
mathematics of computation, VOLUME 30, NUMBER 133

JANUARY 1976, PAGES 1-23

An Error Functional Expansion

for iV-Dimensional Quadrature with an Integrand

Function Singular at a Point *

By J. N. Lyness

Abstract. Let // be the integral of f(x) over an A^-dimensional hypercube and Q(m>f be

the approximation to //obtained by subdividing the hypercube into m    equal subhy-

percubes and applying the same quadrature rule Q to each.   In order to extrapolate ef-

ficiently for // on the basis of several different approximations Q    ' /, it is necessary

to know the form of the  error functional  Q\m'f - If as an expansion in m.   When

f(x) has a singularity, the conventional form (with inverse even powers of m) is not

usually valid.   In this paper we derive the expansion in the case in which f(x) has the

form

f(x) = rav(8)h(r)g(x),       a > - N,

the only singularity being at the origin, a vertex of the unit hypercube of integration.

Here (r, 0) represents the hyperspherical coordinates of (x). It is shown that for this

integrand the error function expansion includes only terms ^a+yv+r'''" ' BJm,

Ca+N+t m ">/»>.   t = 1, 2, . . .  .   The coefficients depend only on the inte-

grand function/(x) and the quadrature rule Q.   For several easily recognizable classes

of integrand function and for most familiar quadrature rules some of these coefficients

are zero.   An analogous expansion for the error functional with integrand function

F(x) = In rf(x) is also derived.

1. Introduction. When the integrand function has singularities within the hyper-

cube of integration or on its boundary, the use of standard quadrature methods may

be very inefficient.  The purpose of this paper is to provide an asymptotic expansion

for the quadrature error functional which is valid when the integrand function has a

particular type of singularity, specified below.  This expansion may be used as a basis

for extrapolation methods for integration of functions having this type of singularity in

the same way as the Euler-Maclaurin expansion is used as a basis for Romberg integra-

tion.

We now specify precisely the sort of singularity in the integrand function to which

the expansions to be derived apply.

First, the singularity must be located at a vertex of the hypercube of integration;

and the integrand function must be analytic throughout this hypercube except at this

one vertex.  For convenience, we define the coordinate system so that the hypercube

is 0 < x¡ < 1, i = 1,2, . . . , N, and the singular point is the origin.
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Second, setting

(1.1) r2 =x\+x\ +... + x%

the singularity may have one of various allowable forms.  These include

(1.2) ra,ra<p(8), ra In r,ra In rtfß),      <*>-N,

where (r, 6) is the point (3c) expressed in hyperspherical coordinates. It may also be

any linear sum of any allowable form.  A less obvious two-dimensional example is

(~Kx + ny)a, Au > 0 as this may be expressed in the  form ra(X cos 6 + ß sin 6)a.

In order to be quite specific, we note some singularities to which the expansions

derived below do not apply.  These include

(1.3) x?, In xv xfxf lnxk,      a, ß * integer,

for which similar expansions exist, based trivially on one-dimensional expansions given

in Lyness and Ninham [10].  Also not allowed are combinations of (1.2) and (1.3), for

example

(14) x"rß, lnx^lnr,      a, 0/2 ¥= integer.

For these, there is experimental evidence that an expansion exists, but no proof is

known to the author.

There are many other types of singularities, such as line singularities and curved

line singularities. The expansions derived in this paper apply only to the narrow class

of singularities exemplified in (1.2) above.

The use of extrapolation (or Richardson's h2 extrapolation) or the deferred ap-

proach to the limit occurs in many branches of mathematics.  A particular implemen-

tation to one-dimensional quadrature is known as Romberg integration [2].  An imme-

diate modification of Romberg integration to a two-dimensional square may be based

on the two-dimensional product midpoint trapezoidal rule

0.5) M.±z,m±'f(?l±l,*±L).
m2 /'=o fc=o    \    m m    /

This is an approximation, based on m2 evenly distributed function values, to a definite

integral

0-6) If=floS*f(x,y)dxdy.

If f(x, y), unlike the integrand functions to be discussed in this paper, is analytic in x

and y throughout the domain of integration, then a trivial modification of the classical

Euler-Maclaurin expansion is valid.  This is

fifi D

(1.7) ß(m)/-//= -7+ -7+ ... + -r~ + 0(m-2P).
m2     m* mrp 2

Since B2q is independent of m, this can be used as the basis of an extrapolation tech-

nique.  A linear combination

(1.8) E\Qim°f

may be formed in such a way as to eliminate the early terms in the resulting expansion.
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This technique is described in some detail in the literature.

An essential ingredient of Romberg integration is the existence and validity of ex-

pansion (1.7).  As mentioned above, this depends on the nature of the integrand func-

tion f(x, y) and is valid only if f(x, y) is sufficiently smooth.  If the expansion on

which the Romberg integration is based does not exist, the results such as (1.8) should

not be expected to be particularly accurate.  They would reflect only the accuracy of

the individual approximations Q m'/and little would be gained by constructing the lin-

ear combination.

The only other expansions of this type known to the author are for one-dimen-

sional integrands such as

(1.9) f(x) = xa(\ - xfh(x),

where h(x) is analytic.  In this case

J° ma+1     ma+2     ma+3(1.10) m m m

Aß+i     -Aß+2     Aß+3

mß+l       mß+2       m0+3---'

the remainder term being of the same order as the first omitted term.  A similar expan-

sion îoï f(x) = logxxa(l - x)ßh(x) may be obtained by differentiating with respect to

a. Details of the proofs are given in Navot [12] or Lyness and Ninham [10].  A straight-

forward iterative use of this expansion leads to corresponding expansions for TV-dimen-

sional integrand functions having singularities of type (1.3) above.  In this paper we are

concerned with singularities of type (1.2) above.

The principal result of this paper is Theorem 5.14. This provides a wide variety

of expansions and may be applied when the quadrature rule is (2(m* given by (1.5) and

the integrand function,

(1-11) f(x,y) = ratfß)h(r)g(x,y),      a>-2,

is analytic, except at the origin.   In this case, Theorem 5.14 gives

ß(«)/-//^df[±l+d£±3+d«±l+...   +^±l]nm
ma+2     ma+3     ma+4 ma+2

(1.12)

a + 3 cr + 4 2 4
m m m       m

the order of the remainder term being that of one of the first omitted terms in this ex-

pansion.

The key result of this paper is Theorem 4.17, which gives the corresponding ex-

pansion when the integrand function is a homogeneous function.  The earlier sections

lead up to this result.  Standard properties of the TV-dimensional Euler-Maclaurin expan-

sion are described in Section 2, and homogeneous functions are defined and some of

their elementary properties are noted in Section 3.

