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Some New High-Order Multistep Formulae

for Solving Stiff Equations

By G. K. Gupta

Abstract.   Several new multistep formulae of orders up to 9 for solving stiff ordinary

differential equations are presented.   Results of numerical testing of these new

formulae and some formulae presented in earlier papers and the stiff formulae used

by Gear are included.

1.  Introduction.   In recent papers, Gupta and Wallace (1975) and Wallace and

Gupta (1973), the authors have presented several new linear multistep methods

(formulae) for the solution of stiff differential equations.  In this paper more new

multistep formulae are presented.   Results of numerical testing of these formulae and

those presented in previous papers, using a subroutine similar to DIFSUB of Gear

(1971), are included.

We will be using a polynomial representation of the linear multistep methods.

Each multistep method of order m can be represented by a corresponding polynomial

C(x) of degree m.  We have called this the 'modifier polynomial' of the method.  This

representation was discussed in detail in Wallace and Gupta (1973), where we also

show the relation between the coefficients of C(x) and the coefficients {a¿} and {0(}

of the conventional representation of multistep methods.

For each of the formulae we study, we will present its truncation error coeffi-

cient Km + l and the stability parameters D and a.  The local truncation error intro-

duced in the nth step of numerical integration is given by Km + 1hm + 1y(-m + 1\xn) +

0(hm + 2) for a method of order m, using a step-size of h (assumed constant).  The

differential equation being solved is

y'=f(x,y),      y(0)=yo.

The stability parameters D and a are defined in the following definition of

A(a, Testability.

Definition.  A(a, D)-Stability.   A method is said to be A(cx, 7))-stable, a G (0,

7t/2) if all numerical solutions to y — Xy converge to zero as n —► °° with h fixed

for all | arg(- Xh)\<a,D< Re(hX) < 0, | X | ¥= 0 and for all Re(nX) < D.

A(a, 7))-stability combines the essential features of the ,4(a)-stability of Widlund

(1967) and the stiff-stability of Gear (1969).
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hX-plane

Figure 1

The shaded portion is the A(a, 7))-stability region

2.   Formalism.   Assuming the step-size to be fixed, as is done in this paper, we

define xn = nh and yn to be the approximate solution at xn.  Also fn — f(xn, yn).

For an w-step method, we suppose that the solution after the step to xn_1 is

approximated by a polynomial Pn_1(x) of degree m, with Pn_1(xn_1) = yn-\ •  To

advance the solution from xn_1 to xn, we obtain a new degree m approximating

polynomial Pn(x) from the previous polynomial Pn_1(x) by the relation

Pn(x) = Pn_1(x) + 8nC((x-xn)lh),

where C is a fixed polynomial of degree m characteristic of the particular m-step

method employed and bn is chosen on each step to satisfy P„(x„) = f(xn, Pn(x„)).

The above formalism differs slightly from that of Wallace and Gupta (1973) in

that the present formalism defines the polynomial C to be independent of !:■    It was

shown in Wallace and Gupta (1973) that the method of solution described above o

exactly equivalent to the classical w-step method.  Any method which can be described

in the formalism of Henrici (1962), which is consistent and of order m, can be

described in our formalism by suitable choice of C.

In modifying Pn_1(x) by the addition of some multiple of C((x - xn)/h) to

produce Pn(x), we would normally hope to produce a Pn(x) which retained as much

information as possible about the behavior of the function y for x < xn_1.  We,

therefore, expect that the correction unC((x ~ xn)/h) will in some sense be close to

zero for x < xn_t, at least in the range xn_m < x < xn_1.  Equivalently, we expect

the polynomial C(x) to be in some sense small for x < - 1, at least in the range

- m < x < - 1.  For instance, in our formalism, the Adams-Moulton formula of order

m has

C(-1) = 0,    C'(-k) = 0,    k=\,2,...,m-l;

and the stiff formula of Gear (1969) has

C(-k) = 0,      k= 1,2, . . . ,m.
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Our search for new formulae has been directed towards other ways of choosing

C to approximate zero for values of x < - 1.  In Wallace and Gupta (1973), we

chose C to have small values in this range in an exponentially-weighted least squares

sense and also in an absolute magnitude sense.  We now present further methods

choosing C to be small in absolute magnitude and also methods which choose C to

make C' approximate zero in one or the other sense.

