
REVIEWS AND DESCRIPTIONS OF TABLES AND BOOKS

The numbers in brackets are assigned according to the revised indexing system

printed in Volume 28, Number 128, October 1974, pages 1191-1194.

24 [2.00, 3.10, 3.20, 4.00].-F. B. Hildebrand, Introduction to Numerical Analysis,

2nd ed., McGraw-Hill Book Co., New York, 1974, xiii + 669 pp., 24 cm.  Price

$15.50.

The first edition of this well-known introductory text was published in 1956.  The

present edition preserves not only the basic character of the original work, but also

pretty much its content. While many changes have been made, most of them are rela-

tively minor.  Among the more substantive additions are new sections on machine errors,

recursive computation, Romberg integration, and cubic spline interpolation.  Also, the

number of problems has increased substantially, from 513 to 670.  On the whole, how-

ever, the text reflects the state of the art as it existed in the mid-fifties, when the first

edition appeared.  Sections entitled "Supplementary References", which accompany

each chapter, serve to direct the reader to newer developments.

W.G.

25 [2.05.1].—Ph. Th. Stol, Nonlinear Parameter Optimization, Centre for Agricultural

Publishing and Documentation, Wageningen, The Netherlands, 1975, 197 pp., 24 cm.

Price 49.40 Dutch guilders.

This interesting book is the author's doctoral thesis, and his abstract which we

give below is more accurate than usual.

Nonlinear parameter optimization in least squares was studied from a point of

view of differential geometry.  Properties of curvilinear coordinates, scale factors and

curvature were investigated.  Parameters of the condition function were expressed as

functions of algorithm parameter to generalize the formulas.  The analysis of the con-

vergence process cumulated in the development of procedures that accelerate conver-

gence.  Scale factors were used as weights to the differential correction vector to improve

the direction of search.  A method to correct for curvature, called back projection

method, was developed.  Use was made of the tangent plane on which the path of

search on the fitting surface was projected.  Deviations from the original direction were

corrected by optimizing the angle of deviation and step factor.    The correspondence

between rate of convergence and curvature of the path of search was illustrated with an

example.  A small geodesic curvature at the starting point indicates fast convergence.

Curvature properties of the parametric curves appeared to be of more influence than

those of the fitting surface. To avoid heavy oscillation of intermediate parameter values

a method was developed that required the intermediate points to be the foot of a per-

pendicular from the terminal point of intermediate observation vectors thus producing

paths of controlled approach.  Since condition functions may have a complicated struc-

ture in that they can be implicit functions, sequential functions or can consist of

mathematical models involving alternative functions,  it was treated how first derivatives

can be calculated and programmed systematically for these functions.  Methods intro-

duced were made operational by means of a FORTRAN program.  A description of the

use of the subprograms and instructions to modify the main program to suit the various

algorithms and procedures developed are given in the Appendices.

The strong point of this work is its heavy geometric flavor.   Its weakness is in the

failure to incorporate good numerical linear algebra into the suggested modifications of

664
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the Gauss-Newton algorithm. The author not only forms the normal equations at each

step, but he even solves the system by inverting the Gram matrix he should not have

formed. The algorithm thus seems inefficient in general and inaccurate for ill-condition-

ed problems.

John Dennis

Computer Science Department

Cornell University

Ithaca, New York 14853

26 [2.05.1] .-Charles L. Lawson & Richard J. Hanson, Solving Least Squares

Problems, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1974, 340 pp., 24 cm. Price

$16.00.

This book is intended both as a text and a reference on solving linear least

squares problems.  It is written from the numerical analyst's point of view and not only

brings together a lot of information previously scattered in research papers, but also

contains some original contributions.

The authors evidently have a great deal of hard earned experience from solving

least squares problems.  The strongest feature of the book is that it covers all aspects

of the solution up to a set of field tested portable Fortran programs.   For a reader

whose immediate concern is with solving problems, it is possible to bypass the first half

of the book and pass directly to the last two chapters where the practical aspects are

discussed.

