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Determination of the Primality of N

by Using Factors of N ± 1

By H. C. Williams and J. S. Judd

Abstract.   Algorithms are developed which can be used to determine the primality of
2

a large integer TV when a sufficient number of prime factors of N    +1 are known.   A

test for the primality of N which makes use of known factors of N — 1, N + 1 and
2

N    + 1 and the factor bounds on these numbers is also presented.   In order to devel-

op the necessary theory, the properties of some functions which are a generalization

of Lehmer functions are used.   Several examples of numbers proved prime by employ-

ing these tests are given.

1.  Introduction.  Some of the most effective methods for determining the primal-

ity of a large integer N depend upon the knowledge of factors of N — 1 or TV + 1.  For

an excellent discussion of many of these techniques see Brillhart, Lehmer and Selfridge

[1] and Selfridge and Wunderlich [6].  It may, however, occur that we are more easily

able to determine more factors of TV2 + 1, than of N2 - 1.  For example, if N =

(2198 +1)41-2", then

N-\ =23 -53 -2837 ■/?,,

N + 1 =2 -3   R2,

N2 + 1 = 2 • 52 • 13 • 37 • 109 • 397 • 2113 • 42373 • 235621 • 312709 • R4,

where R¡, R2, R4 axe each composite and any prime factor of R,R2R4 exceeds 106.

This number is a special case of

N=x2b-x+b      (x = 2", b = 41).

For these numbers,

N2 + 1 = (x2 + l)(b2x2 - 2bx + b2 + 1);

hence, if x2 + 1 can be easily factored, we can find factors of N2 + 1.  We also re-

mark here that if fn is the Fibonacci number (a" - |3")/(a - ß) and ln is the Lucas

number a" + ß", where a + ß = -aß = 1, then

•^n+l   + * ~ Í2n-lf2n + 3'        hn + ^ = "jir-1/íll+l >

thus, many of the Fibonacci and Lucas numbers are examples of numbers N such that

jV2 + 1 may be fairly easily factored.

The purpose of this paper is to develop algorithms which can be used to determine
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158 H. C. WILLIAMS AND J. S. JUDD

the primality of ./V when a sufficient number of prime factors of N2 + 1 are known.

We will also develop a combined test for primality which is an extension of that given

in Section 7 of [1].  This test makes use of the knowledge of factors of N - 1, N + 1,

N2 + 1 and the factor bounds of these numbers in order to determine the primality of

N.  In order to do this, we review some properties of functions introduced by Williams

[7] and then show how these functions may be utilized in the development of the de-

sired primality criteria.  Finally, we give some examples of numbers which were proved

prime by using these algorithms.

2.  The Functions Vm and Um. Let Pi, p2 he the two zeros of x2 - P,x +P2;

and let a,-, p\ (/ = 1, 2) be the zeros of

x2-Pix + Q      0=1,2),

where PX,P2,Q are integers such that {P,, P2, Q) = 1.  Put 5 = p2 - p1 and define

A = S2 = P\ - 4P2, E = iP2 + 4Q)2 - 4QP],

oT,+ßn    p,

a"2+ß"2    p2
U« = S

1    *" + ß"

1    oT2 +ß"2

The first few values for these functions are given in the table below.

Since

0 2

1 0

2 -P2 - 2Q

3 -P,P2

4 P\ -P\P2 +4P2Q+2Q2

Table 1

0

1

p,

P\-P2-3Q

P\ - 2P,P2 - 4P.Ô

^+4=^1^+3 -C2 +22)^+2 +QP1K+1 -Q'K'

Un+4 =PiUn+3-(P2+lQ)Un+2 +QP1Un+l -Q2^,

we see that Vn, Un axe integers for any integer « > 0.  It should also be noted that

vn+m = vHvm -P2unum-çrvn_m,    un+m = unvm + vnum +P1unum -0"un_n

for any integers «, m.

