - At.

By construction, this covering satisfies (5.4) and (5.5).

Now, let rfe denote the image by /of [xft_j, rfc],   1 < k < v.  Then, thanks to

(5.5) and the choice of direction dk, there exists a number tk > 0 such that the cylinder

of length tk borne by Fk in direction dk is contained in Í2. Moreover, (5.4) implies

that Tfc n Tfc+j is an arc of C with chord of positive length, say r¡k, for 1 < k < v - 1.

Since v is finite, the lemma is proved with

t =    min   tj.    and    r¡ =     min      n,..    D
Kk<v   " Kk<v-l     K

Remarks 5.2.  (1°) v, t and t? depend upon C, but the angle X does not and may

be chosen for the entire boundary T.

(2°) If C is reasonably smooth, v is small (cf. Figure 4).  In particular, v = 2 when

C is a straight line.    D
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Figure 4

Since T consists of a finite number of arcs, we derive the next theorem immedi-

ately from Lemma 5.4.

Theorem 5.1. There exist a finite covering ofT, fTj, T2, . . . , r„}, a set of

directions, {d1, H2, . . . , ?n}, and two positive numbers I and h0 such that, for 1 < i

<«:

(1°) the cylinder of length I borne by T¡ in direction d¡ is contained in £2;

(2°) T,. n ri+ j ^ 0 and, except at the angular points of F, the length of the

chord to T¡ Pi r/+ j is greater than h0.   O

Corollary 5.1. Let h be small enough. Then, for each pair of adjacent nodes,

M and P, of Fn, there exists a direction d belonging to the set {d,, . . . , dn} such that

the parallelogram borne by MP, with length 1/2 in direction a, is contained in £2jJ.    D

This corollary follows easily from Theorem 5.1 and the fact that Í2£ approximates

n.
From now on, we shall assume that h is sufficiently small for Corollary 5.1 to

hold.  Note that, for most domains, this is not a severe restriction.

Lemma 5.5. Let M and P be two adjacent nodes of th such that (for example)

MP is oriented in the positive direction of integration.  Let TM denote the parallelogram

of Corollary 5.1.   There exists an elementary path VM of length N and origin M such

that:

• each cell of the string associated with VM cuts TM;

(5.6) • Nh>l/4.

Proof.   We only sketch the proof.  It proceeds in two steps:

(1°) We construct a string K0K1 • ■ • Kp of cells such that each K¡ cuts TM, K¡

and Ki+ j share a common side, PM is a side of K0 and finally, the distance from M

to the center of K is greater than 1/2. Denote by Kp the side of K opposite to the

common side of K   and K'    ,.

(2°) We construct an elementary path VM with origin M, terminal at one of the

extremities of K', and crossing a substring of rv0rvj • • • Kp.  Let N he the length of

VM.  By construction, each cell crossed by PM cuts TM.  Finally, since the length of

each diagonal is smaller than 2h, we have Nh > l\4.    D

Theorem 5.2.  There exists a constant C, independent of h, such that

(5-7> K\vn<C\\vh\\h    VvnGVh.
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Proof.   According to (4.2), \vh\\n = 2M(Etn tfStf)lM-

Let M be a node of f h.  Let TM be the parallelogram and PM a path of origin M

satisfying the properties of the preceding lemma.  Let N be the length of ?M.  Applying

Lemma 5.3 and inequality (5.6), we get:

jV-1

v2hiM)lM<h2 £

p=0 ,r=/p±l/2;s=/p±l/2
"r,s<

bv

dx

12

+
'p-'p

bvu

by
'p.ipt

v2iM)lM<

p:
z ««.+ ,&

,!/2

0'   \r=ip±l/2;s=jp±l/2

p. l/2,/p+l/2J,p+l/2,/p + l/2

N-l

+      Z    v
,1/2

ip-l/2,/p + l/25/p-l/2,/p+l/2

+

p=0

'N-l \

¿o^p-1'2^-1'2^-1'2^-1'2/

1/2

'*t» la^l2

+

(AT-l \1/21

pCo^p+l/2,/p-l/2\+l/2,/p-l/2J      ]•••

/JV-l|ô'l>j2 \l/2"|+(sM ,V,J J
\p-o|   ' |.p,/p        /     J

o'   Lp=°\'-='p±1/2;s=/p±i/2 yj

z

48

'p./p 'p-'p

In order to derive an upper bound for \on\rh, the last inequality must be summed

over all M of th.  In doing   so, one must evaluate the maximum number of paths,

corresponding to the different nodes of fft, that can cross a given cell.  Now, to each

M, there corresponds a different path PM and a different parallelogram TM such that

each cell crossed by VM cuts TM.  Hence, it suffices to evaluate the maximum number

of parallelograms that can be cut by a given cell.  The width of a cell is always smaller

than 2/2, and, according to (4.4) and (5.5), the width of a parallelogram TM is always

greater than a0h sin X.  Therefore, a cell can intersect at most 2/a0 sin X parallelograms in

one direction.  As there are n directions, it follows that a cell can be crossed at most

by 2n/a0 sin X different paths.  This constant is independent of h.   Therefore,

I« 2
fc'r,,   •  2<

8n

CqO0 sin XK5/^MJ^^)!+(v^rh
+ f   I   ñW¡M

M<=Óu
]
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The theorem is proved since all constants of the right-hand side are independent of h

and vh.    D

Remark 5.3.  From Theorem 5.2 and Lemma 3.5 we derive property (2.4) of Lh:

\Lhivh)\<p\\vn\\n   Vvhevh,

where p is a constant independent of h.    D

6.   Error Estimate and Conclusion.

6.1.  Order of the Approximation.   The results of the preceding paragraphs are

summed up in the next theorem which shows that our approximation is of order one.

