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Tridiagonal Fourth Order Approximations

to General Two-Point Nonlinear Boundary

Value Problems with Mixed Boundary Conditions

By Robert S. Stepleman

Abstract.   This paper develops fourth order discretizations to the two-point

boundary value problem

y(2kt)=f(t,y(t),y(1\t)),

^o^0) - "o^(1)(°) = 60'    al ?W + "l^1^1) = 5 1-

These discretizations have the desirable properties that they are tridiagonal and

of "positive type".

1.   Introduction.   In this paper we consider discretization techniques for the non-

linear two-point boundary value problem

(a) y^\t)=fit,y{t),y^\t)),

(b) aoy(0)-ß0y^\0) = do,       a17(l)+íí1/1)(l) = 51,

where /: / x R2 —*■ R2 and / =   [-e, 1 + e ], for some e > 0.   Here ^(fc)(i) repre-

sents the fcth derivative.  We also assume

(1.2) a0+ai>°>   oio,ß0,al,ß1>0,   a0 + ß0 > 0,   a, + ^ > 0.

In particular, we shall derive for the first time, direct finite-difference analogues

of (1.1) which have the following two key properties. First, they will have solutions

which approximate the solution to (1.1) with order h4 globally over the mesh points

of a uniform mesh of width h; and second, when applied to the linear problem

(1.3) /*>(,) + p{t)y^\t) + q(t)y(t) = r{t)

with condition (1.1b), the linear system of equations resulting will be both tridiagonal

and of "positive type" (as will the Jacobian matrix of (1.1)).  Thus, we will have a

method that will yield a high order solution and be easy to analyze.  The method will

have the same number of matrix operations as solving (1.1) to order h2; however, there

will be more functional evaluations.

Recent work on algorithms for two-point boundary value problems for first order

nonlinear systems (see e.g. Keller [7]) has produced methods that can be applied in

much more general circumstances than ours.  This does not mean the techniques in

this paper are only of historical interest; however, in that context they do close a gap
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in the theory and application of positive type finite-difference methods to two-point

boundary value problems.  We shall show, for problem (1.1), that the methods in this

paper are competitive and useful.

The classical finite-difference algorithms for (1.1) are tridiagonal and of positive

type, but converge only of order h2 (see e.g. Keller [6], or Aziz and Hubbard [2] for

the linear case).  These algorithms combined with Richardson extrapolation (when

applicable) do give an order h4 method, however, an indirect one.   A comparison be-

tween this method and our direct order h4 algorithm will be given in Section 4.  Col-

location techniques have also been applied to (1.1) to give fourth order methods (see

e.g. Daniel and Swartz [4] or Russell and Shampine [10]).  Depending on the basis

used for the splines in this technique, the resulting matrix problem may be anywhere

from an effective bandwidth of five, to a matrix problem requiring 0{h~2) operations

to solve the linear system. A more serious difficulty with these methods is that, at

least for some basis that give "small" bandwidth, terms of 0(h~l) can appear on the

subdiagonal with terms of 0(1) on the diagonal; this can give stability problems due to

roundoff error and partial pivoting may be necessary (see [4, pp. 18—22] ).  Since our

algorithm is of positive type, it is diagonally dominant and this difficulty cannot occur.

In Pereyra [9], it is suggested that difference corrections could be applied to the

0(h2) analogue of (1.1) to obtain an 0{h4) solution.  This has not yet been done or

rigorously justified, so it is not clear how the two methods compare.  However, based

on some other results in [9], it appears that Pereyra's method might well be the best

way to obtain high order solutions of (1.1).  Shoosmith [11] suggests replacing all

derivatives in (1.1) by their fourth order finite-difference analogues.  This yields a five

diagonal matrix, which is not of positive type (but possibly is monotone).  The local

truncation error of this method is order h4, but no global truncation error estimates or

stability results are given when the boundary conditions contain the first derivative.

We note that we make no attempt to derive conditions for the existence and

uniqueness of solutions to (1.1), being concerned here only with the numerical ana-

lysts problem of determining the conditions under which a given numerical method

will converge and its order of convergence.  Hence we assume that at least one solution

to (1.1) exists, and let y denote any such solution.

In Section 2 we will consider the local truncation error of the method.  Since all

the proofs in that section are simple in idea, based on Taylor series and algebraic manipu-

lation, but somewhat lengthy because of the details involved, we shall omit most of

them.  In Section 3 we obtain our global error estimate and stability result, while in

Section 4 we consider some numerical experience and computational details about the

method.