Sections 5 and 6 comprise applications of Theorem 4.17 to provide the expan-

sion for integrands with ray(d) singularities such as (1.11) above, and the correspond-
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NX.

ing expansion for integrands with log r ■ ra<f{B) singularities.  Finally, in Section 8 there

is a brief discussion of possible applications.

The presentation is general so far as the choice of quadrature rule is concerned.

Q may stand for any TV-dimensional rule, such as (1.5) above with m = 1, or a higher

degree rule such as one of those to be found in Stroud [14].  For certain rules some of

the coefficients in (1.12) above are zero, and these are specified at each stage.  In addi-

tion, coefficients may be zero because of some property of a particular integrand func-

tion.  This is discussed in Section 7.  Another feature (see Theorem 4.22) is that an in-

determinate function value which may occur at the singularity may be replaced by zero;

and with a single minor modification, all expansions are rigorously valid.

2. The TV-dimensional Euler-Maclaurin Expansion. In this section we collect to-

gether some standard results about the Euler-Maclaurin expansion for TV-dimensional

quadrature rules.  The region of integration is, in all cases, the TV-dimensional hypercube

0 < bc,l < 1, /' = 1, 2, . . . , TV; and we define

(2.1) tf=JX- /■>*>*
The symbol dNx is used for dx,dx2 . ■ . dxN throughout.

An TV-dimensional quadrature rule Q is an approximation to this integral of the

form
V V

(2.2) Qf=Eaif(xf),      Z<z,= l.
/-I /=!

Such a rule is termed symmetric when it is invariant under reflections about x, = 1/2,

/ = 1, 2, . . . , TV, and is termed fully symmetric when it is invariant under all linear

transformations which transform the hypercube into itself.  It is of polynomial degree

d when

(2J) Qf=If   forall/G7rd,

where ird is the set of polynomials of degree d or less.  It is of trigonometric degree dT

when

(2.4) Qf=If   for all/E^,

where Td is the set of trigonometric polynomials of unit period of degree d or less.

The m1* copy of the rule Q given by (2.2) is

m—1   m—1

(mxQ)f=Q("')f=   £    Z    •■•
fci=0k2=0

(2.5)
V  V     "'   f(xi.i+kJ   *2'i + k2 *N-> + M

¿ok    mNf\      rn       >       m       >■■■>       m       )■

This is the sum of function values obtained by subdividing the unit hypercube into

m^ equal hypercubes of side \lm and applying a properly scaled version of Q to each.

When Q is (fully) symmetric, then Q^m^ is (fully) symmetric and when Q is of polyno-

mial degree d, Q^m' is also of polynomial degree d. When Q is of trigonometric degree

d, then Q^m>> is of trigonometric degree d' = (m + l)d ~ 1.
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The Euler-Maclaurin expansion for Q^m^f - If \15\s been discussed by Lyness [8],

Baker and Hodgson [1], and Lyness and McHugh [11]. The fundamental result stated

below is a simple consequence of several results given in those papers.

Theorem 2.6. Let Qf and Q{m)f be defined by (2.2) and (2.5) above.   Let f(x)

be a function, all of whose derivative functions f  1'T^,'",rN ^ whose total order sat-

isfies r1 + r2 + . . . + rN < p are integrable over the unit hypercube.   Then

f-l B

&m)f-If='£— + R,(&m)\ñ,     N<l<p,
s=ims

where Bs depends on Q and f(x) but not on m and

(2.7) R,(Q<-m);f) = 0(m-1)   as m -> 00.

The coefficients Bs have the explicit form

(2.8)   b, » £ <„,„.,„(ß>j; j;... ;/>■■».«»a.
•vi.'— s

where the sum includes all sets of nonnegative integers tl,t2, . . . ,tN whose sum is

precisely s.  The coefficients c(Q) may be obtained by applying the rule Q to a product

of Bernoulli polynomials B (x).  Thus,

(2.9) ctl,t2,...,tN(® = Q<<>

with

(2-10) ^) = -fi-FT" •••-?-»—•

The remainder term /?, may be expressed in the form

^'"'^^^-JoJo1---^,,,....^^)
(2.11)

./(ii>f2.*N).0:)dNx,     TV</<p.

The kernel functions are discussed in Lyness and McHugh [11] where it is shown

that

(2-12)    00 • • • J.\i.^.....»i^)î'^rf"*-s^.....iwo»-

One property of these kernel functions, which is required in Section 4, is that they are

periodic with period 1 in each argument x,.  The remainder term (2.11) may be re-

placed by the asymptotic relation

(2.13) /?/((3(m);/) = -7 + o(/«-/).
m

The explicit form of (2.9) enables us to determine some properties of the coeffi-

cients c(Q) from properties of the Bernoulli polynomials. When Q is a symmetric rule,

and tp(ic) is antisymmetric under reflection about any x = 1/2, then Qy = 0. When q

is odd,Bq(x) - ~Bq(l - x) and so is antisymmetric.  Thus, it follows from (2.9) that

(2-14) ct,, t2.tN(Q) = °    any U odd,  Q symmetric,
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and from (2.8) we obtain

q i5\ Bs = 0,     s odd,  Q symmetric.

A similar kind of result holds for rules Q of specified polynomial degree d(Q).  The

function <p(x) in (2.10) is of polynomial degree t¡ + t2 + . . . + tN.  Thus

(2-16) cii.*a.....*Ö» " Q*m **>     h + '2 + *n < d{Q)-

However, since

(217> $1QBq(x)dx = 0,      q = 1,2,3,...,

it follows that

(2.18) cfii/2>. .ttN(Q) = 0,      0<t1 +t2 + ... + tN<d(Q);

and (2.8) gives

(2.19) Bs = 0,      s=l,2,...,d(Q).

3. Elementary Properties of Homogeneous Functions. In this section we define

homogeneous functions, demonstrate some of their elementary properties and establish

some notation for subsequent use.  A familiar definition is the following:

Definition 3.1. A function f(xy ,x2,..., xN) is homogeneous with respect to

the origin of degree 7 if

(3.1) f(Xx,,Xx2, . . . , \xN) = Krf(x1,x2, . . . ,xN)

for all x other than x = 0 and for all X.  For a function expressed in hyperspherical

coordinates (r, 6), the corresponding definition is

(3-2) /(Xr, fj) = XVir, h      r * 0.

For notational convenience in what follows, a subscript 7 attached to a function

denotes that it is a homogeneous function of degree 7.  (The notation f^p'q\x,y) re-

fers to the (p, q) partial derivative of the homogeneous function f (x, y).) We now

collect together some elementary properties of homogeneous functions.  These are triv-

ial consequences of the defining property (3.1).