If TV is any integer and (TV, QP2) = 1, find M, S such that

QM = -P2S = 1    (mod N)

and put

SlMk/2y

*k =

ik even)

SMik+1)l2Vk      ik odd)
(mod N),
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(S2Mk/2Uk (A: even)

Wk = I (mod N).
\sM+k+l)l2Uk      ik odd)

From the formulas given above, we see that

^2m+l  = -*2(m + l) + %2m'

and

*2m+,  =^2^2m + 2  + ^J " Pl ™2m + 1      i^dN),

\QiX2m-P2W2m)-2S2      im odd)
*2m ~ \w>,  o ■> -, (modiV),

(P2iX2m ~P2W2m) -2S2     (m even)

jÔ(2*A+A*0        («odd
H,2m=) (modAO-

^(2^^+A^)     0*even)

Using these formulas, we can evaluate Wk (mod A) for any Ar > 0 in 0(log A:) opera-

tions (Lehmer [3] ). Since iUk, N) = (Wfc, AO, we see that this technique for evaluating

Wk (mod AO may be used in the evaluation of iUk, N).

3.  Properties of Um.  Several divisibility properties of the functions Un may be

deduced from the more general results of [7]. We list here some of the properties that

will be needed in later sections of the paper.

We first note that if « and m axe positive integers, then Un\Umn.

We now require a few definitions.  Let the function Un he given by parameters

Px, P2> Q- F°r each prime p such that ip, 2AEQ) = 1, we associate with Un the

functions

bip) = iA\p),   e(p) = (E\p),   rip) = ieip)\p),

where the symbol ix\p) is the Legendre symbol,

e(p) = P\ +A-16Q + 2Pld     and   d2 = A    (mod p).

We see that the function n(p) is defined only when Of» = +1.  We also define the

function ^f(p) by putting

!ip2-e)/2    when S =-1,
ip2 - l)/2   whenô =+l,e = -l,

p - r\ when 5 = e = 1,

where S = h(p), e = e(p), i? = i?f».

Let m he any integer such that im, Q) = 1 and let UTo be the first term of the

sequence

(*) ux,u2,u3,...,un,...

in which m occurs as a factor.  We define the increasing sequence of integers tq,t,,

t2 , . . . , t., . . . by saying UT. is the first term of the sequence (*) such that «j IUT.
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and Ti "TYy (i = 0,1,2, . . . , / - 1).  We call these r's the orders of apparition of m and

denote them by r(«î).  We are now able to give the following important theorem.

Theorem.   If p is a prime and ip, 2AEQ) = 1, there exists at least one order of

apparition of p. Further, ifr¡ip) is any order of apparition of p, then T-(p)\2'i'ip).

Proof.   This follows as a result of Theorems 6.6, 7.1, and 7.2 of [7].

With this result we easily deduce

Theorem 1. Let iN, 2AQE) = 1 and N\ Um.  If q is any odd prime divisor of m

and NlUm, , then any prime divisor p ofN which does not divide Um/   must satisfy

the congruence

V(p) = 0    (mod qa),

where qa II m.

Proof.   Let r be an order of apparition of p such that rim. Clearly, since p\Um,

such a T must exist. Now p\Um ¡„ ; hence, rT«z/c7 and, consequently, <7a It. Since q is

odd and r\2^(p), the theorem follows.

4.  Some Criteria for Primality.   In this section we develop some results which

will "allow us to test an integer N for primality when we know a sufficient number of

divisors of Af2 + 1.  We let the completely factored part of N2 + 1 be denoted by F4

and the unfactored part by R4;* then N2 + 1 = F4R4 and (F4, R4) = 1.

We select integers D, C such that (DI AO = (C2 - 16DI AO = -1, where the sym-

bol (X\N) is the lacobi symbol.   If H and K are integers and

P, = 4Í2H2 + HKC + 2K2D),

4P2 =P\ -16/),

16(2 =P\- 16(/Y2C + K2CD + 8HKD) + 16D,

we have

A = 16D,

P\ + A - 16Q + 2P,VÄ= 16(// + KsfbfiC + 4y/D),

E=iP2 + A-16Q+ 2P,y/Â)iP2 +A-16Q- 2P,s/A)/16

= 16(//2 -K2D)2iC2 - 16D).