Extensions to partial differential equations of the idea of obtaining high order

finite-difference approximations to a complicated operator that have the same matrix

structure as the approximation to some simpler operator are possible.   For one applica-

tion of this idea see Stepleman [12].

2.  The Method and Local Truncation Error.  We shall consider two slightly differ-

ent discretizations.  The one with the fewer function evaluations will require stronger



94 ROBERT S.  STEPLEMAN

hypothesis on / to be of fourth order.  Thus, which should be used in a given situation

will depend on /

Let h = 1/7V, N some integer, thn — (n - \)h, n ~ 0, . . . , N + 2 and n =

3/2, N + Vi.  Define ynn = y(thn) and y^ = y(k)(thn).  Consider first the approxima-

tion at the boundary.   If the global discretization error is to be fourth order, we will

need an approximation to y^l\0) and j(1)(l) of that order.  Set

(2-1) y2n,t = (^>i+m-^,/-«V2mA.

A standard technique is to use y'£ ¡ to approximate .y(1)(0).  However,

(2.2) y'^ =y(*\0) + -/3)(0) + 0(h4)' 6

so that this discretization is only 0{h2).  If we had an approximation to ,y*3*(0) that

was also 0(h2), we could then use (2.2) in the obvious way to get an 0{h4) discretiza-

tion of y^{0).  This is what we want to do, recalling, however, that we have an added

constraint that the resulting discretization gives rise to a tridiagonal matrix problem.

We now introduce some notation.  Set

\y'mh,i = P?« - 4yh,i-m + ^.^m)/2»^

(y'mh.t = (4yh,i+m - 3yhi-yhti+2m)l2mh,

and

(2-4) Ch,i=/('/,/. yHi>y%H,¿)

with similar definitions íoi f*h ¡ and/^Ä ,-.  Also, set

(2-5) yamh,i-(yh,i+m+yh,i-m)i^

A simple Taylor series argument shows:

Lemma 2.1. Let y G C5 [I ].  Then

(2-6) a ± i™*1?   (2) x n,u^
ymh,i = yhi+~^-ynV + 00»4)

and

(2.7)

ymh,i      yhi 3     * h,i-m ]2
,' + ,(i)_i^Lj;(3)    _W±..yw    +0(h4i

vhi 7.     * h,i-m 10     'h.i-m v     -"

v-       =V(D_^)!V(3) +M!y(4) +0(hA)
ymh,i      "/ii o      yh,i+m^      it     yh,i+m ^ uyn   >■

Since these discretizations are only order h2, we will need to improve them before

we use them.  We introduce some new discretizations to this end.  Set:

vp°   = v'°    _ —r/-+ -f-        ï
" mh,i       "mh,i        yi       mh,i+m       'mh,i—m'>

(2-9) lvp+ . = v'+, • + —(/•+, .-/- )J mh,i      -'mh.i fo   yJmh,i      J mh,i — 2m'>

p—      —     '— i   tn     , f+ r—      \
ymh,i~~ymh,i fa   "m/i,i4-2m  ~ 'mh,i)>



TRIDIAGONAL FOURTH ORDER APPROXIMATIONS 95

and

(2.10) fpOfPv      =  fft        V vP°     Ï
Jmh,i      J y hi' * hi' * mh,U

with similar definitions for/£~ (. and/^* ..

The next lemma, whose proof is based on the Mean Value Theorem and some

manipulation is a key to our local truncation error results.

Lemma 2.2.  Let y eC5[I] with fp(r, p, q) and fq(r, p, q) bounded and

f (r, p, q) Lipschitz continuous in q on I x R2.   Then

(2.11)

Also,

(2.12)

ypmli = y(h\) + o(h4),

ypmh=y(h\) + 0^)'

ypmh,i = y{h\) + 0^)'

andyni=yhi + 0(h4).

Proof.   Calculate that

f+ _ f-
1 mh,i+m      Jmh,i-

v(3)
yhi 2mh

: y(3>-
yhi

y(2)sh,i+m J h,i-m

2mh

+-
v(2) _ f+

h,i+m f«mh,i+m       Jmh,i-m y(2)
J h,i—m

2mh 2mh

Then using the Mean Value Theorem on the second and third term gives

= Th.

rh = r„<3) (y{h,lm - yi2ljn^\yl*ifhi

+f,(h)(yí%m-yílm

+ (fq(ß2)-fq(61))(y'-Hil

mh,i+m

,0)
h, i-m

+ y'-.  .     )l2mh
smh, i—m'

)/2mh.