(i) The function /(3c) = 0 is homogeneous of all degrees,

(n) A function $ß) is homogeneous of degree zero,

(iii) The function (fy(x))a(f&(x))ß is homogeneous of degree 70; + öß.

(iv) The function l/7(5c)l is homogeneous of degree 7.

(v) The partial derivative function/ Í?1'Í/2'""'7JV (x) is a homogeneous function

of degree y - qx - q2 - . . .-qN.

We are concerned with certain integration properties.   As a preliminary we define

certain regions.

Definition 3.3. The region L[a, b), 0 < a < b, is defined by

(3.3) L[a, b) = <(jCj , x2, . . . , xN) I a < maxi*,.) < b; 0 < minfr,.)^.

In one dimension this is simply the semiopen interval [a, b).  In TV dimensions when

a = 0, this is a hypercube of side b. When a =£ 0, this is the region obtained by remov-

ing a hypercube of side a from the inner corner of a hypercube of side b.  In two di-
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mensions the shape is that of a letter L.  Clearly,

(3.4) L[a, b) U L[b, c) = L[a, c),      a<b<c.

In complete accordance with this definition we define

(3.5) L[a, °°) = < (xi, x2, . . . , xN)\a < maxix,.); 0 < min(x(.)J..

Thus, ¿[0, °°) includes the whole of the first quadrant and L[a, °°) includes the part of

the first quadrant not lying in the hypercube ¿[0, a).  In the sequel we make use of the

properties
00

(3.6) L[l,°°)=  U L[mk,mk + 1),      m>\,
fc = 0

and
oo

(3.7) ¿[0, 1) =   U L[m-k-1, m-*) U (0),      m > 1.
fc = 0

Theorem 3.8. Let fy(x) be a homogeneous function of degree 7 and be analytic

in a region L[a, b) for some b and a satisfying b > a > 0.  Then

(i) Sl\o,i)fy(x)dNx exists when y>-N.

00 /L| j n)fy(x)dNx exists when 7 < -TV.

("0 hll'snyfyW* = im'1+N - 0/i.|o i)fyG)dNx, 7 > -N.
Ov) Sl[ 1 ,m)fy(2)<iNx = -(m^+N-l)fLll>ao)fy(Í)dNx,  y<~N.

i") h\ 1 ,m)f-N(x)dNx = (ln W/In 2)/¿,, a)f_N(x)dNX.

The first two parts of this theorem may be verified using elementary analysis.

Essentially, a homogeneous function of degree 7 < -TV becomes infinite at the origin

at a rate too rapid for the function to be integrable there, while if 7 > -TV, it does not

decay for large r sufficiently rapidly to be integrable over the infinite part of the first

quadrant. The proofs of parts (iii) and (iv) are based on the identity

<3-9) L, «/yCÖrf^* - im-* f        hJy(x)dNx,
J L[a,b)   ' JL[ma,mb)   '

which follows from a change of variable x = mx together with the defining property

of a homogeneous function fy(x) = myfy(x). Setting a = 1 and b = m in (3.9) and

iterating gives

(3-10) J*,.»..»+./^* = *«*»t SLlUm/y<t)äN*-

In view of (3.6)

(3-U> J/n»/^*=¿  f„   *    k + sM^dNJill,»)   ' k=0    L\m   'm >

and substituting (3.10) into (3.11) leads to the result stated in part (iv) of the theorem.

The other parts are proved in a similar and equally simple manner.

In Section 4 we shall make specific use of parts (iii), (iv) and (v) of this theorem.

These will be applied to functions / '' 2'"" N'(x) which are partial derivatives of the

homogeneous function fy(x). For subsequent convenience we state here the precise re-

sult required in the notation which we shall employ.  This is

x
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í f(
J d i,my y

tl't2'.tN\x)dNx

(3.13)

(3.12) =_(m(y+*-<i-<2-...-t1v) _1)7('i.'2.*iv)i   £t¡±y + N,

íLlim/ytl't2--'tN\x)dNx = inmK(ytl't2'---^\     Zt.-y + N,

where /   and K   are integrals which do not depend on m and are defined by

¡(t1,t2,...,tN) = _j ¿tx,t2.tN){i)dNx       £r(.<7+TV,

= J        &*'—*&$#" x,   Ztt>y + N,

(3.14) <1'f2--^) = ¡^IL[i2)4fl-í2'-'í^)^x.

4. The Error Functional Expansion for a Homogeneous Function. In this section

we derive an asymptotic expansion for the error functional

(4.1) e(m)/7-'/7,

where fy(x) is a homogeneous function of degree y whose only singularity is at the ori-

gin; ô^m)/ is the OT^-copy (2.5) of the general TV-dimensional rule (2.2).  The main re-

sults appear in Theorems 4.17 and 4.22 below.  In this derivation we make use of some

of the properties of homogeneous functions mentioned in Section 3, and the Euler-Mac-

laurin expansion for Q^mY derived in Section 2. We assume pro tern that Q^^f does

not require an indeterminate function value at the origin.  Later in this section we show

that the results hold if / (0) is replaced by zero (thus ignoring the singularity).

The first stage of this derivation consists of applying the property

(4.2) fy(x/m) = nmfy(x)

to reexpress the error functional (4.1).  To this end we introduce the notation

/•fci + l  rk2 + l ckN+l

(4.3) I(k,,k2,..., kN)f= J J ...   \ f(x)d>
K\ k2 kN

and

,NX

(4.4)    Q(k,,k2, . . .,kN)f= ¿ a¡f(xuj + k1,x2j + k2, . . .,xNJ + kN)

to denote the exact integral over the hypercube k¡ < x¡ < k¡ + 1   (/ = 1, 2, . . . , TV)

and the approximation to this integral using the rule ßO   (or Q).  It follows by

straightforward manipulation that

(4.5)
, .        m — 1    m—\ m — \

= —77^7+—TZZ    Z   •••   T.* I{k,,k2,...,kN)fy,
my+N   1      my+Nki = ok^0 kN=0

the asterisk on the summation symbol indicating that the term with all k¡ = 0 is to be

omitted.  In a precisely similar manner we find
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. ,        m — \   m-\ m—1

(4.6) Q(m)f m_^ô/■ + _j_ £ £ ... r ex*,,*a,.... w,

and taking the difference between (4.5) and (4.6) gives

. ,        m-l   m — \

Q(m)fy-Ify = ——(Qfy-^fy) + -27Z   £     £
m<+N mi+Nk^ok2=0

(4.7)
m-\

-.*
• • •   E   (ß(*i> *2» • • .,kN)fy-I(kx,k2, ..., kN)fy).

kN=0

Since the only singularity of fy(x) is at the origin, each term other than the first here

contains an error functional for the rule Qf over a hypercube within which the function

is analytic.  Consequently, the second stage of this proof consists of replacing each of

these mN - 1 error functional by the Euler-Maclaurin expansion (2.6). Since each term

in (2.6) involves an integral over the appropriate integration domain in which kernel

functions are periodic with period 1, the result of the summation over k¡ is to provide

an integral over the (L shaped) domain ¿[1, m) defined in Section 3.  Thus,

Qim%'^ = -~(Qfy-Vy)
m'

(4-8)       +;MU/'-.'"<<.._/"•"."BM».