The first half of the book develops basic theory and algorithms both for under-

and overdetermined systems.  Detailed perturbation bounds for the pseudoinverse and

the least squares solution are given here.  Algorithms based on Householder transforma-

tions and the singular value decomposition are then described thoroughly. An algorithm

based on sequential Householder reduction for the case when A has a banded structure,

is given in a later chapter.  Problems when A is more generally sparse are not specially

treated.

Two other methods for solving linear least squares problems (normal equations and

modified Gram-Schmidt) are briefly described.  A more extensive coverage of these and

other alternative methods (e.g. the method of Peters and Wilkinson) would have been

appropriate and made the book more useful as a textbook.  Another topic, which this

reviewer thinks should have been included is iterative refinement of a solution.

Linear least squares problems with linear equality or inequality constraints are,

however, exhaustively treated.  A solution of the problem to minimize \\Ex - f\\ subject

to Gx > h is given, which depends on transforming this problem in two steps into a

nonnegative least squares problem.  This solution gives an elegant modularity in the

algorithms for different constrained problems.  Unfortunately the transformation de-

scribed in Chapter 23, Section 5, contains an error, and does not work when the matrix

E is rank deficient.  Recently in an ICASE report A. K. Cline has shown how to per-

form a corresponding reduction in the general case.

The last part of the book contains descriptions and ANSI Fortran listings of sub-

routines for most of the algorithms described earlier in the book.  This includes the

Householder method, the singular value analysis, the sequential solution of a problem

with a banded matrix, the nonnegative least squares solution and the least distance prob-

lem.  A set of six main programs are also given for validation of these subroutines. The

codes can now also be obtained in machine readable form from IMSL.
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This is a very useful book, which also sets a new style for books in numerical

analysis.  Similar books are needed for many other problem areas.

Ake BjOrk

Department of Mathematics

Linkdping University

S-5 81 83 Linkoping, Sweden

27 [2.05.03].-Herbert E. Salzer, Norman Levine & Saul Serben Hundred-

Point Lagrange Interpolation Coefficients for Chebyshev Nodes, 47 computer print-

out sheets, 1969, deposited in the UMT file.

Tables of Lagrange interpolation coefficients LJ100\x), where

100 /    100

¿p°°)(x)= n (*-*,)/ n (*/-*a
are given for the Chebyshev nodes

x,. = - cos[(2z - 1)tt/200] ,      i = 1(1)100,

for x = 0(0.01)1.00, to 26S.  For negative arguments, we have

L^°K-x) = L\10r\ix).

£}10°)(x) is tabulated so that there is a separate block of four columns for each

i, and is read horizontally.  The argument x is not printed, and the 2nd through 26th

digits are unseparated.

Three functional checks,

100 100 100

Z L\xoo\x) =1,    Z XiL\l00){x) = x   and     ¿ x2L<100>(x) = x2,
i= I i= 1 1= 1

for x = 0(0.01)1.00, were performed upon the entries on tape before final printout,

the greatest relative deviation from a true answer being < Yn • 10~2 *. The user is

cautioned that these checks upon the 26S entries, prior to printout, cannot guarantee

the correctness of digits on tape which occur beyond the twenty-first decimal place, or

the accuracy of the printout in any place.  However, it appears likely that all entries

are correct to around 23S.

It was not noticed until 1975 that the printout was defective in that minus signs

were not printed in all the first columns, making uncertain twenty-five percent of the

entries.  As the means and opportunity for reproducing a corrected version of the

printout were no longer available, a careful determination was made of the locations

of the missing minus signs, which were then inserted by hand.

Author's Summary (H. E. S.)
941 Washington Avenue

Brooklyn, New York 11225

28 [2.10].-Philip J. Davis & Philip Rabinowitz , Methods of Numerical Integration,

Academic Press, New York, 1975, xii + 459 pp., 24 cm. Price $34.50.