Here 0p d2 ei x R2 and 6U = 62i + 0(h),  i = 1, 2, 3.  That the first bracket is

order h2 follows from the differentiability of y, that the second is follows from (2.7)

and that the third is follows from (2.7) and the Lipschitz continuity of/..

The result (2.12) follows from (2.11) and (2.7), while the last conclusion follows

from (2.6) and a very similar argument.

We would like to approximate j>(3)(0) = (/¿2 - f~0)/2h.  However, since this

directly involvesyh0,yhl, and^ft2, it will not give a triangular matrix approximation.

We would like an order h2 approximation that does not involve yh0.  What we will do

is to use (2.3) and interpolate a point midway between thl and tn2.  Thus, to approxi-

mate y(3\Q) we use the expression

fp+   Vh

However, this contains the nonmeshpoint yh 3,2. We substitute yh 3,2 for this point

whenever it appears.  Thus, we approximate

*-   ■>h/2,3/2 •//i/2,l

'(3)(0) = (4#» .3/2 - 3#-_, -fS+_Jh = y?};'h/2,3/2 'h/2,1      'h\2,2>
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where the  * denotes the substitution of yh 3/2 for yh 3j2.  In a similar manner, we

approximate

/3)o) = e/^+i - «¿BU+* +4K.*y* -'Sftr
Here the * denotes the substitution of yh N+]/¡ for ^h N+!/i.

Then in a manner very similar to Lemma 2.2 we prove:

Lemma 2.3. Let the hypothesis of Lemma 2.2 hold.   Then

y(3\o) = 43>- + o(h2),    /3>(i) = yg)*+1 + o(h2),

and

y(l)(ß)=yZl-\y<f\-+o(h4),

(2.13)
yO)m = y'0 _*iy(3)+     +o(Ä4)

Because of the first term on the right in (2.13) these discretizations still contain

the point yh0 or yn N+2, respectively.  However, these will disappear when we com-

bine them with the interior discretization, which we now consider.

At the points thn, N = 1, . . . , A' + 1, we would like to approximate the dif-

ferential equation to order h4.  The standard discretization for the second derivative

satisfies

<2-14)     ySS - OVi+i -2y" +^./-i)/*a -ïjfJ*4*'«)+ °i*4)-

Thus, if we can approximate .V^(fÄf) to order h2 using only yA , +i,yni, and jft ,_,

we will have what we want.   Since

(2.15) (/*)(,„ /+l) - 2y™(tht) +y(2\thi_i))lh2 =y^(thi) + 0(h2),

we need only approximate the expression on the left in (2.15) to 0(h2).  Thus, we

approximate this expression by (f^J_t - ^fh°i+fhî+0^2-

Then in a manner analogous to Lemma 2.2, we have:

Lemma 2.4. Suppose the hypothesis of Lemma 2.2 holds.   Then

(2.16) yi*\tM) = (/£7_, - 2/jf° + /*++ ,)/^2 + 0(h2),      Ki<N+l.

Then combining (2.14), (2.15), (2.16) we approximate problem (1.1) by

(2.17)

^,i+1-2>'ft/+j'Ä(/_1=^(4p(7_1 + io/Jf/0 +/#+,) +*V

(2.18)

i=l, ...,JV+1,

2/z A^
i7"0 =^"[ôo-ao^J +^2 -y >fí~ +Äw

2/2 /j3
í^,7V+2=^  [«1  -"l^.iV+J   +>'r,JV+   3-  4T+1   +^,Af+2-
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Substituting (2.18) into (2.17) where required for i = 1 and N + 1 gives rise to the

required tridiagonal matrix problem.  Here the rftl-, i = 0, . . . , N + 2, represent the

local truncation errors caused by replacing all derivatives by difference quotients.

Combining Lemma 2.1—Lemma 2.4 yields:

Theorem 2.5.   Suppose the hypothesis of Lemma 2.2 holds.  If, in addition,

yeC6(I),then

niQ, max      \Thi\ = 0(h4).

Discretizations, somewhat like (2.17) and (2.18), can be found in the literature

for problems that do not involve y*-1) in the boundary condition or in the function

(see e.g. Collatz [3, Chapter III] or Allen [1]).  However, none appear for the general

problem (1.1) which are order h4.

If higher partials of/exist and are bounded, we can save a function evaluation at

the interior grid points by using the discretization:

(2.20)     yh,i+1-2yhi+yhti_1=£[f-i_i + 4/» + 6/*° + f*l+l] +h\*.