+ —!— y  f       h (o x)f(tl't2"--'tN)(x)dNx

1>N.

At this point the value of / is at our disposal, except that it should be greater

than TV - 1. We now set a value of / to be greater than y + TV.  The reason for doing

this is that the terms in the final summation over t contain integrals which are then dom-

inated by homogeneous functions of degree less than -TV.  Thus, in these terms each

integral over L[\, m) may be replaced by the difference of the corresponding integral

over L[l,°°) and the corresponding integral over L[m, °°). The third stage of this proof

consists of doing this; at the same time we employ (3.12) to replace the integrals over

L[\,m) by terms involving expressions (3.13) and (3.14).  The result of doing this and

carrying some minor rearrangement of the terms obtained in this way is as follows:

(4.9)    Q(m)f     If      ^±X+'¿^+^í±2.lnm+R(m)f        l>y + N.
7       y     mN + y     s=i ms      mN+i 7

Here

AN+y = Qfy-Ify + Z    Z cH,t2,...,tN<Q)Iyi,t2.tN\\-h-y-N)
j=lï t¡=s

(4.10)

+
s tj   I
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(4.11)

(4.12)

and

By,s = -     !>,.,„.tN(Q)I{ytl't2'-'tN\ **y+N,

= 0,      s = y + N,

CN+y = 0,      7 + TV ̂ integer,

=    EV,.tNiQ)K(yl't2'-',N\      7+N=s>l,
Zt¡=s

fJl *-"  * j        '

(4.13)
/ > 7 + N.

The restriction / > y + TV is required only to obtain this expansion in this form

with this particular remainder term. Naturally, terms of any order in m in (4.9) may

be included in the remainder term if one wishes, and the order of the new remainder

term appropriately adjusted.

The coefficient AN+ is independent of the value of / used to compute (4.10) so

long as / > 7 + TV. Using integration by parts, expression (4.10) may be manipulated

into many different forms. One of these is identical with (4.10) except that / is re-

placed by / + 1. The term (1 - 8 _N) in (4.10) indicates that, when 7 is an integer,

the term in the summation with s = 7 + N is omitted. Similarly, when 7 is an integer

the term Byy+Nlm1 + N drops out, but is replaced by a term Cy+N In mlmy+N which

would not otherwise occur.

The coefficients Ay+N, B      and CN+   are evidently independent of m.  To

establish an asymptotic expansion it remains to show that the remainder term (4.13) is

of the correct order.

Lemma 4.14. The remainder term R.\m)fy = 0(ml),  I > y + TV.

Proof. It follows from Theorem 3.8(iv) that if *ps(x) is a homogeneous function

of degree S < -TV, then

/,,      y s (x)dNx = J <ps (x)dNx - J ws (x)dNx
-/L[m,«>)  ° -,/,|l,°°)   ° JL\\,m)   "

(4.15) .

J L\\ ,°°)   °

and so is of order m8+N- The kernel functions in (4.13) are bounded, so

(4.16) ltf,(m)/7l<^-   L    f l/7f,'i2.tN\x)\dNx.

This involves a finite sum (independent of m) of integrals, each of whose integrands is

a homogeneous function of degree S = 7 - /. In view of (4.15) each integral is of or-

der m6+N = my+N~' and so the right-hand side of (4.13) is of order m~l as stated in

Lemma 4.14.   Lemma 4.14 establishes the following theorem.
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Theorem 4.17. Let Q^f given by (2.5) be the mN copy version of Qf given by

(2.2) which approximates If given by (2.1). Let fy(x) be a homogeneous function of

degree y which is analytic within the hypercube 0 < x, < 1, /' = 1, 2, . . . , TV, except

possibly at the origin.   Then

(4.17) ßi*>/  -//   = -All + £ ^ + ^777-+ R\m%      l>N + y,
7       7     w^+t     Ä ms w^ + t

w/iere r/ze coefficients AN+y, B     and CN+y, given by (4.10), (4.11), and (4.12),are

independent of m and R¡m^fy given by (4.13) is of order 0(m~').

There are certain special cases in which some of the coefficients are zero. Thus,

if / (Jc) is a polynomial (in which case 7 is a nonnegative integer which coincides with

the degree of this polynomial) then

(4.18) Ay + N = Cy+N = 0      (fy(x) polynomial).

These results are evident from the results of Section 2.  However, they follow from

(4.10) and (4.12) directly.  The first reduces to an identity.  The second involves partial

derivatives'of order greater than the degree of the polynomial.

There are two results which correspond to (2.15) and (2.19) for the Euler-Mac-

laurin series.  If Q is a symmetric rule, then applying (2.14) to (4.11) and (4.12) gives

B     = 0,      s odd,  Q symmetric,

(4.19)
Cy+N = 0>      7 + TV odd, Q symmetric.

If Q is a rule of polynomial degree d(Q), then applying (2.18) to (4.11) and (4.12)

gives

Bys = 0,      s<d(Q),

(4.20)
Cy+N = 0,      y+N<d(Q).

Up to this point we have assumed that the quadrature rule does not require a

function value at the origin. Many familiar quadrature rules, such as the product end-

point trapezoidal rule and TV-dimensional versions of Simpson's rule do require function

values at the origin. This function value /7(0) is zero when 7 > 0 but may be indeter-

minate when 7 < 0. We now show that the theory given above applies with one minor

modification if the function value at the origin is consistently ignored. To this end we

define a new "rule".

Definition 4.21.

(4.21) Of = Qf- w0/(0),      ßlm|/= Qim)f- Wo/tÖym^.

Here w0 is the weight assigned by Qf to the function value /(0) at the origin, and

ß'm'/is the result obtained by the rule Q^m^ when this function value is replaced by

zero.

The point at which the proof breaks down in this section is in Eq. (4.6).  This

can be rectified if the left-hand side is altered to ß'm'/and the term Qfy on the right-

hand side is altered to Qf .  That is, in the subdivision into mN hypercubes, the func-

tion value at the origin occurs only in one of these hypercubes; and replacing it by zero
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affects only one element on the right-hand side, in the manner stated.