This book is an expanded and updated successor to the previous works on this

subject by the same authors, Numerical Integration, Blaisdell Publishing Co., Waltham,

Mass., 1967 (see Math. Comp, v. 22, 1968, pp. 459-460; Math. Reviews, v. 35, 1968,
#2482). The new version is almost exactly twice the size of the old, yet retains the

sparkle of the original version.  The overall organization is the same, with about sixty-

four new sections and subsections added, some of the latter being interpolated two
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deep.  Even to list these would go beyond the limits of this review, so only a few high

points will be noted.  Chapter 1, Introduction, has been augmented by material on or-

thogonal polynomials and extrapolation and speed-up.  Chapter 2, Approximate Inte-

gration over a Finite Interval, has been augmented by a discussion of spline interpola-

tion with applications to numerical integration, the Kronrod scheme, and a number of

other methods developed recently. Chapter 3,  Approximate Integration over Infinite

Intervals, contains a wealth of new material on the Fourier transform, including the

discrete Fourier transform and fast Fourier transform methods, and the Laplace trans-

form and its numerical inversion.  Chapter 4, Error Analysis, in addition to other new

topics, contains a greatly expanded treatment of the applications of functional analysis

to numerical integration.  Chapter 5, Approximate Integration in Two or More Dimen-

sions, has a new section on the state of the art in this extremely difficult field. Chap-

ter 6, Automatic Integration, has been supplemented by a number of new results. As

one might expect, a number of programs (about eight) have been added to Appendix 2,

FORTRAN Programs, and Appendix 3, Bibliography of ALGOL, FORTRAN, and PL/I
Procedures has been increased by about seventy-two items. Additions have been made

to Appendix 4, Bibliography of Tables, and about six hundred and forty-nine addition-

al entries have been made to Appendix 5, Bibliography of Books and Articles, show-

ing the feverish activity in this field, as well as the scholarly diligence of the authors.

The previous version was an excellent example of mathematical typography at

its best; the present book, if anything, is even easier to read. A random inspection

finds an "1" missing from Zweifel's name on p. 180, but nothing serious in the way of

misprints was noted.

A mere recitation of details does not do justice to this book.  Each section and

subsection gives a clear statement of the basic idea discussed, its theoretical foundation,

proofs (if needed), examples, and references.  It is a rare achievement to produce a

book which is an inspiration to the student, useful to the occasional as well as'the fre-

quent practitioner, and invaluable to the theoretician as a resource; but that is what the

authors have done.

L. B.Rall

Mathematics Research Center

University of Wisconsin-Madison

610 Walnut Street

Madison, Wisconsin 53706

29 [3,13] -William C. Maguire, Rotation Matrices d*m'm for Argument zr/2 in

Numerically Factored Form, ms. of seventy computer pages deposited in the UMT

file, May 1975.

This unpublished table gives the rotation matrices d'm >m (ß) for arguments zr/2

for integer values/ from 1 to 30 in the form 2"kîlpi\/ïlpl, p prime.  The matrices are

defined as in Edmonds [1]. An effort has been made to see that all integers are prime

(except for powers indicated by ** powers), but the seventy-five largest integers, each

greater than 100,000, have not been checked. A test calculation has been made and a

third separate calculation [2] shows no differences to the latter's five available deci-

mal places. The computations were performed at NASA/Goddard Space Flight Center

on an IBM 360/91 with the main algorithms written in FORMAC and PL/I.

Author's Summary

Radiations Branch, Code 622

NASA/Goddard Space Flight Center

Greenbelt, Maryland 20771
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1. A. R. EDMONDS, Angular Momentum in Quantum Mechanics, Princeton Univ. Press,

Princeton, N. J., 1960.

2. B. KROHN, Private communication, 1975.

30 [7] .-Richard P. Brent, Knuth's Constants to 1000 Decimal and 1100 Octal

Places, Technical Report no. 47, Computer Centre, The Australian National Univ.,

Canberra, A.C.T. 2600, Australia, 1975, 25 pp., 30 cm.

In appendices to the three volumes published to date of 77ze Art of Computer

Programming [1], Knuth lists 33 mathematical constants to 40D and 44 octal places,

and suggests in Volume 2 (Exercise 4.3.1.36) that it would be worthwhile to compute

them to much higher precision.

The present author has followed this suggestion by extending the precision to that

stated in the title, using his Fortran multiple-precision arithmetic package on a UNIV AC

1108 computer.  Each constant was computed twice, once with base 10000 and 260

floating-point digits, and once with base 11701 and 250 digits.  Each run required

approximately 25 minutes of computer time, and both runs for each constant produced

identical results.  The results were also checked by comparison with available published

values, cited in the appended list of 17 references.