3.  New Formulae.  We present five sets of formulae, two of them based on

exponentially-weighted least squares approximation and the other three based on

Chebyshev approximation.  Our aims in investigating new formulae are that we seek

formulae with stability as close to yl-stability as possible, with small truncation error

coefficients and as high an order as possible.

3.1. Exponentially-Weighted Least Squares Formulae. The two sets of formulae

we present are such that their corresponding modifier polynomials C(x) have a zero at

x = - 1 and C'(x) minimizes

{C'(0)-1}2 + ¿ vk{C'(-k)}2

k=l

where the weight-factor v is fixed (0 < v < 1).  Using formulae based on such modi-

fier polynomials, the polynomial approximation to the solution of the differential

equation will minimize (as n approaches infinity)

¿ s{K(x«-*)-f*-*}*■
fc = 0

Two sets of formulae are presented in Tables 4 and 5 corresponding to v = 0.5

and v = 0.6. We label them FMPD50 and FMPD60 because these polynomials (or

rather their dérivâtes) are called 'Fading Memory Polynomials' by Morrison (1969),

who also discusses how to derive them.   The details of the stability and truncation

error of these formulae are presented in Table 1.

3.2. Chebyshev Approximation Formulae.   In Wallace and Gupta (1973), we

presented a set of formulae based on a Chebyshev approximation to y = 0 on the

range (- B, 0), where B is some suitably chosen positive real x-value.  These formulae

are almost A -stable up to order 6 (label them CHEB1) but the truncation error coef-

ficients of these formulae are quite large.  It was therefore thought to be worthwhile

to investigate Chebyshev polynomials approximating y = 0 on ranges (- B, - 1) and

(-5,-0.5).

Three sets of formulae are presented.  The first set provides a Chebyshev

approximation to y = 0 on the range (-5,-1 ). These formulae do not have very

good stability and are included only because their truncation errors are quite small.

We label these formulae as CHEB2.  The next set provides an approximation on the

range (- B, - 0.5) and is labelled CHEB3. The third set is such that the corresponding

modifier polynomial has a zero at x = - 1 and its derivative provides a Chebyshev

approximation on the range (- B, - 0.5).  We label this last set as CHEB4. Various

other formulae have been studied, and the ones which we are presenting here were

thought to be more useful.
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m

order

1

2

3

4

5

6

7

8

9

FMPD50

K
'mfl

0.695

1.05

1.73

2.70

3.93

5.61

D

¿-stable

I
¿-stable

89.0

86.0

82.5

78.3

unstable

I
unstable

I
unstable

-0.007

-0.052

-0.156

-0.383

FMPD60

K
m+1

0.50

1.56

3.79

8.15

16.62

33.00

64.70

126.58

248.77

¿-stable

I
¿-stable

89.5

87.0

84.2

81.3

78.5

75.2

71.4

-0.004

-0.026

-0.074

-0.156

-0.284

-0.510

-1.240

Table 1

Truncation error coefficients and stability parameters

for formulae FMPD50 and FMPD60

Order

CHEBl

Vl

CHEB3

Vl

9.0 0.375

15.73    1.83

24.6

35.6

13.75

1136.79

89.5

89.0

88.8

88.6

-0.006

-0.012

-0.013

-0.013

Not studied

4.0

6.9

10.5

15.0

22.5

0.15

0.37

1.09

4.23

44.31

86.7

84.4

82.7

81'. 6

80.8

-0.112

-0.152

-0.183

-0.189

-0.144

Table 2

Details of Chebyshev approximation formulae CHEBl and CHEB3

The details of the truncation error and stability of formulae CHEBl, CHEB2,

CHEB3 and CHEB4 are presented in Tables 2 and 3.  The details of CHEBl are

included to emphasize that ^4(a)-stable formulae for almost all values of a G [0,7t/2)

do exist for orders up to 6.  The coefficients of these formulae are not presented

since these are easy to obtain.  (Formulae of order 2 are not included because these

turned out to be the trapezoidal rule.)