Theorem 6.1.  Under the following hypotheses on the continuous problem (1.1)

(1.2):

Iellipticity of coefficients:   HI,

\\b¡\\  cc(n) sufficiently small,

regularity of coefficients:   H2,

(2) I regularity of boundary:   H3,

regularity of solution:   u G C3(Í2),

and the following hypotheses on the quadrangulation Qh:

local regularity:   (3.1) and (3.2),

(3° ) {global regularity :   (4.14),

mean regularity:   (4.15),

(4) good approximation of boundary:   (3.3),

(5) cartesian numbering of nodes:   (3.4),

there exists a constant C, independent of h, such that, for all h sufficiently small,

(6.1) \\u-un\\n<Ch,

where un denotes the solution of the approximate problem (2.5)(3.8)(3.9) or (2.5)

(3.8)(3.9').
Proof.   The hypotheses of Theorem 2.1 have been checked in Section 3; therefore,

inequality (2.6) holds:

(2.6)     \\u-un\\n<C,\    inf    \\u-vn\\n+    sup    jr-— \Lh(yih) - ahiu, wh)\\,

where C, is a constant independent of h.

An upper bound for the projection error has been given in Section 3:
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(3.16) inf    \\u-vh\\„<C2h,
vh^vh

where C2 is a constant independent of h.

Therefore, there remains to establish an upper bound for

-ft—f ^"^"^ ~ a*(u' w")l'   for any w» * ° in Vf

Now,

. ,      r       9« , bu   3wft~| r       9„ du   bwh 1

+ K 3x + ¿2 57'WM   + <da'w*V

Combining Proposition 4.3 and Theorem 5.2, we get,

«,(".^) = -(|(«11| + «12||^j/i---

* " "+  r11 Û + "l2 )§)cos("'x)'Wh

( b I     bu,        bu\      \
-[¥[a2nx + a22Yy}W±

rh

+      «

+

r2 » Û + "2 2 by )cos("' ̂  w* L   + 0(A)I|W* "* " '

/jj —- + b2 —, wft      + (dw, wft)h,   for sufficiently small h.

Let /,,, be defined by (3.9).  Then

Lh(wh)

According to (1.1) and (1.2), this yields,

Lh(wh)=  U<wh\h  +  [g'WhsTn-

¿^)-Í^ian^ + «12^;+^(«2,^+«22^)--/!JAi

+ [b^Í + b2t + du'w>\h

+   [(«ll| + «,2|)cOS(«,x),Wft]r^

+ [(«ail + ̂ ^cosöt^w^.

Combining Lemma 4.4 and Theorem 5.2, we get, for h small enough,
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.   , ( b (      bu  . bu\       b l       bu bu\       \
Ln(wh) = -{^^u^ + al2^)+^[a2l^ + a22^),wh)h

+ (du, wh)n + 0(h)\\wn\\n + [b, g 4- b2 |j, w„] h ■ ■ ■

+   Kß2l| + a22^)cOs(«,j),  H-,

Therefore, for any function w^ in KÄ and h sufficiently small,

Lh(wh) = °h(»' wh) + Oih)\\wn\\h,

where the quantity 0(h) is independent of wh.

Hence, if Lh is defined by (3.9) and h is sufficiently small,

v^Ä*°   ̂ Jh^W^-a^Wn)\<C3h,

where C3 is a constant independent of A.

Similarly, it can be shown that the same inequality holds, with a different con-

stant, when Lh is defined by (3.9').  Hence, the theorem is proved.    D

When the solution and coefficients do not satisfy the regularity hypotheses

included in n°2, we cannot show the error estimate (6.1).  However, if we replace

these by:

u G H\Çl), a¡j, b¡, dandfG C°(S2)    and   g G C°(r),

it can be shown, by a finite-difference approach, that

,.    (      duh   duh       .    \       (    bu   bu        \

in appropriate discrete L2 norms.

All the regularity hypotheses on Qn have already been encountered and discussed

in our previous paper (cf. Girault [4] ).  Nevertheless, the following points are worth

stressing.  The two conditions, global regularity and mean regularity, do not occur in

the classical finite element theory. They are an inevitable consequence of the non-

ellipticity of our approximation.  In other words, failure to satisfy Strang's ellipticity

condition must be compensated by additional regularity on the quadrangulation.  It is

interesting to note that these two hypotheses are satisfied when the cells of Qh are

nearly parallelograms, but this condition is not necessary.

6.2.  Conclusion.   From a practical point of view, the method we have studied in

this paper is, by far, the simplest that can be derived in using quadrilateral finite ele-

ments: it leads to a nine-point scheme whose coefficients can be computed directly by a

simple formula.  Provided the quadrangulation is not too distorted, this method is of

order one, a precision which is adequate in many applications.  The important point of

this paper has been to show that such a method could handle problems involving surface

integrals without loss of accuracy.

I
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The study of nonelliptic approximation is now being extended to nonlinear problems.
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