Specifically, the constants are the square roots of 2, 3, 5, and 10; the cube roots

of 2 and 3; the fourth root of 2; the natural logarithms of 2, 3, 10, zr, and <p (the gold-

en ratio); the reciprocals of In 2, In 10, and In 0; n; tt/180; zr-1 ; zr2; zr1'2; T(l/3);

1X2/3); e; é~l;e2;y; e7; <t>; en'*; sin 1; cos 1; f(3); and In In 2.
J. W. W.

1.   D. E. KNUTH, The Art of Computer Programming, v. 1, Fundamental Algorithms; v. 2,

Seminumerical Algorithms; v. 3, Sorting and Searching, Addison-Wesley, Reading, Mass., 1968-1973

31 [8].-The Institute of Mathematical Statistics, Editors, and H. L. Harter

&D. B. Owen, Coeditors, Selected Tables in Mathematical Statistics, Vol. II, Amer.

Math. Soc, Providence, R. I., 1974, viii + 388 pp., 26 cm.  Price $16.40.

In a discussion of the contents of the first volume [1] of this series of statistical

tables this reviewer directed his remarks to their applications and their importance to

the practicing statistician.  Although attention was drawn to the adequacy of the back-

ground explanation provided by the authors for specific mathematical procedures fol-

lowed in developing the tables, the important questions regarding convergence properties

of the relevant mathematical approaches were not addressed.  The present review is

written in the same vein.

As in the first volume, the tables herein relate to real problems that somehow have

been neglected in the main stream of statistical literature. Perhaps the best example of

this is the fixed-effect analysis-of-variance model usually discussed in the literature.  It

is generally assumed that the denominators of the F ratios are valid x2(o2)//statistics

(/"being the number of degrees of freedom), and therefore, under the null hypothesis

of no fixed effects, the F statistic is the correct one. Most practicing statisticians, in

reality, feel very uncomfortable about this assumption; they are usually aware that the

assumed model is not correct in that all the effects have zzor been accounted for, there-

by truly making the denominator of the F ratio a multiple of a noncentral x2 •  The

tables herein of Doubly Noncentral F Distribution, by M. L. Tiku, and one of the

accompanying examples directly address this extremely important point.  The other

examples accompanying these particular tables also address problems that require more

realistic models than those usually presented in the literature.

Tables 1 and 2 of the doubly noncentral F distribution give to 4D the values of

the probability P(f1 ¡2, f2/2, XX,X2, u0) for values of u0 for which type I error of the
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F-test equals 0.05 and 0.01 and for the ranges fx = 1(1)8, 10, 12, 24, f2 = 2(2)12, 16,
20, 24, 30, 40, 60, 0, = 0(0.5)3, and <p2 = 0(1)8. Table 3 gives 4D values of

P(fx/2,f2l2, Xj, X2, u0) for the same values of (¡>x and </>2 and for fx = f2 = 4(2)12,
u0 = 0.02(.08)0.50, 0.60, 0.75, 0.95.

While the same points could have been made about the examples accompanying

the tables herein of the Doubly Noncentral //-Distribution, by William G. Bulgren, it

seemed to this reviewer that a very serious problem in terminology occurs, for which

there is inadequate background explanation.  In particular, the exact meaning of the

symbol p., as contrasted to the symbol p¡, is not made perfectly clear.  As a con-

sequence, this reviewer believes that the very important accompanying examples will

not provide proper guidance for the potential user of the tables.   It is hoped that this

fault can be corrected in later editions because these tables can be extremely important

in solving problems where the customary Student //-distribution cannot be realistically

applied.

The probability integral to 6D of the doubly noncentral //-distribution with de-

grees of freedom « and non-centrality parameters 5 and X is tabulated over the follow-

ing ranges of the parameters:

t = 0,   S = -4(1)5,   any « and X,

r = 0.1,   0.2(0.2)9.0,   S =-4(1)5,   X = 0(1)2(2)8,   « = 2(1)20.