3.3.  For the sake of comparison, in Appendix A we include the details of the

truncation error and stability of the stiff formulae used by Gear.
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Order

3

4

5

6

B

1.9

2.9

4.5

7.5

CHEB2

ïïH-1

0.08

0.07

0.114

0.497

77.6

56.0

39.0

30.5

D

-1.49

-6.19

-5.11

-3.35

B

4.5

9.0

15.5

24.5

CHEB4

Vl

0.187

0.558

2.858

23.466

87.0

85.0

84.6

85.0

D

-0.095

-0.291

-0.326

-0.185

Table 3

Details of Chebyshev approximation formulae CHEB2 and CHEB4

m=l

-0.8333333E0 -0.7023810E0  -0.6027778E0  -0.5287186E0  -0.4742835E0

-0.1666667E0 -0.3214286E0  -0.4611111E0  -0.5846774E0  -0.6927249E0

-0.2380952E-1 -0.6666667E-1 -0.1232079E0  -0.1884921EO

-0.2777778E-2 -0.1008065E-1 -0.2265212E-1

-0.2688172E-3 -0.1190476E-2

-0.2204586E-4

Table 4

Coefficients of formulae FMPD50

Modifier polynomial C(x) = V¡L0c¡xl, c1 = - 1.0

Also, at the suggestion of the referee, we present in Appendix B the coefficients

of the conventional representation of the formulae CHEBl, CHEB2, CHEB3, CHEB4,

FMPD50 and FMPD60.

4. Testing.

4.1.    Recently Enright, Hull and Lindberg (1975) have tested five methods

for solving stiff differential equations.    The methods tested include a slightly modi-

fied version of the subroutine DIFSUB of Gear, two methods based on Runge-

Kutta formulae, a variable-order method based on the second derivative multistep

formulae developed by Enright (1974) and a fourth-order method based on the

trapezoidal rule with extrapolation developed by Lindberg (1971).  The main con-

clusion of this study is that generally the methods based on Runge-Kutta formulae

are unreliable (except for solving linear problems).  Also the modified subroutine

DIFSUB has been found to be efficient on all problems except when some of the

eigenvalues of the Jacobian are close to the imaginary axis.  This leads us to believe

that if the stiff multistep formulae used in DIFSUB were replaced by some other

multistep formulae of higher order and better stability, the resulting subroutine may

be significantly better than the other available methods.
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-O.875OOO0EO

-0.1250000EO

-0.7687075E0

-0.2448986E0

-0.1360544E-1

-0.6801471EO

-0.3578431E0

-0.3921569E-1

-0.1225490E-2

-0.6076182E0

-0.4626417E0

-0.7479374E-1

-0.4626417E-2

-0.9252834E-4

8

-0.5490005E0

-0.5587451E0

-0.1181525E0

-0.1083065E-1

-0.4296455E-3

-0.5967299E-5

-0.5020428E0

-0.6461482E0

-0.1671921E0

-0.2015679E-1

-0.1188104E-2

-0.3277528E-4

-0.3344416E-6

-0.4645855E0

-0.7252434E0

-0.2200572E0

-0.3266631E-1

-0.2540317E-3

-0.1043036E-3

-0.2116049E-5

-0.1653164E-7

-0.4346992E0

-0.7966720E0

-0.2752128E0

-0.4823232E-1

-0.4634746E-2

-0.2515721E-3

-0.7605484E-5

-0.1182200E-6

-0.7297528E-9

Table 5

Coefficients of formulae FMPD60

Modifier polynomial C(x) of degree m = X"L0c¡x', Cj = - 1.0

Our aim in testing was to compare the several new multistep formulae we have

developed with the stiff formulae used by Gear in DIFSUB (1971).  Our testing is not

very extensive; in fact, we have tested the formulae on only one test problem while

Enright et al. (1975) have used several test problems. We can, therefore, expect only

limited information from the testing.

The formulae tested are discussed in Section 4.2 and the algorithm used is

discussed in 4.3.  In Section 4.4, we present the test problem and the test results.

4.2. Formulae.   The following sets of multistep formulae were tested.  For

each set we give the maximum order and the stability parameter a.  A value of a for

a set is the maximum value of a such that all the formulae in that set are stable

within the wedge ± a in the /zA-plane.  Details of the individual formulae are given

in the corresponding references.

(a) FLS-formulae based on finite least squares as presented in Gupta and

Wallace (1975).  Maximum order = 8.   Stability parameter a = 63.5 deg.

