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Some Algorithms for Prime Testing Using

Generalized Lehmer Functions

By H. C. Williams and J. S. Judd

Abstract. Let N be an odd integer thought to be prime. The properties of special

functions which are generalizations of the functions of Lehmer (Ann. of Math., v. 31,

1930, pp. 419-448) are used to develop algorithms that produce information con-

cerning the possible prime divisors of N.   It is shown how the factors of N ± 1, N    + 1,
2

N   ± N + 1, together with the factor bounds on these numbers, may all be used to

calculate lower bounds for the possible prime divisors of N.   Frequently, these bounds

are large enough that N may be shown to be prime.

These tests were implemented on an IBM/370-158 computer and run on the

pseudoprime divisors of the first 385 Fibonacci and Lucas numbers.

1.   Introduction.   In Brillhart, Lehmer, and Selfridge [1], it was shown how an

odd integer A, suspected to be prime, may be proved prime provided a sufficient

number of factors of A - 1 and/or A + 1 have been determined.   Later Williams and

Judd [10] showed that if there were not enough factors of A± 1 known to prove the

primality of A, the factors of A2 + 1 could also be used.   In an attempt, however, to

demonstrate the primality of

A/ = 13484292549345009218015967701713491137426073107017330576389569

the large (62 digits) pseudoprime factor of the Lucas* number /368, we find

A - 1 = 26 • 11 • 17 • 23 • Rv

A + 1 = 2 • 3 • 5 • 72 • 389 • R2,

A2   + 1 = 2 • 193 • 37217 • 1717117 • R4,

with each of Rx, R2, R4 being composite and having any prime divisor greater than

4 x 106.  This is not a sufficient number of factors to prove A a prime by using the

tests of [1] and [10] ; but, if we examine A2 - A + 1, we find

/v-2 -N+ 1 = 3 • 109 • 216757 • 1339903 • R6.

In this paper we will develop methods which allow the factors of A ± LA'2 + 1,

A2 ± N + 1 to be utilized in an attempt to show that A is a prime.  As was done in

[10], we make use of the properties of the generalized Lehmer functions of Williams

[9] in order to develop the theoretical background necessary for establishing these
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868 H. C. WILLIAMS AND J. S. JUDD

algorithms.   In the last two sections we discuss the results of a computer run on the

numbers labelled pseudoprime in the table of factors of ln and fn in Jarden [2].  We

also present several detailed examples.

It should be noted at this point that D. H. Lehmer [3], [4] has previously

considered the possibility of using factors of A2 + A + 1 to demonstrate the primality

of A.  His technique, however, involves the use of Pierce's [6] functions; and it

also requires that N2 + N + 1 be completely factored.

2.  The Function Cn.  Let/(x) be a polynomial

xs-Pxx^x +P2xs~2 + (-l)t

with integer coefficients and s distinct zeros px, p2, . . . , ps.

Let Q be an integer such that (Pv P2, . . . , Ps, Q) = 1 ; and let a(., ß{ (i = 1,

2, . . . , s) be the zeros of x2 - p¡x + Q (i = 1, 2, . . . , s).  Put

1     / p\ PV1

1 P2     P2

1      Ps

pT1

r.S-1

A = 52,      E=f(2y/Q)f(r2y/Q),

"n(Pi) = a?+ß? Ü =1,2,..., S)

and define V¿ n (j: = 0, 1, 2, . . . , s — 1) as

px    p\    •   •   ■    (j-x    !;„(>,)    P{+1    '

y      = _

1     p.

1    Ps P2s

Pf'      W>2)     P'2+i

PÍ'1      "niPs)     PÍ+1

pT1

pr1

pT1

The function Cn is then defined to be the greatest common divisor (V1   , V2   ,

^3,n> • • • '  *s-l,n) 0X   Vl,n>   ^2,n'  ^3,n' ' ' • ' "s-l ,n'

As we shall be most concerned in this paper with the case s = 3, we conclude

this section with some special properties of V~0 n, Vx n, V2 n, Cn for s = 3.  We first

note that

A = P\P\ + 18^^3 - AP3 - AP3P3 - 21 P\,

E = (P3 + AQPX)2 - Q(2P2 + 8Q)2.