The importance to the practicing statistician of Tables of Expected Sample Size

for Curtailed Fixed Sample Size Tests of a Bernoulli Parameter, by Colin R. Blyth and

David Hutchinson cannot be overemphasized. The direct benefits of these tables in

attribute acceptance sampling and in reliability problems are quite obvious. They pro-

vide an entire class of sampling plans with a highly desirable minimax property (namely,

that of minimizing the maximum expected sample size subject to known producer and

consumer risks), and then provide an extensive tabulation of the expected sample size

of these plans as functions of percent defects, sample size, and number of rejects.

The tabulation of Zonal Polynomials of Order 1 Through 12, by A. M. Parkhurst

and A. T. James is an exceedingly praiseworthy undertaking and provides the means of

solving a large class of multivariate problems where the distribution function or mo-

ments of the distribution function can be expressed as symmetric functions of the

latent roots involved in the expression.

For the convenience of the user, two alternative sets of tables have been tabulated

for evaluating the zonal polynomials.  Table I gives the coefficients of the zonal poly-

nomials in terms of the sum of the powers of the latent roots, while Table II gives the

coefficients of the zonal polynomials in terms of the elementary symmetric functions

of the latent roots.

It is the opinion of this reviewer, however, that the authors did not do themselves

justice; their explanations of the use of these tables seemed a bit too concise and

therefore may not appeal to those who would most need to use them.  The authors do

indicate that most expressions involving zonal polynomials are extremely complicated

and it is therefore difficult to illustrate the use of the tables without burdening the

reader with secondary calculations.  Nevertheless, it seems to this reviewer that a

middle ground could have been accomplished that would be more satisfying to those

who want to use these tables.  If these tables are to have a more general appeal, more

examples relatable to the more familiar literature in multivariate analysis (Anderson's

Introduction to Multivariate Statistical Analysis, for example) will have to be provided.

In summary, it can be stated that the tables in this volume, as those in the first,
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are addressed to a number of extremely pertinent problems confronting the practicing

statistician for which tables were not previously available.  However, as mentioned

earlier, it is important that the terminology relating to the noncentral t tables be fully

clarified so that these valuable tables can be properly understood and applied.  In addi-

tion, more familiar examples are recommended to illustrate the use of the zonal poly-

nomials, so that they will appeal to a wider class of users.

Harry Feingold

Computation and Mathematics Department

David W. Taylor Naval Ship Research and Development Center

Bethesda, Maryland 20084

1.   THE INSTITUTE OF MATHEMATICAL STATISTICS, Editors, and H. L. HARTER &

D. B. OWEN, Coeditors, Selected Tables in Mathematical Statistics, Vol. I, American Mathematical

Society, Providence, R. I., second printing, 1973. (See Math. Comp., v. 29, 1975, p. 661, RMT 32.)

32 [9] .-1.0. Angell, A Table of Totally Real Cubic Fields, Royal Holloway College,
Univ. of London, Surrey, England, 1975.  80 computer sheets deposited in the UMT

file.

This is the table referred to in Angell's paper [1]. The 4794 nonconjugate totally

real cubic fields Q{x) having discriminants D < 10s are Usted here in the format

DIABCHPQRSUVWT.

Here, H is the class number and {Px2 + Qx + R)/S, {Ux2 + Vx + W)/T is a funda-

mental pair of units.  (In thirty-five fields here, one or both units have coefficients that

are too large for this format and they are given in an appendix at the end of the table.)

The three conjugate fields are generated by the three real roots of the polynomial

(1) f{x) = x3-Ax2+Bx-C=0

which has index / and discriminant I2D.  The fifty-one self-conjugate (cyclic) fields in-

cluded here are, of course, generated by any of the three roots.

The reader is referred to my longish review [2] of Angell's complex cubic fields

for comparison with the discussion that follows.  The class numbers tend to be very

small here since the existence of two units implies that the regulators are relatively

large.  The number # of fields with class number H are as follows:

H     \ 2 3 456789

#   4184    287     268     20     19    7    7    1    1

Note the curious two-step wherein each even H has about the same population as the

subsequent odd H.

The polynomial (1) follows Godwin's convention [3] ;A, B and C are positive

and the three roots satisfy

0<x0<l,   x0<x1<x2,   2x1>x0+x2.