In this case we have the following result:

Theorem 2.6.   Let y G C6(I) and f (r, p, q) be twice continuously differentiable

in r, p, q with bounded partials through order three on I x R2.   Then

0«/'«/V+2

(221) rnax       \t*.\ = 0(h4).

It should be noted that if, say, ß0 = 0 then th0 is ignored and thl is considered

a boundary point.  In this case (2.17) starts with i = 2 instead of i = 1.

3.  Global Discretization Error.   In this section we show that if y is the solution

to (1.1) and unn the solution to either (2.17) or (2.20) and (2.18) with the local

truncation error set to zero, then

(3H m3X \Uhn-yhn\ = 0(h4).
v      ' Kn<N+l

Lemma 3.1. Set for N = l/h, AN to be the (N + 1) x (N + 1) tridiagonal

matrix

~a» + y0h - a%

-l-ß»h     2 + (0,  +<)/* + l?h2 -l-ot,A

AN

■1-fiüLi*      ' 2 + (|3ív'_1+<_1)A + t£_1/.:

-ß% W + In"

Suppose 7l. > 0, i = 0.iV,  0#, < > 0, 0# +yN>m> 0, o# + j0 > m,

N = 1, 2, . . . and y0 + yN > 0.  Also assume \c^\<Klt \ßfN\ <K2,  i = 0, . . . , N,

where K, and K2 are constants independent of N.   Then for N sufficiently large (h suf-

ficiently small) AN is nonsingular, A^1 = (r¡j) satisfies rfj > 0,  i, j = \, . . . , N + I and
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(3.2)

max      max(rjA,rÍN+1) = 0(N),

Kj<N+l

M»1 IL =nav2ïlN IL =0(N¿).

Proof.   That AJ¡X exists and /l^1 > 0 for N sufficiently large follows since AN

is irreducibly diagonally dominant with positive diagonal and nonpositive off diagonal.

Since 70 + 7^ > 0, we assume without loss of generality 7^ > 0. We now show (3.2).

Set Vj = exp(2s) - exp((/ - \)sh), i = 1, . . . ,N + I, s> 0.  Calculate

(AN V\ « (-1 - |3/vA)(exp(2i) - exp((i - 1>A))

+ [(2 + ßf + of )h + yfh2] [exp(2s) - exp(«A)]

+ (- 1 - of A) (exp(2s) - exp((i + l)sA)),      i = 2, . . . , N,

> (1 + |3/vA)exp((/ - l)sA) - [2 + (f3f + a^)H\ exp(ish)

+ (1 + a/ArA)exp((i + l)sA)

= exp((i - l)sA)[(l + ßfNh) - [2 + (ßf + of)A] exp(sA)

+ (1 + of A)exp(2xA)]

a-     n Mr,2PexPW - l)/exp(sA) - 1  ,
exp((/ - \)sh)h¿ -p-(-;-+ ((■f-flf))]

Then since lim^g ((exp(sA) - 1)/A) = s, it follows for s > Kl + K2 and A sufficiently

small that (AN V)¡ > Kh2 where K is a constant independent of A or i.

Calculate

(^n, = (exp(2s) - 1) (< + 70A) - <(exp(2s) - expfsA))

= af^expisA) - 1) + (exp(2s) - 1)70A

>,jy(expw-i)+(exp(2g)_lhoj>^

for s > 0 since a^ > 0,  70 > 0,  a^ + 70 > m > 0.

(ANV)N+l - (exp(2s) - exp(i))((0# + 7jvA) - ^(exp(2s) - exp((l - A)s)))

= (exp(2s) - exp(s))(yNh + 0#(exp((l - h)s) - exp(s)))

[^2exp(s) - exp((l - h)s) "j
exp(2s) - exp(s)-  > £A

Tat               *                J

for  s so large that e* > 1 + K2s/yN and A sufficiently small.  Since (v4~'.4F) = V,

and (4 F)* > 0, K = 1, . . . , N + 1, we have for A sufficiently small,

7V+1

Z   r¡¡      min        (AV)K<V„
f-l KK<N+l

so that for some constant K
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N+\ ¡s

max       £  '.,•<-•

Ki<.N+\   /=1 A

Similarly, for /' = 1 or N + 1 and A sufficiently small there is a constant K such that

rn<K/h,     j=l,...,N+l.

Thus, (3.2) follows.

