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Error Analysis for a Stiff System Procedure

By Arthur David Snider

Abstract.   The analysis of the local truncation error in a numerical scheme for

integrating stiff differential equations, presented in a recent paper by Guderley and

Hsu, holds only in special circumstances, but a more general analysis preserves the

main conclusions.   Several modifications of the scheme are also considered.

1. In a recent paper, Guderley and Hsu [1] give an excellent detailed analysis

of a predictor-corrector scheme invented by Certaine [2] for integrating stiff systems

of differential equations.   Section 3 of their paper presents a derivation of the local

truncation error and argues that it can be simply related to the difference between the

predicted and corrected values under some circumstances.  The present paper attempts

to clarify these circumstances, pointing out an effect overlooked in [1] but essentially

recovering the original conclusion, and suggests a slight modification which improves

the accuracy.

2. Following [1], we transform a stiff system of ordinary differential equations

of the form

(1) dy/dx + Ay=fix,y)

(jc is the independent variable, y and / are vectors, and A is a matrix) into the equiv-

alent integral equation

(2) yix) = e-^x-«XO + JXexp(A(r - x))f(r, y(r))dT.

It is assumed that A is a diagonal matrix (the off-diagonal terms are absorbed by the

function f).  For the numerical scheme using the mesh points xn = x0 + nh, the

predictor for yixn + x) is

X    , j

(3) yPn      = exp(- Ah)y   + f exp(A(r - *      ))/ (T)dr,
J X

n

where fx(r) is the polynomial interpolating/(.x, y) at the (k + 1)  points ixn_k, yn_k)

to (x„, yn). Then the polynomial /2(r) is formed, interpolating fix, y) at the points

(xn-k + i> yn-k+i) t0 (xn> yn)> and the P°int (xn+v J^+i)-  The equation for the

corrector ycn + x is the same as (3), but with/2(r) replacing/j (t):

X      ,

(4) fn +, = exp(- Ah)yn + fx "      exp(A(r -xn+l))f2ir)dr.
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When the scheme is stable, most of the truncation error is generated locally;

hence the hypothesis is made that the values of y¡ for / < n are exactly equal to the

true solution ^(xy), and the local truncation error yixn + x) - ycn+\ is to be computed.

Under such conditions, the only errors involved in (3) and (4) come from the approxi-

mation of the function fix, yix)).

For the predictor formula, fx interpolates / at its previous k + 1 values, assumed

exact.  Writing fix) for fix, yix)), [1] correctly gives the difference as

r"(fc + 1)ix'ï   k

(5) e,(x) =/(*) -/,(*) =J-^T ge* - *„-*+/).

for some intermediate value x , which depends on x and which changes from component

to component.  Thus we can write

n + l

(6) y(xn+J-yPn + i=S eMMr-xn + x))ex(r)dr.
J  X

n

Since the factors multiplying the components of f^k + 1\x') are of fixed sign in the

interval of integration, we can use the mean value theorem for integrals to derive

(7) yixn+x)-ypn+x=hk+2cpfk+1\x),

where

(8) C" = CP(AA) = f ' exp(AA(? - 1)) J] Ö + 0<*f/(* + 1)!
Jo ,=o

Observe however, that in the corrector formula f2ix) interpolates/(x) at the

points x„_k+l, xn-k + 2> ■ ■ • ' xn-i> and xn' DUt (and nere *s tne effect overlooked

in [1] ) at xn+ j it takes the value /(x„ +,, y^+ x), which, unless / does not depend

on y at all, is not equal to fixn + x, >>(x„ +1))•  Thus, the error is more complicated

than equation (5).   Adding and subtracting /3(x), the polynomial which interpolates

fix, yix)) (exactly) at the points xnk+x through xn + x, and using the Lagrange

interpolation formula, we can write

fix) - f2ix) = fix) - f3ix) + f3ix) - f2ix)