The first few values for the functions V0 n, V1 n and V2 n are given in the

following table.
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r 0,n

2

0

-2Q

P3

P3P¡ + 2ß2

' i,«

0

1

0

-p2 - 3ß

p  - P Pr3      Mr2

PÍ-P2P2+P1P3+5QP2+5Q2

'2,n

0

0

1

Pi

P\-P2-AQ

P3-2P1P2-5QPX+P3

Also, each of the functions V0 n, V1 n and V2 n satisfies the recurrence

*n + e = Pl*n+S - (p2 + 3ö)Ar„ + 4 + (2^,0+^)^ + 3

- (3ß2 + QP2)Xn+2 + PxQ2Xn^ - Q3Xn

and

V0,n + 1  ~ P3V2,n      QV0,n-l>

Vl>n + 1 = V0>n-P2V2tn-QVUn_1,

V2,n + l  =  Vl,n+PlV2,n-QV2,n-V

If N is any integer and (A, QP3) = 1, find M, S such that

QM = P3S=l    (mod A)

and put

52A^/2 V,
0,k'

*k =

Yk =

[SMik+D/ly
0,k'

|S2M*/2Klk,

S2Mk>2V2¿,

k even,

k odd;

k even,

k odd;

k even,

Then,

\SM(k + i)l*V k odd.

^2m + l  _ ^3(^2^71+2  +  Y2m)+ PlZ2m + l>
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Y2m + 1       P3ÍZ2m+2 + ^2ra)      A^2m + 1>

¿2m + l  = ^2m + 2 + ^2m'

Also,

*2m = Q&l   + 2>m V3 + *W«) " 2* 2,

^2* = Q(2XmYm - 2P2YmZm + (P3 -PxP2)Z2m\

Z2m = ßi^rn + 2ZM*M + 2P, FmZm + (P2 -P2)Z2m),

when 772 is odd.   If m is even, replace the Q in these formulas by P2.  Using these

formulas, we can evaluate Yk, and Zk in 0(log k) operations.  Since (Yk, Zk, A) =

(V1 k, V2 k, A), we see that this technique can be used for evaluating (Ck, A).

3.  Properties of Cn.  In [9] several divisibility properties of Cn are presented;

for example, Cn \Cmn if 721772.  The following definition is also given.

Let 772 be any integer such that (772, Q) = 1 and let CT   be the first term of the

sequence

(*) C,, C2, C3, . . . , Cn, . . .

in which 772 occurs as a factor. We define the increasing sequence of integers

T0' Ti ' r2' • • • ' T/> • ■ •

by saying that CT is the first term of the sequence (*) such that 772 \CT_ and r^r-

(z = 0, 1,2,... ,/ - 1).  We call these r's the orders of apparition of 772 and denote

them by T.-(m).

It is then demonstrated that if (m, Q) = 1, then any order of apparition rim)

must be a divisor of 2$(m), where <&(m) is a rather complicated function which depends

on 772, Q, and the polynomial fix).  When fix) is irreducible modulo a prime p and

s is odd, we can obtain some special results about the orders of apparition of p.  We

first give some simple lemmas.

Lemma 1. If fix) is irreducible modulo p, then p \Cn if and only ifvn(p*) E

GF[p], where p* is a root of f(x) = 0 in GFfp1*].

Proof.   Let

»>*)=!>/>*'•,
7=0

where Vf_n E GF[p] (j = 0, 1, 2, . . . , s - 1).

Now p \Cn if and only if F*B = V\fl = V* n = ■ ■ • = V*_Xn = 0; thus, if

p\Cn,vn(p*)EGF\p].  Ifü>*)eGFh7],then

A = ZV*„p*ieGF\p].
/=o

But, since f(x) is irreducible modulo p, we must have

V*     = A V*    = V*     = • • • = V*        = 0-
y 0,n       A> ' \,n        y 2,n ys-l,n       u'

hence, P\Cn.
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Lemma 2.  Let A, B E K = GF\p2s], where AB * 0 and s is odd.  If A + B E

GF[ps],ABEGF[p],Ak + Bk EGF[p] and Am + Bm E GF\p], then Ar + Br E

GF\p\, where m = qk + r.