The rest of the proof of Theorem 4.17 is virtually unaffected by this change.  The

only alterations required are that in the left-hand side of Eqs. (4.7) to (4.9), ß^mV is

replaced by ß'^'/and on the right-hand sides the term (Qfy - Ify) is replaced by

(Qfy ~ Ify)-  This leads to a different coefficient AN+y in (4.9); it is necessary to re-

place AN+y in (4.9) and (4.17) by AN+y which coincides with (4.10) except that

Qfy - Ify is replaced by Qfy - // on the right-hand side.  The coefficients By s and

CN+y are unaltered, and so are the properties (4.19) and (4.20). We state the result of

ignoring the singularity as a theorem.

Theorem 4.22. In the notation of Theorem 4.17, defining Q[m]f by (4.21),

-i    i AN + y      tí By s      CN + ylnm
Q^f  -If  = -£±Z. + Y. — + ̂ I-+ R,m)fy,      l>N + y,

7       7     ot^+t      s=i ms mN + y 7

where the coefficients By s and CN+y coincide with those in (4.17), R.\m^fy is of order

0(m~l) and

(4.23) ^V + T = AN + y + Qfy - Qfy = AN + y ~ W0f(6).

The only further result which requires comment is (4.18).  The corresponding re-

sult in the case in which a function value at the origin is ignored is

(4.24) Ay + N = 0,      7>0  (fy(x) polynomial).

For the constant function f(x) = K, we have AN = 0 while AN = - wn/(0).

5. The Error Functional for Integrand Functions with ra<{{6) Singularities. Theo-

rems 4.17 and 2.6 provide asymptotic expansions for the error functional of two types

of integrand functions.  Clearly, these may be used to provide corresponding asympto-

tic expansions for any other integrand functions which may be expressed as a linear

sum of these special types of integrand functions.  In this section we treat a class of in-

tegrand functions, essentially ones having an ra<p(6) singularity, where

(5.1) r2 = x\ +x\ + . . . +x2N

and (r,62,63, . . . , 0N) abbreviated to (r, 0) represents the point (x) in a hyperspher-

ical coordinate system.

Definition 5.2.f(x)eH^N) if

(5.2) f(x) = ra&d)h(r)g(x\

where

(i) f(x) is integrable over the unit hypercube 0 < x¡ < 1 ;

(ii) t^ö) is analytic in 02, 63, . . . , 6N for all values of these variables for which

the point (1, 6) lies within the closed unit hypercube;

(iii) h(r) is analytic for 0 < r < y/N~;

(iv) g(x) is analytic in each variable x, in the closed unit hypercube.

In two dimensions we have r2 = x2 + y2 and 6 = arctan(j>/x) and condition (ii) is sim-

ply

(ii) <fi(6) is analytic in the interval 0 < 0 < 7r/2.
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We note that condition (i) need not restrict a to be greater than -TV.  For example, the

two-dimensional function r~4x3 belongs to H^ with a = - 1 since r_4jc3 = r~l cos3 0

which is clearly integrable.  One of the main effects of conditions (ii) and (iv) is to ex-

clude line singularities which pass through the hypercube.  Thus, f(x,y) = (Xx + ßy)ß

with (3 not a nonnegative integer is excluded when Xu < 0 but included when ß > - 2

and Xu > 0.  In either case f(x, y) may be expressed in the form rß(\ cos 0 + u sin 6)ß

and condition (ii) leads to these conditions on X and ß.

Lemma 5.3. When f(x) £ H^N', it may be expressed in the form

(5.3) fXx)=fa($) +fa+1(x) + ... +fa+p-1(x)+ga+p(x)

where

(i) fa+¡(x) is a homogeneous function of degree a + j and is analytic within the

unit hypercube except at the origin;

(ii) ga+p(x) together with all its partial derivatives of order n are integrable over

the unit hypercube when

(5.4) n <a + p + TV.

The proof is elementary. One need only expand h(r) and g(x) in multivariate

Taylor expansions about the origin.  Setting

(5-5) h{f)^Zb,ri+Hp(r),
/=o

(5.6) g(x) = £ g¡(x) + Gp(x),
/=o

with

(5.7) bi = h^\oyi\,

(5.8) «ft- (Í*ft)'f
x=0

we find explicitly

(5.9) fa + t(x) - r V0) Z b/gM(x)
t

E
/=o

and

(5.10) *«+p(*> = r^hÍH^G^ix).

Since ra, ¡fi(6), r', and gt_;(x) are homogeneous functions of degrees a, 0, /, and / —/,

respectively, the expression on the right-hand side of (5.9) is a homogeneous function

of degree a + t. The function ga+p(x) given by (5.10) is a sum of functions whose

behavior at the origin has the form raip(d)r'xxx22 . . . xff, where T,tt = p-j and

each of these separately satisfy condition (ii).  This establishes Lemma 5.3.

We now proceed to use this lemma in conjunction with Theorems 4.17 and 2.6

to establish Theorem 5.14 below.  It follows from (5.3) that
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(5.11) ô(m)/-//= £ (Q(m)fa+t-ifa+t) + Q(m\+P -iga+P-
f=0

Theorem 4.17 provides an expansion for each of the p expressions in the summation

over index t.  Applying Theorem 2.6 to the function ga+p(x), taking into account con-

dition (ii) of Lemma 5.3, one obtains

(5.12) Q(m)ga+p-Iga+p = Te^±22l + 0(m-1),      N<Ka+p+N,
i=i   ms

with

(5.13) *,„..-¡ií,„„.,„(</:... .Co*.v..

Substituting (4.17) and (5.12) into (5.11) leads to the following theorem.

Theorem 5.14. Let Q^f given by (2.5) be the m^ copy version of Qf given by

(2.2) which approximates If given by (2.1). Let f(x) G H^ defined in (5.2).  Then

Q^f-If= S ^2±£±¿ + £ 2l + 0(m-'),

(5.14)

N<l<a+N + p,ai= integer

and

'-! A   + B       Hi c
(5.15)  Q(m)f-If - Z-£ + Z — In w +0(ww In m),      1>N, a = integer.

The coefficients ^w^-,-, and Cy.,^.,., are given by (4.10) and (4.12) and

(5-16) *,=£*«+.-,,+*«+,,,.
i=0

where 5a + fi is given by (4.11) and Ba+ps by (5.13).

The case in which the function value at the origin is replaced by zero is precisely

analogous.

Theorem 5.17. In the notation of Theorem 5.14, let Qlm]fbe defined by (4.21).

Then Theorem 5.14 is valid when Q^fis replaced by Q^mf so long as coefficients

Ay are replaced by Ay defined by (4.23).