Theorem 3.2. Suppose w G 7?^+ ' satisfies for h = \¡N

(3-3) ANw = h2fN+h2TN,

where

(3.4) max   |r(.|<CA4,      |r(.|< CA3, i = 1, N + 1,
2<i<N

and

(3.5) l/^-K-KAIML,    i = 2,...,N,      \fNJ <K|ML,      f-l.JV+l.

7/Aen /or Af sufficiently large

(3.6) IML=0(A4).

/Voo/   From (3.3)

Ar+l W+l

", = *2 Z rufN,i + h2 £ ^^t/.
/=1 1=1

Then from Lemma 3.1 and (3.4) and (3.5) we obtain

\Wi\<h2(rn +riN+1)(\fNA\ + \fNJV+l\   +1x^,1 + Itj^+,1)

+ h2t rtf(\TNJ\+\fNJ\)
1 = 2

<A(2tf|ML +2CA3) + A2||^1IL(CA4+JfrA||W||0O);

and thus,

|| w|L < 3kh\\w|L + (2C + A2|| VIL)A4.

The conclusion now follows.

The following corollary provides both a global error estimate and stability result.

Corollary 3.3.   Let y EC6 [I] and the hypothesis of Theorem 2.2 hold.

Suppose in addition

(3.7) fp(r,p,q)>0   on I x R2.

77<ew with uhn the solution to (2.17) and (2.18) with Thn = 0, » = 0, . . . , N + 2

(3.8) max       !«„„ - yhn\ = 0(h4).
\<n*ÍN+l

Proof.   Let ehn = ynn - uhn, n = 1, . . . , N + 1.  Then eAfI satisfies
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eh,n-l   ~ 2-ehn  + eh,n + l

+ h2Thn,       1 <n <N + 1.

Here, for example, fP°n (u) =f(thn, uhn, uph°). Then using the Mean Value Theorem re-

peatedly we obtain

|l2 - A2/p(0.) + [§/,(<?,) + 5/,(02) -\ /,(fl3)] A

+ 2^(4(ö4) + 3fq(d5))(fq(6}) + 10fq(92) +fq(ß3))}eh „_,

+ |- 24 - lO/p(02)A2 - 2A(/(?(01) -/„(03))

- Ç (/,(Ö4) +/„(ös))(/,(Öi) + 10fq(62) + /,(03))} e»«

+ |l2 - A2/p(03) + |j /.(Ó!) - 5/,(fl2) - \ /,(03)] A

+ ^(3/^4) + fqVs))(f„Vi) + ^fq(d2)+fq(93))}ehn + l

= Jj(/p(«3)«*.»-i " W'A.n + iKW -2O/,(02) +4(03)) + 12A2rhB.

Here 0(. G [0, 1]  x i?2,  /' = 1, . . . , 5, and 0(- depends on n.  Similarly, the boundary

conditions (2.18) give:

y «7,0 + {«o +y W6) - 4/,(07) +/,(08)]} hehl

+ {~T +1T [4^(^} - 3W -/„(M} eh2 = h2po + W

ye^+2 + {«i + ^[34(09)-4^öio)+/<7(ö,i)]}K,^+i

+ {-y +-g- [-3/C7(09) + 4/i,(0Io)-/c7(Ö1i)]}^=/i2JP1 +tAiJV+2.

Here FQ and /r1 satisfy

|F0| <À'0max(k/l2|, \ehl\),      |F,| </^1max(|^jv|, |eÄ>JV+1|)

with AT0, /l j constant independent of A.

After eliminating (when necessary) eh0 and eh N+2, we can now apply the last

theorem and obtain the desired result using (1.2) and Theorem 2.5.

In an exactly analogous manner the next corollary follows.
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Corollary 3.4. Let the hypothesis of Theorem 2.6 hold. Suppose in addition

(3.7) holds. Then with uhn the solution to (2.20) and (2.18) with the local truncation

error set to zero (3.8) holds.

The next results show that the discrete problems have a solution.

Theorem 3.5.   Consider the system of equations.

(3-9) ANw = h2fN + h2b,

where b is a constant vector and fN is as in Theorem 3.2.   Then (3.9) has a solution for

h sufficiently small.

Proof.   The system (3.9) is equivalent to the system

w = h2AjilfN+h2Ajiib.

Then, proceeding exactly as in Theorem 3.2 using Lemma 3.1, we can conclude that as

long as A is sufficiently small

¿2llVlLII*IL

where K * is independent of h. Thus, the sphere S = {w\ \\ wW^ < T) is mapped into

itself; and the conclusion follows by the Brouwer fixed point theorem.