Proof.   In K we have

¿*p2=¿\      Bkp2=Bk,      Amp2=Am,      Bmp2=Bm;

hence,

2 2 2 2
A<}k+r = Amp   = Aqkp +rp   = Aqk+rp

and /T = Arp2, also 5' = Brpl.  Since 4r + 5r G GF\ps\, we have

(Ar+Brf   =Ar+Br,      iAr +Bry2 =Ar+Br.

Since s is odd, it follows that iAr + 50p = Ar + A''; and consequently, Ar + Br E

GF[p].

Corollary.   // the conditions of the lemma are true, then A" + Bd E GF[p],

where d — ik, m).

We are now able to prove the following

Theorem .  If p \ 2AEQ and fix) is of odd degree s and irreducible modulo p,

then there is only one order of apparition 7 of p and r | (ps - e)/ip - e), where e =

iE \p) iLegendre Symbol).

Proof.   Let p* be a zero of fix) in GF^] ; then the other zeros are given by

p*p, p*p , . . . , p*p       also p*p   = p*.  Let a*, ß* be the two zeros of x2 - p*x +

gin GF[p2s].  We have

v„(p*) = a*n +ß*n.

Now (2a* - p*)2 = p*2 - 4<2; hence,

(2a* - p*fS-x = (p*2 - 40(pi-1)/2

= [iß*2 -AQf^ip*2 -AQf"2 ■ • • (p*2 -40](p-1>/2

= [((P*pi_1)2 - 4ß)((p*pS_2)2 - 4ß) • • • (p*2 - 4ß)](p"1>/2

= £<p-l)/2 =e

We see that (2a* - p*Y   = e(2a* - p*) and

!a*     if e = 1,

ß*     ife = -l.

Putting k = (ps - e)l(p - e), we get

v (pxy _ a*kp + ß*kp _ a*(p-e)k + ek + |j*(p-e)fc + efc

= a*(PS-e)a*ek + ß*<-PS-^ß**k = üfc(p*).

It follows that/jit^.
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We have shown that there exists one order of apparition t of p and that t | k.

Suppose there exists a second order of apparition t, of p.  We have

a*T + ß*T E GF\p\,      a*Tx +ß*Tx EGF\p]\

hence,

a*d +ß*d EGF\p],

where d = (r, t,).   Now d <r,d\r and p\Cd.  By definition of t this is impossible

and the theorem is proved.

Let f(x) be a polynomial of odd degree s such that, for any prime p J( A, f(x) is

either irreducible modulo p or completely reducible.   For example, the cyclotomic

period equation [5] is such a polynomial.  (For s = 3 the necessary and sufficient

condition for f(x) to be this type of polynomial is that A be a perfect square.)  For

Cn defined for such an /, we define

I(ps - e)/(p - e) if fix) is irreducible (mod p),

2[p - t?,, p - t?2, p - r/3, . . . , p - T?J   if fix) is reducible (mod p),

where T)¡ = (rf - AQ\p) and rx, r2, r3, . . . ,rs are the s roots of fix) = 0 (mod p).

With this definition of /and C„ we have the following two theorems.

Theorem.   If p is a prime and (p, 2AEQ) = 1, then there exists at least one

order of apparition of p.  Further, if T¡(p) is any order of apparition of p, then

Tfip) I tip)-

Proof.   This follows easily from the Law of Apparition of [9] and the previous

theorem.

Theorem.   Let (A, 2AQE) = 1 and N\Cm.  If q is any prime divisor of m and

Ai Cm i , then any prime divisor p of N which does not divide Cm,   must satisfy

the congruence

^(p) = 0    (modqa),

where qa\\m.

Proof.   Let t be an order of apparition of p such that r 1772.  Clearly, since p\Cm,

such a r must exist.  Now PJ(Cm,q; hence, rJfmlq; and consequently, qa \t.  Since

tip) I ̂ ip), we have

\¡/(p) = 0 (modtf).

4.    The Sequences  {Ó1^} ■    In the remainder of this paper we will consider s to

have the value 3.

Let A^ be an integer which we wish to test for primality.  Select a prime P such

that P = 1 (mod 3) and iN\P)   * 1, and let AP = S2 + 27r2, where S = 1 (mod 3).

Then, if A is a prime and (A, FT) = 1, x3 - ax - b, where a = 3P, b = PS, is irreduc-

ible modulo N.  Let G be a fixed integer and put 6 = (G |A), where |0 I = 1.