If p is any prime such that ip, 2(//2 - K2D)iC2 - 16D)D) = 1 and (Dip) = + 1, then

eip) = 16(// + Kd)2iC + 4d), where d2 = D (mod p). Hence, for Un given by P,,

P2, Q above, we see for any prime p such that ip, 2(//2 - K2D)iC2 - 16D)D) = 1,

Sip) = iD\p),   e(p) = (C2 - 16D\p),   nip) = (C + 4d\p).

These are all independent of the values of H, K; and consequently, we see that the

value of ^ip) is independent of H and K.

For our fixed values of D and C we now define the functions U)//' (i — 1,2,. . .)

•We use the notation F4 and R4 because N    + 1 is the fourth cyclotomic polynomial in N.
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by using the parameters P\'\ P%\ Q^ (/' = 1, 2, . . . ), where

/f > = 4(2//2 + HfKsC + 2K}D),

/#> = 4(2//? + HsKfi + 2K2D)2 - 4D,

ß(,) = Í2H2 + HiKf + 2Kp)2 - iH2C + M¡Kp + K2CD) + D,

and //,-, Kt (i = 1, 2,. . . ) are any two integers such that (A, Hj - K2D) = 1.

As it will be necessary to refer to the following statements several times, we put

F4 = F4/2 and put

(a) For each prime q \F4 there exists some H¡, K¡ such that for the function UJf

iß) For some H¡, K¡ we have

Nlu$+i   ™d  Vfr+iW*"1'

It should be noted here that, if A7 is not a divisor of uQ     >tnen N is composite.

We now describe, by means of the two following theorems, some properties of

possible prime divisors of A^ when either (a) or (j3) is true.  We first give a theorem

which is analogous to a recent theorem of Morrison [4].

Theorem 2. // (a) is true and p is any prime divisor of N, then

*(p) = 0   (modF4).

Proof. Since ty(p) has a value which depends only on the fixed values of D and

C, it follows that, if q is any prime divisor of F4 and (a) is true, then<7"l>l>(p), where

qv\\F4;hence,F4\*(p).

Theorem 3. // (ß) is true and all possible prime divisors of R4 are greater than

B4, then each prime factor p of N must satisfy a congruence of the form

Vip) = 0    (mod q),

where q is some prime divisor of R4 depending on p.

Proof.   Let r = r(p) be an order of apparition of p such that tI(7V2 + 1); then

tTF4 and, consequently, (R4, t)> 1.   Thus, there must exist a prime q such that

q\R4 and qIt.  Since r\^ip), the theorem follows.

We are now in a position to give the main result of this section.

Theorem 4. // (a) and (j3) are both true, all prime factors of R4 are greater

than B4 and B4F4 >N2/3 + 1, then N is a prime.

Proof.   If p, is some prime divisor of N, then

*Cp,) = 0    (mod«7,F4),

where q¡ is a prime divisor of R4.

Suppose N = pxp2p3a and a is any integer such that a> Í. Since ^(p^p2 ± 1,

pf ± 1 is even, and F4 is odd, we have

p}>qf4-\,      Pi>y/B4F4-l,
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and

N>iB4F4-i)3'2.

Thus, if N is composite, it must be the product of two distinct primes p, and p2.

(Since iD\N) = -1,N cannot be a perfect square.)  Since iD\p,p2) = (C2 - 4D \ptP2)

= -1, we have

ô(p.) = -Ô(/>2),      e(pt) =-e(p2).

Assume p1 to be that prime such that 5(p,) = + 1; then <5(p2) = -1,

p\ = e(p2)    (mod q2F4)    and    p\ = 1    (mod q,F4).