In the reviewer's opinion, the altered polynomial g{x) = _/([x2] + 1 -x'), which has

2x\ < Xq + x2 instead, is preferable.  Since the polynomial coefficients are symmetric

functions of the three roots, the smaller x\, instead of the larger xx, implies that the

coefficients of g(x) will generally be smaller than those off(x) (and sometimes they

wUl be much smaller).  In Table 2 below, we follow this AG (anti-Godwin) conven-

tion.

As in [2], the index / is not always minimized here. Of the first eight cases of 1=2

Usted,/(x) for£> = 1304,1772,2292, 2589 and 2920 can be easily transformed into
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other equations with 1=1. But D = 2089 and the cycUc D = 312 and 432 must have / =

2 since the prime 2 spUts completely in these fields. This D = 2089 = 512 - 29, together

with subsequent examples such as 4481 = 672 - 23 and 9281 = 972 - 27 are of a

form D = n2 -22m + 1 that frequently has this property; see [4, Table 2].  On the

other hand, 2 is a cubic residue of 31 and 43 and therefore splits completely in those

cyclic fields.

Davenport and Heilbronn [5] proved that the nonconjugate totaUy real cubic

fields have an asymptotic density of [12f(3)]-1 = 0.069326 while the empirical aver-

age density S here is notably smaUer:

Table 1

ZJ/5000       §      ZJ/5000       6       Z)/5000       5       Ö/5000      §       D/5000      5

1 .0346 5        .0426 9       .0447 13      .0462        17       .0471

2 .0382 6        .0433        10      .0451 14      .0463        18       .0474

3 .0402 7        .0442 11       .0455 15      .0469        19       .0476

4 .0418 8        .0442 12      .0459 16      .0469        20       .0479

While 6 is obviously increasing with D, at D = 105 it has only attained 69% of its

limit.  In [2], the density of the complex fields attained 76% of its Umit at \D\ =

2 • 10 . The slow convergence in [2] and even slower convergence here do not now

have a good quantitative explanation but no doubt are mostly due to the delayed

appearance of D having large multipUcity m. In [1], as in [2], there are D having m

distinct nonconjugate fields for m = 2, 3, or 4, but none with z« > 4.  (For larger D,

beyond these tables, there will be D with m arbitrarily large.)

While the first m = 4 in [2] is for D = -3299, m = 4 does not occur here until

D = 32009.  In [2], there are twenty-two D with m = 4 while here there are only

five such D even though there are more fields and \D\ can be five times as large.  But

for D  > 10s, as we show below, the proportion of D having m = 4 increases strongly,

and if this proportion has a limit as D —*■ °°, cf. [5, p. 406], the slowness in attaining

this Umit correlates with the slow convergence of S above.

Prior to the computation of this table there were three known cases of m = 4

for D< 10s. Two are prime [4, p. 161] :

32009 = 56 + 4 • 46 = 1792 - 2s;   62501 = l6 + 4 • 56

and one is even [6, p. 540] :

94636 = 4 -23659 = 4A(-5).

The table was computed because the reviewer suggested to Professor Godwin that it

would be desirable to extend his earUer table [3] in order to verify that D = 32009 and

94636 are indeed the smaUest D and smallest even D having m = 4, That is true; the only

new cases found here are two odd, composite D related to 32009:

42817 = 47 • 911 = 2072 - 2s;   72329 = 151 • 479 = 2692 - 2s.

But for 10s < D < 2 • 10s there are at least eight more cases and probably

about 10.  There are four primes: 151141 = A2(-7) was given in [6, Table II] and

Lakein [9, Table 5] gave
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together with D

even D:

114889 = 3392 - 2s ;    142097 = 3772 - 2s,

153949 of no known series.  I found that there are exactly two

4 • 43063    and    4 • 2 • 17 • 1279.

The odd composite D were not systematically examined. Two are known: A6(5) =

3 • 17 • 2999 is due to me and 130397 = 19 • 6863 is due to Heilbronn [3, p. 109].
Probably there are at least two or three others.  So the relative proportion of D having

m = 4 about doubles in this next interval.  Other m > 1 will also become relatively

more numerous.