For any three integers h* k¡, /-, put
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j = ft2 + 2bliki -G,      m2 = blf + 2A,*, + 2«*¿

873

m3 = k2 + a/2 + 2/2,7,.

d1 = m\ + 2am3m1 + a27722 - am\ - bm2m3,      d2 = bm3 - m1m2

d3 = m\- m1m3 - am\.

Let
R = di772j   + M27723 + M37722,

A = AGdx +2R,      B = AGd2,      C = AGd3.

We define the sequence C^ by using the parameters below:

/f > = 3A + 2aC,      4° = 3,42 + 4a^lC - aB2 - 3/3ÄC + a2C2,

PP =A3+ bB3 + b2C3 - 3bABC - aAB2 - abBC2 + a2AC2 + 2avl2C,

Q(0=R2

If Oj, a2, a3 are the zeros of x3 - ax - ¿>, we see that py = A + 5a;- + Ca2

(/' = 1, 2, 3) are the three zeros of

/(*) = x3 - P[*>x2 + J^Ojt - Pff>.

Now let a be any one of the three zeros ox, o2, o3 and put

p = A + Äff + Co2,      X(o) = ft, + *,ff + /,.ff2,

7(ff) = i/1 +d2a + J3o2.

Then

It follows that

mx + 7722CT + 7723a2 = (X(o))2 - G,

R = yfffXm, + 7722a + 7723a2) = Y(o)((X(o))2 - G),

p = AY(o)G + 2R.

p2 -4Q= [AY(o)X(o)]2G.

Since £<'> = (p2 - 4ß)(p2 - 4ß)(p2 - 4ß), we have E® = F2G, where V =

43C7y(a1)na2)na3)^(a1K(a2)J(o3).

Also,

A«) = (B3 - aBC2 - bC3)2

1 a, ffj

1 a2 a2

1     a,     a?

3b(B3 -aBC2 -bC3Y(PT)2.
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Thus, if p is any prime such that (p, 2A(/)£'(i')ß('')) = 1, then (A(í) \p) = 1, (EU)\p) =

(G \p) = 6(p) and if f(x) is reducible, tj- = 9(p) (i = 1, 2, 3).  We see that these are

independent of the values of h¡, k¡, l¡.  Also, if x3 - ax - b is irreducible (mod p), then

so is/(x); thus, \p(p) is always the same for any sequence {C^}.  Also \p(p) =

2(p - 6(p)) when f(x) is reducible modulo p.

5.  Some Criteria for Primality.   Denote by F3 the completely factored part of

A2 + A + 1 and by F6 the completely factored part of A2 - A + 1.  Then N2 +

A + 1 = F3R3, N2 - A + 1 = F6R6, where (R3, F3) = (F6, R6) = 1.   For 0 = 1,

put

(1) For each prime q \F3, there exists some h¡, k¡, l¡ such that (A, A^E^Q^)

= 1 for the sequence {C^},

N\C<-'\ and    (C(/)2 ,N)=l.
N2+N+l (NZ+N+l)/q

(2) For some h¡, k¡, l¡ such that (N, A^E(-i)Q<-i)) = 1 for the sequence {C<°},

we have

N\C<-% and   (C(i>, ,A)=1.
AT+AT+l (N¿+N+l)/R3

For 0 = - 1, put

(3) For each prime q \F6, there exists some h¡, k¡, l¡ such that (A, E^A^Q^)

= 1 for the sequence {C^},

A|C(i> and   (Cw2 ,A)=1.
N2-N+l (N¿-N+l)lq

(A) For some h¡, ke /,. such that (N, A(i)E(í)Q(í)) = 1 for the sequence {C^},

we have

N\C^ and    (C(i>, ,AO=l.
A7   -7V + 1 (NZ-N+1)/R6

It should be noted that if NfC'-'K , then N is composite.
N2 + dN+l

We are now able to prove some theorems which give some information about

possible prime factors of A should any of (1), (2), (3), or (4) be true.

Theorem.   If 9 = 1, (1) /s true, and p is any prime divisor of N, then

\¡/(p) = 0   (mod F3).