If F4 = 2, we have

p2 = 1    (mod<7,)   and    p2 = ±l    (mod<72);

hence,

pl>2ql-l>2B4-l,      p2>y/2B4-l,

and N>iB4F4 -if'2.

If F4 > 2, we have

N* = Phi - -l    (mod fa)   and   Pi - 1    (mod ̂ 4);

consequently,

P¡=e(p2) = -1    ixnodF4)

and eip2) = -1.  It follows that e(p,) = + 1 and

p, = ± 1    (mod q,F4).

Putting this result together with

p\=-\    (mod <72F4),

we see that N > (B4F4 - l)3'2; thus, A^ cannot be the product of two or more primes

and, therefore, must be a prime.

5.  A Further Refinement.  If (a) and (ß) axe true and F4 > B4 > 5, we can

lower the bound given in Theorem 4 on F4 and still test A^ for primality.  In order to

do this it is necessary to show that neither of two cubic equations has three integer

roots.  This improved result, given as Theorem 5, is similar to the results obtained in

[1] by using the properties of the hyperbola x2 - y2 = Af.  In order to prove Theorem

5, it should first be noted that if/= ex + rF4 and g - e2 + sF4, where le, I = le21 =

1 and r, s > B4, then fg = e,e2 + tF4, where t > B4.  Thus, if (a) and (ß) axe true

and N is composite, we see by results obtained in the proof of Theorem 4 that there

exist three integers k, l, m such that

Af2 = (e, + kF4)(e2 + /F4)(e3 + mF4),
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where le, I = le2 I = le31 = 1, e1e2e3 = -1, and k, I, m> B4. We also assume here

that (Ar, 3)= 1.

Theorem 5. Put

R4 = \+ Pii3F4) + f,(3F4)2       (IX! I, lu, I < 3F4).

Let

F4=y      (mod 3)        (1*1-1),

iR4 + yF2)/3 = X2    (mod F4)      (I X2 l< F4),

1 + 2X27 = 0      (mod 3)        (loi < 1),

((tf4 + yF2)/3 - X2 - 0F4 + (70 + y)F2)/3F4 = p2 + v2F4,

where lu2l < F4.

If either of the cubic equations

(1) x3 -X,x2 -3p1x-9ul=0      iv.^0),

(2) x3 - 3X2x2 - 3(3u2 + 9)x - 3(3^2 - 7(6» + 1)) + y = 0,

«as r«ree integer roots, then N is composite.  If neither of these equations has three

integer roots, N2 < C, where

C = iB4F4 - 1)(-1 + iB4 - 3IX2I)F4 + (3F4 - 1)F2),

and (a), iß) are both true, then N is a prime.

Proof.   If (2) has three integer roots x,, x2, x3, we have

x1 + x2 + x3 = 3X2,

x,x2 + X2X3 ^x3xi =_3(3u2 +6),

x,x2x3 = 3(3t>2 - 7Ô - 0) - y ¥= 0.

Also,

iR4 + yF2)/3 = X2 + (3u2 + fl)F4 + (3i>2 -y0 - T)F2 ;

hence,

/?4 = 3X2 + 3(3/a2 + 0)F4 + (3Í>2 - yd - y) - y)F2

and

TV2 = -1 + 3X2F4 + 3(3u2 + y)F2 + (3(>2 -y0 - y) - y)F3

= iXlF4-l)ix2F4-i)ix3F4-l).

Thus, if (2) has three integer roots, N2 has at least three factors greater than 1 ; conse-

quently, N is composite. It can also be shown, by similar reasoning, that N is compos-

ite if (1) has three integer roots.
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Suppose now that neither (1) nor (2) has three integer roots, that (a), (ß) axe

both true, that N2 < C, and that N is composite.  Then

W2 = (e, + AF4)(e2 + lF4)ie3 + mF4),

where le(l = 1, e,e2e3 = -1, k, I, m> B. Putting r = e1e2m + e2e3k + e,e3/, s =

e,m7 + e2«iA: + e3lk, t = klm, we have R4 = r + sF4 + tF4.

