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Triples of Sixth Powers With Equal Sums

By Simcha Brudno

Abstract.    The diophantine equation x    + y    + z    = u    + v    +  w    is shown

to have a two-parameter solution which is homogeneous of degree four.   The solution
2        2        2        2        2 2

also satisfies x    + y    + z    — u    + v    + w ; and in addition, 3x + y + z = 3u +

v + w.

The diophantine equation

(1) x6 +y6 +z6 =u6 +v6 + w6

is a particular instance of the much-studied problem of finding equal sums of like

powers of integers, surveyed by Lander, Parkin and Selfridge in 1967 [4].  The small-

est nontrivial solution was published by Subba Rao in 1934 [5], namely, 36 + 196 +

226 = 106 + 156 + 236.  Early editions of Hardy and Wright [3] referred to this re-

sult as "an isolated curiosity". However, Lander, Parkin and Selfridge [4] discovered

that (1) has ten primitive solutions in the range up to 2.5 x 1014, and that all but

one of these also satisfy

(2) x2 +y2 +z2 =u2 +v2+w2.

In [1] it was shown that there are infinitely many primitive solutions to (1),

each also satisfying (2) and

(3) v = y - z,      w = y + z.

Subsequently, in [2] the complete solution to (1), (2) and (3) was obtained in terms

of an infinite cyclic group of rational points on a cubic curve.  (Regrettably, the

solution 5P appeared in [2] with transcription errors in the values of x and w; it

should readx = 165809277507, y = 151561337462, z = 23038103009, u =

63175337782,v = 128523234453 and w = 174599440471.)

The principal aim of this paper is to exhibit the following explicit solution to

(1) in terms of parameters m, n:

x = 2zn4 + 4zn3n - 5«z2«2 - 12zn«3 - 9«4,

y = 3m4 + 9m3n + 18zn2«2 + 21/nn3 + 9«4,

z = -zn4 - 10«z3n - 17m2«2 - 12zn«3,

(4) u = m4 - 3zn3« - 14zn2«2 - 15«zn3 - 9«4,

v = 3«z4 + 8zn3« +9zn2«2,

w = 2m, + \2m3n + I9m2n2 + 18/n«3 + 9«4.

This solution also satisfies (2); and in addition,

(5) 3x +y + z = 3u + v + w.
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Of the ten smallest primitive solutions to (1), listed in [4], all but the sixth sat-

isfy (2).  Only the second satisfies (3), while (4) gives rise to all except the seventh

(and, of course, the sixth).

It should be noted that a particular choice of m and « does not necessarily yield

a primitive solution in (4), even if m and « are coprime.  Indeed, suppose (zn, «) = 1

and d = (x, y, z, u, v, w).  It is not difficult to prove that (i) 2\d just if m = n

(mod 2), and then 22||cz; (ii) 3[rf just if zn = 0 (mod 3), and then 32||i?; and (iii) S\d

just if zn = « or 2«z = n (mod 5), and then 51 \\d.  Moreover, suppose p\d for some

prime p > 5.  Clearly,pImn, so u = 0 (modp) yields 3«z2 + 8«z« + 9«2 = 0 (modp).

With y - v = 0 (mod p) this leads to I0(m + 3«) = 0 (mod p), and finally with z =

0 (mod p) this yelds 72«4 = 0 (mod p), which is impossible.  Hence, d has no prime

factor greater than 5.

Consider the transformation to (4) which results from replacing m, « by m', n'

satisfying

(6) m: n = -3(m + n).(m + 3«).

If x, y, z, u, v, w is the solution corresponding to m, n and x', y', z', u\ v, w' is the

solution corresponding to zn', «', then

(7) x':y':z':u':v':w' = u:v:w: x.y.z.
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It follows that any particular primitive solution to (1), (2) and (5) obtained from (4)

actually arises from two distinct ratios m : n.

Next, we remark that any solution to (1), (2) and (5) has an interesting geomet-

rical interpretation.  The points (x, y, z) and (u, v, w) in E3 are lattice points which

simultaneously lie on a sphere X2 + Y2 + Z2 = a, a concentric closed surface X6 +

Y6 + Z6 = b, and a double cone with vertex at the origin and axis in the direction

3:1:1.  It is intriguing to speculate that the solutions might turn out to have some

physical interpretation.

Finally, in Table 1 are listed all primitive solutions obtained from (4) with the

property that max {|x|, \y\, \z\} < 103.  As remarked earlier, these include all but two

of the numerical examples given in Table IX of [4].
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