(b) BDF-stiff formulae used by Gear in DIFSUB (1971).  Maximum order

= 6.  Stability parameter a = 17 deg.
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Formulae EPS - 10 EPS - 10
-5

EPS - 10
-7

(a)  FLS

(b)  BDF

(c) FMP25

(d) FMPD50

(e) FMPD60

(f) CHEBl

(g) CHEB2

(h) CHEB3

(i) CHEB4

NS/NF/NJ

HE/ÖE

NS/NF/NJ

HE/OE

NS/NF/NJ

HE/OE

NS/NF/NJ

HE/OE

NS/NF/NJ

HE/OE

NS/NF/NJ

HE/OE

NS/NF/NJ

HE/OE

NS/NF/NJ

HE/OE

NS/NF/NJ

HE/OE

87/203/16

0.40/7

95/206/14

0.425/6

152/340/21

0.453/8

221/500/22

0.295/6

363/910/29

0.368/9

113/251/9

0.237/4

89/197/14

0.394/5

103/268/14

0.283/5

133/284/14

0.223/3

170/407/19

0.227/8

191/497/17

0.213/6

218/455/20

0.251/8

328/765/18

0.134/6

449/1139/27

0.195/9

347/737/17

0.08/4

182/408/19

0.181/5

225/480/21

0.151/6

246/522/22

0.126/6

288/599/25

0/129/7

309/684/24

0.106/6

317/765/24

0.142/8

528/1207/17

0.0669/6

592/1407/26

0.113/9

618/1298/24

0.049/6

354/956/21

0.0882/6

415/922/25

0.075/7

513/1087/24

0.0576/6

Table 6

(Eigenvalues - 500 ± Oi)

(c) FMP25—fading memory formulae with the weight-factor v = 0.25 as

presented in Wallace and Gupta (1973).  Maximum order = 8.  Stability parameter

a = 16 deg.

(d) FMPD50, FMPD60, CHEBl, CHEB2, CHEB3 and CHEB4 presented in this

paper.

4.3. Algorithm.   The algorithm being used is a modified version of DIFSUB of

Gear.  The following changes were incorporated. We assume that the reader is

familiar with DIFSUB of Gear (1971).

(a) PR1, PR2, and PR3 are the factors by which the step-size is changed if

order p - 1, the present order p or order p + 1 is used, respectively.  These are

computed as follows

PR2 = 1.05(10D/E)'/2(p + 1),

PR1 = 1.05(10D/EDWN)y2P,

PR3 = 1.05(10D/EUP)1/2(p+2).
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Formulae EPS - 10 EPS - 10 EPS - 10

(a) FLS

(b)  BDF

(c) FMP25

(d) FMPD50

(e) FMPD60

(f) CHEBl

(g) CHEB2

(h) CHEB3

(i) CHEB4

NS/NF/NJ

HE/OE

NS/NF/NJ

HE/OE

NS/NF/NJ

HE/OE

NS/NF/NJ

HE/OE

NS/NF/NJ

HE/OE

NS/NF/NJ

HE/OE

NS/NF/NJ

HE/OE

NS/NF/NJ

HE/OE

NS/NF/NJ

HE/OE

91/210/15

0.402/7

92/189/13

0.442/6

137/369/21

0.453/8

177/396/14

0.291/6

270/672/19

0.373/9

148/310/11

0.187/3

87/187/13

0.397/5

129/265/14

0.259/4

128/269/14

0.241/4

178/423/18

0.227/8

183/479/16

0.'215/6

218/524/21

0.243/8

297/674/14

0.135/6

372/881/20

0.196/9

304/666/16

0.100/5

184/408/13

0.175/5

228/486/23

0.151/6

287/584/17

0.103/4

316/676/25

0.139/8

363/824/18

0.107/6

352/864/25

0.141/8

531/1487/12

0.0649/6

510/1325/17

0.110/9

724/1562/31

0.047/6

375/1000/18

0.0883/6

445/1128/21

0.076/7

548/1157/22

0.0584/6

Table 7

(Eigenvalues - 50 ± 50/)

D, D, D are the squares of the error estimates at order p, p - 1 and p + 1, respectively,

and E, EDWN, EUP are the squares of the error requirements (times some constants)

at orders p,p - 1 and p + 1, respectively.

(b) In DIFSUB if the step increase is less than 10%, then the step is not changed.

We allow step change if the change is more than 2.5%.

(c) Necessary changes to allow higher-order formulae.

These changes may seem arbitrary.  The aim was to change the algorithm so

that it will tend to go to as high an order as possible.