Since F4 \N2 + 1, we may assume without any loss of generality that e, + AF4

is the square of a prime and that e, = -1.  Hence,

e2mF4 + e3lF4 + mlF2 = 0   (mod 3).

From this result we easily deduce that

e2mF4 = e3lF4 = k   (mod 3),

where k = 0, 1.

Case 1. k = 0.  In this case, we have

s = 0   (mod 3),    t = 0   (mod 9);

thus,

R4=r + is/3)i3F4) + it/9)i3F4)2

and

Xj =r   (mod 3F4).

If r =£ Xj, we have Irl > 3F4; consequently, one of k, l, m must exceed F4 and

W2 >(-l +fi4F4)2(-l +F4F4)>C.

Thus, r = Xj and s/3 = p1  (mod 3F4).  If s/3 ¥= p¡, we must have one of kl, Im, or

km greater than 3F4.  Hence

N2>i-1 +B4F4)i-l +F4iB4 - IX, I) + 3F4F2) > C.

It follows that r = X,, s/3 = u,, t/9 = vx, and we see that (1) must have three integer

roots.

Case 2. K = 1.  In this case we have 3lr, 3Is and

t = klm = -y  (mod 3).

Also,

s = 3+2yr   (mod 9),       t = 2y + r   (mod 9).

Since

(F4+7F42)/3=r/3   (modF4),

we have

r/3 = X2   (mod F4).
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If r/3 =£ X2, then \r\> 3F4, which is not possible; hence,

r/3 = X2,

s/3 = 1 + 27X2 = 0   (mod 3),

it + 7)/3 = -y - yd   (mod 3).

Now

HR4 + yF2)/3 - X2 - 6F4 + (7 + y6)F2)/3F4

= is/3 - 6)13 + F4Ht + 7)/3 + 7 + y6)/3;

thus,

(s/3-0)/3=u2   (modF4).

If p2 i= is 13 -d)/3, we have

ls/3-0l>3F4   or   ls/3l >3F4-1.

One of kl, Im, km must be greater than 3F4 - 1 and

N2 > iB4F4 - 1)(-1 + (ff4 - 3IX2 l)F4 + (3F4 - 1)F2) = C.

Hence,

r/3 = X2,      (s/3 - 6)/3 = p2,      «t + 7)/3 + 7 + 70)/3 = v2,

and (2) has the three integer roots e,e2«2, e2e3A:, e1e3l.  Since this is impossible, Af

cannot be composite.

6. A Combined Theorem. Let F, be the completely factored part of N - 1,

F2 be the completely factored part of N + 1, Rt = iN - l)/Fv R2 = (N + 1)/F2.

For convenience of reference, we give the following tests of [1].

(I)  For each prime p, dividing Fx there exists an a, such that

of-1 = 1    (mod AO   and    (a,^1 >/« - 1, AO = 1.

(II)  For some a,

/"'si    (modAO    and    (¿N~1)IRl - l,N)= 1.

(III) For each prime q. dividing F2 there exists a Lucas sequence {uk^} with

discriminant D' for which (D'lAO = -1,

¿VT4>+1    and    iu§+1)lQ.,N)=l.

(IV) For some Lucas sequence {uk} for which iD'\N) - - 1,

N\uN+1    and    (u(N+l)IR2,N)=l.

In [1] the following theorem is proved.

Theorem. Assume (I), (II), (III), (IV), and suppose all prime factors of Rx and

R2 are respectively > B, and B2.  Define r and s by R¡ = F2s + r (0 < r < F2), and
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let

G = ma\iB1Fl + \,B2F2 - l,mF1F2 + rF1 +1)      (m > 1).

Further, in the case that G = «2F,F2 + rF1 + 1, assume (XF1F2 + rF, + \)^N,

Sq < X < m, where 5J, is the Kronecker delta.