/<*+1>(*V_"   _        ,
(9) "   (Jt+1)!    /=| Xn-k+1>

+ Uíxn+vyixn+l))-fixn + x,yUi)m xXX"xk+Í    '
/=1    n + l       xn-k+j

for some intermediate x".  This yields

y(xn+l)-ycn+l=hk+2ccfk+1\x')

+ hß[fixn + x,yixn+x))-fixn+x,yP + x)],

(10)

where

(11) Cc = Cc(Ah) = f 'expCAA« - 1))  f]   i% + 0^/(* + 1)'
Jo /=-i

and
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1 fc-!
(12) ß = ß(Ah) = f exp(AA(£ - 1)) U (| + t)d%¡k\.

Jo /=0

In [1] it is argued that, in the circumstances when the components of /(x, yix))

are given exactly by polynomials of degree k + 1 in x (so that/(k + 1) is constant),

the ratios of corresponding components of yixn + j ) - ypn +, to X*„ +1 ) _ y„ +1 are

constants; and they use this conclusion to derive an easily computed expression for

the truncation error. We see that this statement is not precisely true because of the

last term in (10); it would be true only if we also assume that fix, y) is independent

of y (i.e.,/is simply a polynomial in x, in which case (1) can be integrated analyti-

cally).  However, if fix, y) is smooth enough, we can write

03) f(k+l)ix)=fk+1\xn + x) + Oihl

and similarly for/(fc+1)(x"); and because yixn + x) -ypn+l isO(Afc + 2),

04) fixn+x,yixn+x))-fixn+x,ypn+x) = oihk+2),

so that (7) becomes

(is) y(xn+i)-ypn+1 =hk+2cfk+1\xn+x) + oihk+3),

and (10) becomes

(16) y(Xn + 1)-yCn+l =hk + 2Ccfk+1\xn+x)+Oihk+3).

Since Cc, C, and Cc - Cp all have nonsingular limits as A —► 0, we can manipulate

these equations to express

O7)      yOcn+1)-K+i=cc(CP -ccrV„+1 -ypn+1) + oihk+i),

a useful formula for numerically estimating the principal part of the truncation error

if fk + 1\xn + x) =£ 0.  This idea reduces to Milne's method [3] in case A = 0.

Guderley and Hsu, as we have mentioned, quote (17) without the error term

and propose that it be used for step control.  We agree wholeheartedly, but we wish

to add that with very little additional work we can get one more order of accuracy by

finally setting

<18> y„+i = (cp-ccr1«Tyen+i-ccypn+J>

since (17) implies (recall that these matrices are diagonal and commute)

09) yK+i)-yn+i=oihk^);

this is just a variant of Richardson extrapolation.  Of course, the stability computations

of [1] can easily be modified accordingly (though they are still somewhat forbidding,

and most practitioners will probably want to depend on step control for stability).

3.  Finally, we would like to comment on two other plausible modifications for

improving the accuracy.  First, we consider the possibility of iterating the corrector

equation (4) until it is satisfied with the same number, ycn + x, appearing as the value

on the left-hand side and as the interpolated value of /2(r) at xn + x.  However, the only
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change in the analysis that would result is the appearance of ycn + x instead of ypx+x in

equation (10), so that the leading term in (10) is still 0(hk + 2).  This is an old story;

when the predictor has the same order of accuracy as the corrector, the asymptotic

behavior of the discretization error is not improved by iterating the latter [3, p. 261].

A more promising suggestion would be to retain the point (x„_fc, v„_k) in inter-

polating fix, y) in the corrector formula, so that (fc + 2) values are used in (4).  In

this case, the error analysis would yield

y(xn+i)-ycn+i=hk+3ccf(k+2)(x')

+ hß[fixn + x,yixn + i))-fixn + x,ypn+x)],

which is Oihk + 3). However, this would increase the complexity of the code (requiring

a (fc 4- l)-point and a (fc 4- 2)-point interpolation) and destroy the step control test (17):

Surely the use of equation (18) is more advantageous.
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