4.4.   Test Problem and Results.   The test problem was

y\ = uvx - uy2 + (- v + u + lys*,     y'2 = uyx -vy2 + (- v - u + Oe*,

^(0)=2,      .v2(0)=l.
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Formulae EPS 10 EPS = 10
-5

EPS = 10
-7

(a)  FLS

(b)  BDF

(c) FMP25

(d) FMPD50

(e) FMPD60

(f) CHEBl

(g) CHEB2

(h) CHEB3

(i) CHEB4

NS/NF/NJ

HE/OE

NS/NF/NJ

HE/OE

NS/NF/NJ

HE/OE

NS/NF/NJ

HE/OE

NS/NF/NJ

HE/OE

NS/NF/NJ

HE/OE

NS/NF/NJ

HE/OE

NS/NF/NJ

HE/OE

NS/NF/NJ

HE/OE

140/340/21

0.375/6

147/342/17

0.455/6

507/1223/31

0.431/8

224/570/18

0.292/6

346/771/27

0.357/9

204/479/M

0.177/3

134/315/18

0.376/5

159/403/23

0.282/5

172/382/19

0.240/4

294/660/34

0.227/8

660/1580/34

0.213/6

322/749/28

0.243/8

418/1038/16

0.132/6

453/1024/28

0.194/9

515/1203/23

0.085/4

454/1192/58

0.063/3

357/834/24

0.148/5

417/1058/25

0.110/5

789/1953/34

0.043/4

1202/2943/26

0.031/4

646/1576/32

0.136/8

796/2122/18

0.0698/6

740/1961/21

0.113/9

1127/2492/31

0.0446/6

1018/2553/49

0.0273/4

712/1628/24

0.081/6

844/2068/29

0.066/6

Table 8

(Eigenvalues - 10 ± 50/)

We want the solution on the interval.  The exact solution is (0, 20).

yl = c1evx cos(wx + c2) + ex,      y2 = cxevx ûn(ux + c2) + e*.

For the given initial conditions cx = 1, c2 =0.

The eigenvalues of the Jacobian of the system of equations are v ± iu.  We

choose four sets of values for v and u

(1) v = - 500, u = 0,

(2) v = - 50, u = 50,

(3) v = - 10, u = 50,

(4) v ■» - 10, u = 100.

The formulae were tested for accuracy requirements (EPS) of 10-3, 10-5, 10-7.

The results of the numerical testing are presented in Tables 6 to 9. We have

tabulated the number of steps (NS), the number of function evaluations (NF), the

number of Jacobian evaluations (NJ), the step-size at exit (HE) and the order of the
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Formulae

(a) FLS

(b)  BDF

(c) FMP25

(d) FMPD50

(e) FMPD60

(£) CHEBl

(g) CHEB2

(h) CHEB3

(i) CHEB4

NS/NF/NJ

HE/OE

NS/NF/NJ

HE/OE

NS/NF/NJ

HE/OE

NS/NF/NJ

HE/OE

NS/NF/NJ

HE/OE

NS/NF/NJ

HE/OE

NS/NF/NJ

HE/OE

NS/NF/NJ

HE/OE

NS/NF/NJ

HE/OE

EPS - 10~3

208/498/33

0.40/7

2473/5849/134

0.0085/5

2707/6639/32

0.0071/4

276/708/19

0.296/6

3313/9666/25

0.0061/6

279/661/23

0.193/4

1838/4456/248

0.010/4

235/593/27

0.281/5

256/669/22

0.211/3

EPS - 10

474/1142/38

0.226/8

390/1001/20

0.222/6

2814/6531/36

0.0078/6

629/1604/23

0.148/6

3340/7382/86

0.0073/7

770/1720/35

0.091/6

709/1815/52

0.115/4

549/1298/36

0.148/6

623/1354/34

0.109/5

EPS - 10

1568/3597/26

0.0195/3

2811/6734/131

0.0085/6

2124/5143/47

0.144/8

1216/2989/21

0.0711/6

1219/3238/37

0.111/9

1707/3939/39

0.0515/6

2301/5556/92

0.0125/4

1150/2666/34

0.081/6

1413/3218/37

0.056/6

Table 9

(Eigenvalues - 10 ± 100/)

method being used at exit (OE).  The last two parameters, HE and OE, are generally

not compared, but in our opinion they provide very useful information.  Comparing

HE, we can get some idea of how various formulae would have performed had the

integration interval been larger.  Comparing OE, we can see how the variable order

algorithm is working for the various formulae.