Proof.   Since the value of \¡/(p) is the same for any of the sequences {C^}

(i = 1, 2, . . .), it follows that if q is any prime divisor of F3 and (1) is true, then

qv | \p(p), where qv \\F3; hence F3 \ \p(p).

Theorem.  If 9 = 1, (2) is true, and p is any prime divisor ofN, then

\p(p) = 0    (mod q),

where q is some prime divisor of R3 depending on p.

Proof.   Let t = r(p) be an order of apparition of p such that r |A^2 + A^ + 1 ;

then t-!(F3; and consequently, (R3, r) > 1.  Thus there must exist a prime q such that

q \R3 and q \ t.  Since t | \b(p), the theorem follows.
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Theorem.   If 9 = - 1 and (3) is true, and p is any prime divisor of N, then

ip(p) = 0   (modF6).

Theorem.   // 0 = - 1, (4) is true and p is any prime divisor of A, then

\¡j(p) = 0    (mod q),

where q is some prime divisor of R6 depending on p.

The theorems requiring the truth of either (2) or (4) are unfortunately not as

useful here as their analogues in  [1] or even [10] ; however, we will show in a later

section how these theorems can occasionally be useful.

We conclude this section with two results which allow us to demonstrate the

primality of A when either A2 + A + 1 or A   - A + 1 is sufficiently factored.

Theorem.   If 9 = 1, (1) is true, A is not a perfect square and F3 > A2'3 > 36,

then A is a prime.

Proof.   Suppose A = pxp2p3a and a is any positive integer.  Since

^(p.) = 0    (modF3)

and i//(p,) = pf ± p,. + 1 or p¡ ± 1, we have p,- > y/F3 - 1.  If F3 \p¡ ± 1, then p,. >

F3 - 1 > \/3 s/F3 - 1.  Since A is not a perfect cube there must be at least two

distinct prime divisors px and p2.  If F3 \p2 ± p, + 1 and F3 \p\ ± p2 + 1, then for

one of these p's, say Pj, it must be true that

p2±px + l>3F3.

Thus, we have

N = Plp2p3a>(sjF3 -1)2(V3WF3   -1)>F3'2,

which is impossible.

Hence, if A is not a prime, it must be the product of two primes pv p2.

Now (PiP2 \P)3 =£ 1 and (G | Pxp2) = 1 ; hence 9(px) = 9(p2) = e, say.  If

(Pj 1^)3 = 1, then (p2 \P)3 # 1 and

pj = e    (mod F3)    and   p2 + ep2 + 1=0    (mod F3).

We have

P! > 2F3 - 1    and    p2 > y/F3  - 1 ;

consequently,

7V = p1p2>(F3)3/2.

\ï(pl\P)3*\,(p2\P)3^\,

p\ + epj + 1 =p2 + ep2 + 1 = p\p\ + PiP2 + 1=0   (mod F3).

It follows that

iPi ~P2)iPi +P2 + e)-0    (modF3).
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If q \F3 and q -ÏPi _ P2> then q\px + p2 + e and

p]=ep2,      p\=epi    (mod q);

hence,

q |2pjp2 + 1    and    q |3.

Thus,

P, =P2    (modF3),

where**

(F3/3    if3|F3,

Fs   =
\F3       otherwise.

If 3 |F3, then p2 + ep, + 1 = 0 (mod 3) and pj = e (mod 3), also p2 = e (mod 3).

Since (3, F3) = 1, we have

p, = p2    (mod F3).

Since Pj ^ p2, we have pl > p2 and

Pj = p2 + 2tvF3    and   pj > 2F3 + 1.

Hence

A = Plp2 > (2F3 + 1)(VF3 - 1) > F3'2.

Thus A is a prime.

Theorem.  If 0 = - 1, (3) is true and F6>N2¡3 > 36, then N is a prime.

6.  Prime Testing.   Let Fj be the completely factored part of A - 1, F2 be the

completely factored part of N + 1, and F4 be the completely factored part of A2 + 1.

Put

Ä, = (TV- \)IFX,      R2=(N+ 1)/F2,      R4 = (N2 + 1)/F4,

FX=FX\2, F2=F2/2, F4=F4/2,

R2=r+SFX, 0 < 7- < Fj,

2RxR2=s    (modF4),

S + sN = t    (modF4), 0<s, r<F4,

p, = - 1 + t-F2 + rFjF2,      p2 = 1 + sFj^.