Contrary to appearance, the value of Bs is independent of the value ofp used in

(5.16). B has an integral representation which displays its independence of p. We

demonstrate this only in the two-dimensional case when a is not an integer.  The expan-

sion of ft'^ix, y) corresponding to (5.3) may be written in the form

w p—1

(5.18)      f\(x, y) =  £ LÍYwix, y) +    £    fíYwix, y) + gíM (x, y),
w=0 w=W+l

where t + r - a - 3 < iv < t + r - a - 2. The first sum is composed of functions

which are integrable over L[l, °°) but not over L[0, 1) while the rest of the terms have

the opposite property.  Reference to (3.13), (4.11), and (5.13) leads to the integral
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representation

(5.19)

Bs - tct,s-ÁQ)\--SLll^t,s-Ax,y)dxdy

+ /¿(o,,^'*"0 (*> J') - et,s-t(x, y)) dx dy] .

Here

(5 -20) et ^¿x, y) =  £ /&S'>(x, J),      w = [s-a- 2].
w=0

In words, the situation is that for functions without singularities the coefficient Bs co-

incides with (5.19) with 0f s^fix, y) = 0.  In cases where the integrand function has

unintegrable singularity, homogeneous functions involving the singularity are "subtract-

ed out" and integrated instead over the domain L[l, °°) (with a sign reversal).

The coefficients As, Bs and Cs which occur in the error functional expansions

(5.14) and (5.15) depend on the quadrature rule Q and the integrand function/(jc).

So far as the quadrature rule is concerned, the results about the vanishing of some of

the coefficients are straightforward.  Reference to (5.16), (4.19), (4.20), (2.15), and

(2.19) show that if Q is a symmetric rule

(5.21) Bs = Cs = 0,      s odd, Q symmetric,

and that if Q is of polynomial degree d(Q)

(5.22) Bs = Cs = 0,      s<d(Q).

Other coefficients Aa + t+N and Ca + t+N may vanish for certain integrand func-

tions. This is discussed in Section 7.

6. The Error Functional for Integrand Functions with In r ■ ra^p(d) Singularities.

In this section we derive the corresponding expansion for g     F~ IF where

(6.1) F(x) = In r ■ ra^ß)h(r)g(x) = ^/(5)

and, as before,

(6.2) fix) = ra^6)h(r)g(Í)

is an element of H^. This is most easily accomplished by treating the coefficients

in (5.14) as functions of the variable a and differentiating with respect to a. When a

is not an integer this is trivial.  The result is

Theorem 6.3. When a is not an integer,

,   ^ tí dAa+N+t/da    Pz}Aa+N + t\nm     i-idBjdaQ(m)F _ ip -   y -<x+H + t-y      a+J\+t_ +  y, _s__

(63) f=0    ma+N+t       f=o     rrP+N+t ~0   ms

+ 0(m~l),      N<l<d +TV + p, a# integer.

The rest of this section is devoted to deriving the result which corresponds to 6.3

in the case in which a is an integer.  In this case the same approach may be used, but

is more difficult to implement.  In order to differentiate with respect to a, one requires
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an expansion whose coefficients treated as functions of a are differentiable at the value

of a of interest.  Expansion (5.15), unlike (5.14), is not such an expansion.

In Section 4, two separate expressions for Q^m^fy - Ify are given, one valid when

7 is not an integer and the other when y is an integer. While these expressions are con-

venient for direct applications, this dichotomy is aesthetically unsatisfactory. When one

considers a one parameter family of homogeneous functions, such as /  = ry, one does

not expect any abrupt change in the value of Q^m ty*  - Ify as the value of y passes

through each integer value.  Indeed, as we shall show, there is no abrupt change.  The

right-hand side of (4.17) is a limiting form of the right-hand side of (4.17) as 7 ap-

proaches an integer either from above or below.

When 7 is not an integer, the expansion (4.17) involves terms

-^   and    -^   and   R-\m)L,
m»^ m* '     7

the coefficients being given explicitly by (4.10), (4.11), and (4.13).  So long as 7 does

not become an integer these expressions, which involve the integrals /   *' 2.       de-

fined in (3.13), vary in a continuous manner.  But as 7 passes through the integer

n - TV, the definition of Iy ! ' 2 " " N where S t, — n alters abruptly from an integral

over domain L[\, °°) to an integral over domain L[0, 1), either becoming divergent at

7 = n - TV.

To investigate the expansion near 7 = n - TV, we remove terms involving

/„ '* 2'"'       , Uti = n from AN+y and B   s and treat them separately. We use parts

(iii) and (iv) of Theorem 3.8 to express these integrals in terms of an integral over

L[l, 2). This involves some elementary manipulation, in the course of which it be-

comes convenient to define

(6.4)

A*y+N = Ay+N-   £   ctx^_tN(Q)I^'t2'-'tN\      y±n-N,
E t¡=n

Ay+N = Ay+N,- y = n-N,

(6-5) C*y+N=    £  ctltt2_tN(Q)Ky^t2'-'tN).

The functions Ay+N and Cy+N, unlike Ay+N and Cy+N defined by (4.10) and (4.12),

vary continuously with 7 as 7 passes through the integer value 7 = n - TV and coincide

with Ay+N and Cy+N when 7 = n - TV.  The result is the following:

Theorem 6.6. When y = n - TV + e with lei < 1 and n <l,

(6.6) ö&-)/_Är.rfl±S+    £    ^. + fÁm,tt,e)ln2C%N+R¡m%
my i=i is¥=n ms

with

(6.7) ttm,n,e)= [—1—~— )/0-
mn+e    mr

(6.8) <Km, n, 0) = In ml(mn In 2).
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The function ip(m, n, e) is analytic in e and

,.„,                                3    ,         „s        In m     (In m)2
(6.9) —^m, «,0) =--i-*—.

de 2mn    2mn In 2

The form (6.6) of expansion (4.17) has the advantage that all coefficients vary

continuously with y over the range n - TV - 1 < 7 < w - TV + 1 which includes the in-

teger value 7 = n - TV.  Using (6.7) or (6.8), (6.6) reduces to (4.17) whether or not y

is an integer.