IfN< GiB1B2FlF2 + 1), then N is prime.

In this section we will obtain an extension of this theorem which takes into ac-

count the factors of N2 + 1 and, to a lesser extent, the factor bound of R4.  In order

to do this we first give some notation.

Put

F,=F,/2,      F2=F2/2,

R2 = r + SF,,   where 0 < r < F,,

S = k,    2R,R2=h,    hN = g   (mod F4),

where 0 < k, h, g <F4.

Let /be any unitary divisor of F4, i.e. (F4//, /) = 1.  Define

£(/) = -! +rF2 +bFlF2,

where

b = k-fgy    (modF4)      (0<Z><F4),

and ix, y) is a solution of the linear Diophantine equation x(F4//) -yf— 1. Put

A = muif |^4 /.(/), where the minimum is taken over all unitary divisors of F4 includ-

ing 1 and F4.

Lemma.   If

z s 1    (mod F,),      z = -1    (mod F2),       z2 =-\    (mod F4),

then

z=Lif)   (mod F,F2F4)

for some unitary divisor f of F4.

Proof.   Since

z2=-l=A^2    (modF4),

we have

z=W   (mod/),      z=-Ar      ixnodFjf),

for some factor / of F4. Since (jc - N, x + N) 12/V and (2Ar, F4) = 1, / must be a uni-

tary factor of F4.  Thus,

z=N   (mod/FjF2),      zs-JV   (mod F4//).

It follows that

z=NU- (TV2 -1>/)    (mod F,F2F4),
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where xiFjf) ~yf— 1.  The result follows on noting that

N3 -N = gF,F2    (mod F^F^^

and

N = -1 + rF2 + AF,F2    (mod F,F2F4).

We are now able to give our combined theorem as

Theorem 6. Assume that F4 > 1, (I), (II), (III), (IV), (a) and iß) are all true

with the value of D' used in (III) and (IV) being a square multiple of the value of D

used in (a) and iß).  If Lif) is not a divisor of N for each unitary divisor f of F4 and

1 + «FjF2 \N, then N is prime ifN<T, where T = min(M,M2, M\, MM3) and

M= 1 +5,52^^27^,

Mx = max(-l + B4F4, 1 + B132F1F2, 1 + «FjF2 + F^F^^,

M2 = max(l + B,F1, -1 + B2F2, ¿(1) + «iFjFjFJ,

M3 = max(l + B,F1, -1 + B2F2, A + F,F2F4),

and ¿(1) + tF,F2F4 is not a divisor of N for 1 < t < m.

Proof.  We will say that a prime divisor p of N is of the first kind if e(p) =

dip) = -1 ; otherwise, we call p a prime of the second kind. If p is a prime of the first

kind, we must have, by results proved in [1] together with Theorem 2,

p=l    (modFj),      p = -l    (modF2),      p2 = - 1    (mod F4).

Hence,

p > max(A + F,F2F4, 1 + B,F,, -1 + B2F2) = M3.

If p is a prime of the second kind we have

p=\    (mod q,F,),      p = ±\     (mod <72F2),      p2 = 1    (mod <74F4),

where q¡\R¡ (i = 1,2, 4); thus,

p2 = 1    xnodiq,q2q4F,F2F4)

and p > y/W. Since Af2 = -1 (mod F4) and F4 > 2, we must have at least one prime

divisor of Af which is of the first kind.

If Af is the product of three primes, one of them must be of the first kind and

since iD\N) = (C2 - 16DIA0 = -1, the other two must be of the same kind.  Hence,

N> miniM3,MM3), which is impossible.

If N is the product of four or more primes, one is of the first kind, and at least

two others must be of the same kind; and we have already seen that this is not possible.