In Table 2 of [2], I showed that for three known series of D < 0, with m = 4,

it was possible to give the four cubic polynomials a priori.  For the present fields with

D > 0 that is no longer the case.  But in the nonescalatory cases in [6] and [7] we

can give one polynomial, but only one, a priori.  For example, for the

D=A6+4B6,    3\B,

of [7],

x3 - (A2 + B2)x + A(A2 + 2B2)I3 = 0

gives one field. This is suitable for the D = 32009 and 62501 above.  For the Series 1

and 2 and Complementary Series 3 and 6 of [6], one can also give one polynomial.

Further, these polynomials can even be put into AG form a priori.  They would give

one field for the examples D = 4A(-5)2_A2(-1) and A6(5) above.

The smallest known [8] real Q(\/D) having 3-rank = 3 is D = 44806173.  So

this D gives the smallest known case of z« = 13.   In Table 2, I give its thirteen poly-

nomials in AG form and show how thirteen primes spUt (shown as S ) in these thirteen

fields.   Compare Tables 3 and 4 in [2]. The reader is invited to transform these

cubics into AngeU's form and to note the effects of this upon the coefficients.

Table 2

0=44806173

61

279

63

69

63

83

63

257

87

62

60

165

127

B

697

441

423

435

603

297

837

477

273

546

660

273

185

330

170

8

216

494

54

494

216

36

261

97

90

62

13 17 29 41  43  107 113 131 137 151 163 179
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Finally, a couple of words on an erroneous first version of this table.  It was

instructive precisely because it was erroneous.  Th<* four class numbers for the D =

62501 above came out H = 3,3, 4, 9.  Since aU H for the other four cases of m = 4

were divisible by 3, it did appear A) that that H = 4, and presumably other H, were

wrong; and B) that the Gras-CaUahan Theorem referred to in [2] was also valid in the

real case. Georges Gras subsequently proved this B) but Frank Gerth III had already

done that independently. While the thirteen H for Table 2 are not known to me, they

must all be divisible by 9. The errors in A) were confirmed and corrected.

There were also errors in some units. The Artin function at argument 1 equals

(2) *(1) = 4RH/-JD

where R is the regulator. Since $(1) is easily estimated by a determination of how aU

small primes split, (2) is a very powerful check on the consistency ofR and//", and one

can detect an error in one if the other is known.  So the erroneous units were also

detected and corrected.  If ex and e2 are a fundamental pair of units, then so are e3 =

e2e2 and e4 = exe2. But e3 and e2 are not a fundamental pair.  Is e3 a "fundamental

unit"?  The moral is that it is erroneous and dangerous to speak of "a pair of funda-

mental units."  One must say "a fundamental pair of units."
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The authors have presented a good introduction to analog and hybrid computa-

tion techniques. The book is written so that students without an electronic back-

ground can follow the material.  In the first chapter, for example, the operation of

analog and logic components is adequately presented without detailed electronic cir-

cuitry. A more detailed description of the analog components is covered in the Ap-

pendix for those who are interested.  Another favorable point is the variety of good,

basic problems given at the end of several chapters.

The method of implementing a differential equation on the analog computer and

the method of amplitude scaüng presented in Chapter 2 are not the most convenient

techniques for large scale systems.  The change of variables suggested is neither neces-

sary nor desirable when simulating a large system.  However, the techniques set forth
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are adequate for an introductory course where simple systems are considered. The

method of time scaling is well presented.

Perhaps the two chapters on function generation are too lengthy when compared

with the time aUotted to other more important topics.  However, the material is well

presented and is indeed a strong part of the text.  Similarly, the chapter on analog

memory is a welcome variation from most analog computer texts. More advanced

analog techniques such as integration with respect to a variable other than time are

also presented.

Before presenting hybrid computation, the authors discuss digital simulation of

second order differential equations. A basic knowledge of computer programming is

assumed. The comparison of digital and analog methods is made.

The introductory chapter on hybrid computing is exceUent. The information

relative to the software necessary to utilize the interface components is weU presented.

In the foUowing chapters, sequential and paraUel hybrid computation techniques are

demonstrated by examples.  SpUt boundary value problems and parameter optimiza-

tion are given as examples of sequential operation.  Examples of parallel operation in-

clude axes rotation and time delays.  In the final chapter the appUcation of simula-

tion to the study and design of feedback control systems is introduced.
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