Since by the Mean Value Theorem, our discrete problems are equivalent to

/lJvM=A2F(0) + A2F + A2o, where [F(0)]i =/(*„,-, 0, 0), Ô = (§0> 0,. . . , 0, S,)T

and F is given analogously to that in Corollary 3.3, the last theorem applies.

Using the results we have obtained here, it is not difficult to follow standard

techniques to show that under slightly strengthened hypothesis Newton's Method con-

verges to the solution of our discrete systems.   For more on this see Henrici [5],

Keller [6] or Lees [8].

4.   Numerical consideration.  In this section we will consider the method applied

to problem (1.1) when the first derivative appears in both the differential equation

and the boundary condition.  (If, for example, no first derivative appears at all, then

the algorithm reduces to the well-known Numerov method; see Lees [8].)

Table 4.1 gives a comparison of the amount of work needed to solve problem

(1.1) for a fixed N, three fourth order methods and a linear /.  In the table, function

evaluations refer to an evaluation of /(/, y(t), y^\t)).  Method (1) is (2.17)—(2.18)

and (2.18)-(2.20); Method (2) is the classical 0(h2) algorithm followed by Richardson

extrapolation; Method (3) refers to collocation type procedures. We need not con-

sider Keller's Method here as it cannot compete with (2) for this simple problem. We

have chosen a linear equation to remove the number of iterations for solving the non-

linear equations as a variable.  However, if one considers, say, the number of oper-

ations per Newton step, there is very little difference in the conclusions that can be

drawn.

From Table 4.1 it appears that the superiority of (1) or (2) on the basis of work

done depends on the relative cost of multiplication versus the particular functional

evaluation.  The comparison between (1) and (3) is even more complex.  At least two

things must be considered, both dependent on the basis chosen for the space of splines.
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Measured (1) (2) (3)

Function Evaluations AN - 5 A 3A N

Multiplications to Solve Linear Equations 5A 15A l\N-0(N2)

Table 4.1

We must be aware not only of the bandwidth that the choice gives, but of its stability

properties. As was pointed out in Section 1, some methods that give small bandwidth

allow large subdiagonal elements relative to the diagonal elements, leaving the possibility

of instability due to roundoff error. This, of course, can be corrected by pivoting in

the linear system. It remains an open question whether this is often needed; however,

it is clear that the small bandwidth methods, which appear to need less work than our

algorithm, must be used with some care.

Since we could not find any problems in the literature for collocation when the

boundary conditions contain derivatives, we will not consider these any further.  How-

ever, based on some comparisons given in [10], for the no derivative case, it seems

reasonable to expect collocation to give errors of about the same magnitude as our

method.

In the following table, which describes some of the numerical experiments per-

formed, Methods (1) and (2) remain the same while Method (3) is now the classical

0(h2) algorithm.  All experiments were performed on the Spectra 7 in double precision,

and all errors are measured in the maximum norm.  The boundary value problems

solved were:

(A)

(B)

\yi2)=[(y(l))2+y2]l2ex,

Uo) -y{l\0) = 0,   y(l) +y(1\l) = 2e,

^(2)=[e^+(>,(i))2]/2;

tX0) -y(l)(0) = 0,   y(l) + y^\l) = - In2 - %,

(C)
\y(2)=(y+xy(l))/(i + x),

\y\0) - 2/1>(0) = - 1,   y(\) + 2/1>(l) = 3e.

The solutions of (A) and (C) are y(x) = ex, while (B) has the solution y(x) =

log(l/(l +x)).

Table 4.2 shows several things.   First, that the error in our method is order A4.

Second, that for the same number of points (but more work) you get much better

answers than the classical order A2 algorithm.   Finally, that the answers in these particu-

lar cases seem to be somewhat less accurate than the 0(h2) algorithm plus Richardson

extrapolation.  In Table 4.2 the notation, say, . 13(— 4) means .13 x 10-4.
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Differential Equation    # Points     Error (1)   Error (2)   Error (3)

4 .13(-4)     .63(-5)     .ll(-l)

8 .78(-6)     .40(-6)     .28(-2)

16 .32(-7) .70(-3)

4 .34(-3)     .17(-4)     .73(-2)

(B) 8 .56(-4)     .12(-5)     .18(-2)

16 .37(-5) .46(-3)

4 .58(-4)     .93(-5)     .10(-1)

(C) 8 .41 (-5)     .60(-6)     .26(-2)

16 .26(-6) .66(-3)

Table 4.2
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