We may now consider a one parameter family of homogeneous functions fy(x)

which is analytic in y and differentiate expansion (6.6) with respect to y and then set

7 = n - TV. The result is

^      byJy       byJy

(6.10)

uA*y+N/by +       (-1       bByJby

my+N s=l;s*y + N      ms

_d_„* In 2    »    \   In m
I        ^^4-JV   "■"   -,      C^ ,   «r .       C_,

y + N       by^y+N        2    ^+*)my+N

y+N(\nm)2   ,   a  „(„,), .  .
-=— *-— + -r-R,m'L,      y = integer.
2     ^.y+N      by   <■">"' °

When 7 is not an integer, the corresponding expansion is simpler.  That expansion may

be obtained by differentiating (4.17) and coincides with (6.10) if one removes terms

involving Cy+N, removes the restriction on the sum over s and replaces Ay+N by

Ay+N-

In order to apply (6.10) to obtain the analogue of (6.3), we have to specify more

precisely the function / .  We treat the functions

(6.11) fa+t(x) = ra#) £ VW*)
/=o

defined in (5.9) which are elements of the expansion (5.3), namely

(6.12) f(x) = Ptfa+t(x)+ga+p(x).
f=0

Setting 7 = a + t, it appears that for functions (6.11) the operators 9/97 and 9/9a

are identical.  It also follows that

(6.13) F(5) = £ ¿-fa + t(x) + lga + M).
f=0

baJa+tK '     bot1

Operating on each term of this identity with g(m) -/ and applying (6.10) and (2.6)

we find:
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Theorem 6.14.

,   , P"1 bA*a+t+Nlba     i-}bBJba

f=o    ma + t+N î=i   m"

(6.14) +  _   \ ^a+t+N + da(~'a + t+N      2   ^ot+t+Nj    a +
m- ■t+N

- £ %^- -^^- + 0(m-^+P+N\in m)2),
r=o       2 ma + t+N

N<sl = a+p+N,a = integer.

In precisely the same manner as in the previous section, certain coefficients van-

ish when Q is symmetric or when Q is of polynomial degree d(Q).  Specifically,

(6.15) 95/90: = 9C*/9a = C* = 0,      s odd, Q symmetric,

(6.16) bBjba = bC*/ba = C* = 0,      s < d(Q).

Other coefficients may vanish for certain integrand functions.  This is discussed in the

next section.

The same technique may be used to derive the corresponding expansion for an

integrand function

(6.17) F(x) = (In r)«f$)

for integer q.  All that is necessary is to differentiate either (6.3) or (6.6) q - 1 times

with respect to a or 7 and to collect together like terms.  The error functional

Qi^p — ip when F is given by (6.17) contains terms m~* and m~^a+N + t\in m)s,

S = 0, 1.S- fot t — 1, 2, . . . .  When a is not an integer, s   = q.  When a is an

integer, sq = q + 1.

7. Examples in Which Some Terms in the Expansion Are Zero. In the various ex-

pansions derived in this paper, we noted at each stage that if Q is symmetric or if Q

is of specified polynomial degree, certain coefficients in the expansion are zero.  How-

ever, the coefficients depend both on Q and on the integrand function; and there are

some easily recognizable forms of integrand function for which certain coefficients van-

ish.  In this section we draw attention to some of these.

As a preliminary, we note that the specification of a given function in form (5.2)

is not unique.  A two-dimensional example is

(7.1) f(x,y) = r"4*3 = rl sin3 0 = r~2x\x2 + y2).

Application of Theorem 5.14 to each of these forms gives three apparently different

expansions for Q^m^f - If.  Each of these is correct and each displays many coeffi-

cients which are in fact zero.  In this case, since f(x,y) is a homogeneous function of

degree - 1, expansion 4.17 is valid and any expansion obtained from 5.14 contains a

whole sequence of terms which are zero.
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The derivation of Theorem 5.14 is accomplished in Section 5 by expressing

h(r)g(x) as a multivariate Taylor expansion and collecting together terms of the same

degree to form

p-i

(7.2) f(x) = £ fa + t{x) +ga+p(x).
r=o

The coefficients Aa + t+N and Ca + t+N arise from the component fa + t(x) and are ab-

sent iffa+t(x) is zero. In the example (7.1) above, all /a+f(x, >>) are zero except for

U(x,y).
Another case in which some terms are absent is one in which the multivariate

Taylor expansion is even (or odd) in character. Then/a+f(ic) = 0, t odd (or even),

and all terms in expansion 5.14, 6.3, or 6.14 arising from these terms are also zero. We

state this result as a theorem.

Theorem 7.3. //

h(r)g0:) = h(- r)g(- x)   (or h(r)g(ï) = - h(- f)g(- x)),

then the coefficients in (5.10), (6.3), and (6.14) satisfy

(7.3)

Aa + s+N ~ Ca + s+N ~ QaAa + s+N ~ Aa + t+N

= faK+t+N = c*+s+n = faC*+s+N = °   sodd (or even).

Perhaps it should be emphasized that this symmetry is about the origin, while the

symmetry in the quadrature rule which causes other coefficients to vanish is about hy-

perplanes xt = %  (i— 1,2, ...,TV). We also note with regard to (7.3) that only

h(r)g(x) need be symmetric. There is no symmetry condition on the factors raip(9).

Another set of circumstances in which coefficients may vanish arises if fa + t(x) is

a polynomial. This can happen only if a is an integer and ¡p(d) is a trigonometric

polynomial. When fa + t(x ) is a polynomial, it follows from (4.18) that Aa + t+N =

Ca + t+N = 0.  Since a is an integer, A*+t+N and C*+t+N as defined by (6.4) and

(6.5) are zero; but neither (b/ba)A*+t+N nor (b/ba)C*+t+N required in (6.10) or

(6.14) need be zero.

A trivial example of this occurs when f(x) has no singularity in which case all

fa + t(x) are polynomials and one recovers the Euler-Maclaurin expansion (2.6).

Beside these terms, other terms vanish when the rule is symmetric and when the

rule Q is of specified degree. These are .8c, Cs, C*, (blba)Bs, (b/ba)C* both when s is

odd and also when s < d(Q). In the simpler examples, so many terms vanish that the

whole appearance of the final series may be quite different from that expected.

As an example, we deal with the very simple function

(7.4) f(x) = h(r)g$).

Direct application of (5.15) with a = 0 gives

tí A*       tí Bs       tí Cs ln m
(7.5) ß(»0/ - // = £ -Î- + £ -i + £ -î-+ 0(m~l ln m).

s=\ms     s=ims     s=i    n?

However, it is obvious that ft(x) is a polynomial when t is even, so the only nonzero
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terms As and Cs are those with s = t + N with t odd.  Thus, because of the simple

nature of the integrand, we have

l-i       a       i-i B '-1      C ln m
(7.6) ô0")/-//=       £       ^+£^+     £      Î2-+ 0(m-'lnm),

s=N;s odd ms      s=lms     s=N;sodd     ms

TV even,

/-i       ,4      /-i  r /-i       C In m
(7.7) ô(m)/-//=       £        - + £-+      £-+ 00h-'In m),

î=Af;îeven  /n*      í=l m1      s=N;s even     w1

TV odd.

all s odd and for s <

TV even,

t   \ ^       As ^ B. C, ln m
(7.9)    ö(m)/-//~     £     — +       £      — +     £     --,

s=Anseven ms        s=d+l;s even ms        s=N;seven      ms

Nodd.