If N = p,p2 where PX,P2 are distinct primes, we know by the reasoning of

Theorem 4, that

Pj = 1    (modcy.F,),      p1 = 1    (mod i72F2),      px = ± 1    (mod <74F4),



168 H. C. WILLIAMS AND J. S. JUDD

where qj\Ri (i = 1,2, 4).  It follows that

p, = 1    (mod q,Fx),      p2=~\    (mod<72F2),      P2=±N   (mod <74F4).

If Pj =1 (mod <74F4), we have

p, = 1    (mod q,q2q4F,F2F4),      p2=LiF4)    (mod F,F2F4)

and N = p,p, >MM3. Ifp,=-1 (mod q4F4), we have

p, = 1 + «F,F2    (mod /^F,,)

and

Pj = 1    (mod qxq2FxF2);

consequently,

Pj > max(-1 + B4F4, 1 + BXB2FXF2, 1 + «F,F2 + FXF2F4) = Mx.

Also,

p2 >max(l + BxF,,-\ +52F2,/,(1) + mF,F2F4) = M2;

and we have Af > M,M2.  Since A' cannot be the product of two or more primes, it

must be a prime.

Corollary.   // the conditions of Theorem 6 are all true except that M,M2 <

N < mixiiMM3, M3), then N must be the product of two primes and both of these

primes must exceed Min(Mj, M2). If, on the other hand, we have N> min(Aßkf3, M3),

then the smallest prime divisor of N must exceed min(M3, R), where

R = max(>/M, 1 + BXF,, -1 + B2F2).

Remark 1.  We note here that it is an easy matter to factor N2 + 1 by trial divi-

sion at the same time as A^ + 1 and N - I.  If d is a trial divisor of N - 1 and leaves

a remainder of r, then d\N2 + 1 if and only if d\r(r + 2) + 2.

Remark 2.  It should be emphasized that it is not always necessary, in determin-

ing the primality of a particular A^, to verify all the assertions (I), (II), (III), (IV), (a)

and iß).  For example, if T = MxM2, Mx = 1 + hFxF2 + FX~F2F4 and M2 = ¿(1) +

mFxF2F4, it would not be necessary to verify each of (II), (IV) and (J3).   For, if Bx >

m, which is usually the case, then M > M2 and it would be sufficient to verify (I), (II),

(III), and (a) only.

Remark 3. In practice T is usually MXM2 with Mx = 1 + BXB2FXF2 and M2 =

¿(1) + «iFjF2F4.  Also, very frequently a simple method of factoring like Pollard's

method [5] is successful in finding a fairly large factor of A'2 + 1.

Remark 4.  In finding a value for m in the theorem, it is not necessary to attempt

to divide ¿(1) + tFxF2F4 into A^ for each value of t such that 1 < t <m.  Since

this number must represent a prime factor of A^, it suffices to divide A^ by it only when

it has no prime factor.   For many values of t, Z,(l) + tFxF2F4 has a small prime fac-

tor; when this occurs no trial division by ¿(1) + tFxF2F4 is required.

Remark 5.   Frequently, at least one of the cofactors Rx, R2, R4 is a pseudoprime.
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Suppose R. is a pseudoprime.  Then, if we do not have enough factors of N   ± 1 to

demonstrate the primality of N, we can attempt to demonstrate the primality of R¡.

If we succeed in this, it becomes a fairly easy matter to verify the primality of N.  If,

on using our theorem, we fail to prove /?. a prime, the corollary allows us to find a

bound on the largest prime divisor of R¡.  This usually increases the size of B¡ and

very often with this increased value for B¡ we are able to demonstrate the primality

of N.  (The authors are indebted to John Selfridge for this suggestion.)

7.  Some Examples. These tests were implemented on a computer and used to

determine the primality of some numbers of special forms.  In the following three

lists we present some of the primes which were discovered using the tests of Theorems

4 and 5.

For
L = (102" + lyj + 10",      M=(22n + l)b-2",

and

7V=(22" + l)c + 23",

some values of (a, «), (b, «) and (c, «) for which L, M, ox N axe prime are given in

Tables 2, 3 and 4, respectively.