We do not include details about the errors in the numerical solution for all

test cases.  In Table 10 we do, however, give the ratio of the maximum relative error

in the numerical solution to the required error (EPS) for eigenvalues - 50 ± 50/.

5. Concluding Remarks. (1) FLS seems to be one of the better formulae. In

most cases it is better than the rest of the formulae, and for eigenvalues - 10 ± 50/

and - 10 ± 100/ the degradation in its performance is not too bad.

(2)  The algorithm seems to have suited some formulae more than others, and

it would be expected that the performance of at least some formulae could be

substantially improved by 'tuning' the algorithm to the formulae.  Also, the algorithm
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Formulae

FLS

BDF

FMP25

FMPD50

FMPD60

CHEBl

CHEB2

GHEB3

CHEB4

EPS =  10

0.54

0.55

1.09

1.50

2.46

2.10

8.73

2.20

1.25

EPS =  10
-5

1.01

3.05

1.51

1.67

2.34

6.82

9.80

3.60

5.70

EPS = 10
-7

1.78

2.12

1.39

3.53

3.56

6.02

6.17

7.40

8.50

Table 10

Ratio of the maximum relative error to EPS for eigenvalues - 50 ± 50/

definitely needs modification if it is to be used with high-order formulae (order > 8).

This is very well demonstrated by the performance of FMPD60 at EPS = 10~3 and

10_s (X = - 10 ± 100/) and of FMP25 at EPS = 10~3 (X = - 10 ± 50/), among

others.  The poor performance of these two formulae at the cases referred to was

due to corruption of the derivatives of the approximating polynomial when the step-

size had to be reduced.  Also when higher-order formulae are being used, the step-

change takes place less frequently since at least m + 1 steps (for order m) must be

taken between two step-size changes.

(3) Krogh (1973) has remarked that the importance of A -stability in practical

computation is doubtful.   To find whether requirements similar to A -stability are use-

ful, we thought of comparing CHEBl and FLS.  CHEBl are almost .¿-stable while

FLS have the stability parameter a = 63.5 for the 8th-order formula.   Both the

formulae were tested for eigenvalues - 10 ± 0/, - 10 ± 25/, - 10 ± 50/ and - 10 ±

100/ (for EPS = 10~7). The numbers of steps required by FLS were 241, 367, 789

and 1568, respectively.  CHEBl needed 563, 783, 1127 and 1707 steps for these

eigenvalues, respectively.  The ratio of the number of steps at - 10 ±100/ to the

number of steps at - 10 ± 0/ comes out to be 6.5 for FLS and 3.03 for CHEBl. The

ratio comes out to be more than 10 for stiff formulae used by Gear.  This shows the

usefulness of A -stability or a similar requirement.

(4) Many of the new formulae presented in this paper have performed much

better than the stiff methods used in DIFSUB when the eigenvalues of the Jacobian

are close to the imaginary axis.  Further investigation is required, and suitable

algorithm(s) are being designed for these new formulae.

6.   Acknowledgments.  The author is grateful to the referee and Professor

C. S. Wallace for several useful suggestions.
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Appendix A

Order
Í7?+1

0.333

0.250

0.200

0.167

0.143

A -stable

86.0

73.5

51.8

17.2

-0.1

-0.7

-2.4

-6.1

Table Al

Details of the truncation error and stability of the stiff formulae used by Gear

Appendix B

A Ac-step multistep formula is usually represented by

akyn + k +0ik-iyn + k-l  +• • • + aO>'r, =hWn+k +h-lfn + k-\ +' "+^Q-

The coefficients a. and ßt are now presented for various formulae studied in this

paper.

-0.473245

1.814802

-2.341557

1.0

0.225649

-0.412208

-0.181752

0.500000

0.457734

-2.204274

4.010774

-3.264234

1.0

-0.221578

0.628302

-0.256324

-0.618016

0.492188

-0.4538100

2.632823

-6.138831

7.191439

-4.231530

1.0

0.218120

-0.832033

0.859755

0.361547

-1.096034

0.492000

0.454151

-3.454151

8.746665

-13.280660

11.380330

-5.217959

1.0

-0.215042

1.028761

-1.636942

0.433327

1.493303

-1.597493

0.494444

Table Bl

Coefficients of the formulae CHEBl
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