The pattern of these expansions may be described as follows. When TV is even, apart

from some early terms, all inverse powers m~s occur, but no terms m~s ln m. When TV

is odd, apart from early terms, only even inverse powers m~s and terms m~s ln m with

s even occur.

This result is one of those given in Table 1 which also gives the corresponding re-

sults for other very simple forms of integrand function.

One can endlessly pursue sets of conditions for the vanishing of coefficients. We

have stated here only some of those which may be easy to recognize from the analytic

form of the integrand function.

It is pertinent to remark that it is doubtful that any of the asymptotic expansions

converge except in trivial circumstances; and that if one does converge, it may con-

verge to a result which is different from the left-hand side.  The corresponding one-di-

mensional situation is discussed at length in Lyness [9]. There it appears that if the in-

tegrand function has a singularity anywhere in the finite complex plane there is no con-

vergence and simple examples of "wrong" convergence are given.

It seems at first sight surprising that these expansions have not been discovered

experimentally. One of the reasons may be that there are so many special cases in

which different terms drop out of the expansion.  By the time one has constructed an

example for which the exact integral is known, one is dealing with a special case.

The special case a = 0 is described by Table 1. The author was surprised to find

this rather bewildering pattern of terms present in the expansion.  An experimental ap-

proach, in which one has no clear idea about the final pattern and in which one is

dealing with nonconvergent expansions, would be extremely difficult to carry out to

completion.

If Q is a symmetric rule of degree d(Q) then Bs — Cs for

d(Q).  Applying this to (7.6) and (7.7) gives

(7.8) (2(m)/-//~      £     -+       £       —,
s=N;soddms     s=d+ 1 ;jeven ms
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Table 1

The structure of the error functional expansion for ß(m V ~~ If, when Q is a sym-

metric rule of degree d and <p(x) is an TV-dimensional integrand function.  Here r - 151,

h(f) is analytic in r and g(x) is analytic in each component of x.

fix)

gix)

h(r)gix)

TV even

Kr)gix)

TV odd

In r gix)

\nrhir)g0:)

N even

ln^CM*)

TV odd

m

s even > íT

x even > d

s odd > TV

x even > d

s even > N

s even > d

s>N

x even > d

s>N

s even > d

s>N

Set of values of s for which there may

may be a nonzero coefficient

m s In m

0

0

s even > max(/V, d)

s even > max(TV, d)

x even > max(TV, d)

s odd > TV

x even > /v

m si\n m)2

0

0

0

0

s even > max(TV, d)

8. Concluding Remarks. The purpose of this paper is to derive expansions such

as those given in Theorem 5.14.  The more general question of whether or not numeri-

cal quadrature based on extrapolation is more or less efficient than other quadrature

methods is one which is separate from the derivation of the expansions, and it is not

treated in any detail here.  In order only to place these expansions in proper perspec-

tive, a few brief remarks are appropriate.

The author believes that the main applications of these expansions will be to TV-

dimensional integrals whose integrand functions are given analytically and are clearly

recognizable as being of the specified form. In particular, the value of a will be

known.  An integration may be carried out by using a specified quadrature rule Q to

evaluate

(8.1) Q(m)f,      m = m0,m,,m2,.. . ,

and using extrapolation based on the proper expansion to refine the results. The

choice of a moderate degree rule such as one of those in Stroud [14] eliminates auto-

matically some of the terms in the expansion.  The choice of a sequence m, which

grows as slowly as is convenient is suggested.  The sequence m, = / + 1 may be suitable

so long as a check on the buildup of round-off error in the extrapolation process is in-
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corporated.  A great deal of investigation into methodology is required.  For example,

a convenient extrapolation process (corresponding to Romberg integration) is not availa-

ble for these expansions (unless the sequence is geometric i.e., m+1 = km). Which

moderate degree rule should be used?  And how far should the extrapolation process be

taken?  And how can the round-off error be controlled?  An investigation into these

matters would delay and lengthen this paper and has not been carried out.

However, these expansions form a sound analytic basis for recent work on non-

linear methods based on the epsilon algorithm.  So long as

(8.2) ö(m)/-//~£4-+Z-%ln/"
m '        m '

where a- and j3- are arbitrary, and the sequence chosen is geometric, for example

(8.3) {m} = 1,2,4,8, ...,

then the epsilon algorithm may be used to eliminate terms in the expansion. This is

discussed by Kahaner [7] in a one-dimensional context (where a sound analytic basis

already exists) and has been developed experimentally with success by Genz [5], [6]

and Chisholm, Genz and Rowlands [3].

Any detailed relative evaluation of methods based on the epsilon algorithm and

direct extrapolation methods should await a detailed investigation.  But the following

remarks seem pertinent.  First, using the epsilon algorithm, one requires two extrapola-

tions to eliminate a term like A/ma in (8.2) since both A and a are treated as un-

known.  The direct method takes advantage of the known value of a and requires only

one extrapolation to eliminate this term.  Second, the epsilon algorithm requires a geo-

metric sequence like (8.3) while the direct method can be used (with numerical safe-

guards) with a sequence like

(8.4) {m}= 1,2,3,4,... .

Since, in an TV-dimensional quadrature, the number of function evaluations associated

with the calculation of Q^m^f is roughly kmN, the circumstance that one may use (8.4)

in place of (8.3) may turn out to be a considerable advantage.

The epsilon algorithm though is more general since it may be valid for integrand

functions not covered by this paper.  Thus, if it is known that the expansion is of form

(8.2) but the values of a- and p\- are not known, then there is no basis for the direct

approach, and there is a basis for using the epsilon algorithm.

To the author's knowledge, the work mentioned above is the only published work

on these specific problems.  However, it is only proper to draw attention to a general

method for one-dimensional quadrature due to Stenger [13], whose TV-dimensional ana-

logue may be competitive.  This consists of transforming a finite interval [-1, 1] into

the infinite interval using w — tanh x and then applying a truncated trapezoidal rule to

the transformed integral, giving an approximation of the type

ri " „kh I    pkh    \
(8.5) fix)dx^Qih;n)f=   £    _J__ ,(_£_).

'° *=-« (1 + ekh)2   \l+ekhJ

A sequence of such approximations Qfh; n) with h = Xn~      approaches the true inte-
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gral with an error 0(e~c"     ), c > 0. Transformations of this type have also been sug-

gested by Takahasi and Mori [15].  No TV-dimensional numerical results have been re-

ported.
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