A computer program was written to implement the algorithm of Theorem 6 on an

IBM/370-158 computer.  We present below some selected results of running this pro-

gram.

For

N= 3598020110125739154986036092356326252597494924799183218

7257385201689,

the sixty-eight digit pseudoprime factor of /3S3 (see Jarden [2]), we have for Bx = B2

= B4 =4 x 106,

F, = 23 ■ 33 • 13 ■ 353 • 6163 • 349291,

F2 = 2 -5 • 7 • 1543,

F4 = 2 • 123757 • 331081.

For m > 4122, we have N < T, where T = MXM2,MX = BXB2FXF2 + 1, and

M2 = £(1) + mFxF2F4. N was easily found by the program to be prime.

For

N = 22966686648632120276391228028485 2008413184976225 33370591664502461,

the sixty-five digit pseudoprime factor of/331, we have for Bx = B2 = B4 = 3 x 106,

Fx =22 • 32 • 5 • 11 • 331,

F2 = 2 • 7 • 2137,

F4 = 2 • 41 • 125813.
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19 3

20 11

20 161

21 77

25 21

Table 2

87 9

87 57

90 73

99 41

Table 3

83 7

83 13

91 31

91 75

93 85

97 15

97 55

97 111

103 13

103 87

105 13

105 109

107 105

Table 4

This is not enough information to prove this number prime; however, Rx was

found to be a pseudoprime.

Now if we put

N' = RX= 35043313266550886930317110727341696178275958409675868338467,

(59 digits)

we find with B[ = B2 = B'4 = 3 x 106,

F[= 2 -3 -7 -87631 • 100183,

F2=2 -2 -71 • 1093,
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F4 = 2 • 5.

Here N' > min(M33, M'M3); thus, the program determined that any prime divisor of

TV' must exceed

B'XF[ + 1 - 1106171195598000001;

and, consequently, Bx for Rx can be increased to the value 1106171195598000001.

This, however, is still not enough to prove N prime.  It was then discovered that R'x is

also a pseudoprime.

We put

N" = R'x = 95039484139540488825968859064437770696328870101    (48 digits).

We find with B'x' = B2' = B4 = 3 x 106,

Fx = 22 • 52 • 67,

F2 = 2 • 32 ■ 53,

F4' = 2 -41 -997 • 1519313.

Then

M"XM'2 < N" < min((/tf3')3, M"M'¡).

The program verified that any prime divisor of N" must exceed M2, which has the

value

¿"(1) +F;'F2"f;= 309165997822073801;

thus, we can now increase the size of B'x to 3 x 1017.   Using this value for B'x, the

program found N' and then N to both be primes.

We also used Pollard's method to attempt to factor /?4 and this produced the

additional prime factor 565909422161; this together with the previous factors was

enough for the program to determine N" a prime.

At the suggestion of J. Selfridge, the number

N= 32656499591185747972776747396512425885838364422981    (50 digits)

= £  (-If-1 A:!
fc=i

was run on the computer.  For Bx = B2 = B4 = 2 x 106, we have

F, = 22 ■ 5 • 13 • 37,

F2 =2 ■ 3 -41,

F4 = 2.

This is not enough to prove N a prime; however, R2 is a pseudoprime. Putting

N' = R2 = 132749998338153447043807916245985471080643757817    (48 digits)
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and B'x = B2 = B4 = 2 x 106, we get

F[ = 23 ■ 3 ■ 167 • 3593,

F2 = 2 • 1307,

F3 = 2 • 5 ■ 61 • 614177.

Hence

M[M2 <N' < miniM'3,M'M3)

and

M2 = ¿'(1) + FXF2F4 = miniM;, M2)

= 4964870743200170113.

Thus, any prime divisor of N' must exceed M2 and B2 can now be increased to 4.9 x

1018.  With this new value of B2, the program was able to prove N prime.
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