In [10] it was shown that if C and Z) are selected such that

**We also define

F6/3      if3|F6,

F, otherwise.
^6 =
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(D\N) = (C2 - 16£>|A) = -1,

tests can be developed for demonstrating the primality of A.  For very large A we

sometimes are unable to demonstrate the primality of A but can use a result

(Theorem 6) of [10] to show that A is either a prime or N = pxp2, where px and p2

are primes,

p, = px + mxFxF2F4,      P2=P2+ m2FxF2F4,

and (D\p2) = + l,(D\px) = - 1,(C2 - l6D\p2) = + 1,(C2- \6D\px) = - 1.  (We

call a prime p such that (D\p) = (C2 - \6D\p) = - 1 a prime of the first kind; other-

wise, we say it is a prime of the second kind [10].)  When this occurs, the tests (1)

and (3) can be used to attempt to show the primality of A.

If we select G such that G = u2 (mod A), then (G | A) = + 1 ; and if A is the

product of the two primes pt, p2, then (G\px) = (G\p2) = 1.  If (1) is true, we have

three possible cases.

Case 1.  (px \P)3 =l,(p2\P)3±\.  Here

Pj = 1    (mod F3),      p2 = A   (mod F3).

Case 2. (px \P)3 * 1, (p2 \P)3 = 1. Here

p2 = 1    (mod F3), p1 =N   (mod F3).

Case 3.  (px \P)3 ± 1, (p2 |F)3 ¥= 1. Here

p, = p2 (modF3),

p\=pI=N   (mod F3)    and   p\ + p, + 1 = p\ + p2 + 1 = 0    (mod F3);

hence,

px=p2=-N-l    (mod F3).

If //FjF2F4 = 1 (mod F3), we see that we must have

772j = (1 - px)H,      m2=(N- p2)H   (mod F3),

or

(a) mx=(N-px)H,      m2=i\~p2)H   (mod F3),

or

mx = (- A - 1 - px)H,      7722 = (-N - 1 - p2)H   (mod F3).

If we select G such that G = «2(C2 - 16£>) (mod A), then (G |A) = - 1; and if

A is the product of the two primes p,, p2, then (G |p2) = + 1, (G \px) = - 1; and

if (3) is true, we again have three possible cases.

Case 1.  ipx \P)3 = 1, (p2 |F)3 í¿ 1.  Here

Pi = -1    (mod F6),      p2 = -TV   (mod F6).
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Case 2.  (px \P)3 ¥=l,(p2\P)3= 1.  Here

p2 = 1    (mod F6),      p, = A   (mod F6).

Case 3.  (j^ |F)3 ¥=l,(p2 \P)3 # 1.  In this case

Pi=-P2    (mod ^6)>      PÎ = P2 = - A'   (mod F6),

and

p2+p2 + 1 =p2-p, +1 =0    (modF6);

hence,

p2=Af-l    (modF6)    and    px=-A+l    (mod F6).

If H'FXF2F4 = 1 (mod F6), we see that we must have

772! = (- 1 - px)H', m2 = (-A - p2)H'    (mod F6),

or

(b) mx=iN-px)H', m2=il-p2)H'    (mod F6),

or

Wj5(-2V+1- p,)//', 7722 = (A- 1 - p2)H'    (mod F6).

By using (a) or (b) or both, we can often increase the possible size of ttîj and 7722 to

the point where we get pxp2 > A; when this occurs we have proved A a prime.

If by using the tests of [10] we are unable to show that A is either prime or

the product of two primes, we can use the tests (1) and (3) of this paper to increase

M3, the minimum size of a prime divisor of the first kind of A.  This can be done

by finding all the positive solutions Sx, S2, S3, . . . , Sn which are less than K =

FXF2F3F4F6 of the system

Z = 1    (mod FXF3),      Z = - 1    (mod F2F6),      Z2 = - 1    (mod F4),

and all the positive solutions S'x, S'2, S'3, . . . , S'k, which are less than K of the system

Z=l    (modFj),      Z = -l    (modF2),      Z2=-l    (mod F4),

Z2 + Z + 1 = 0    (mod F3),    Z2 - Z + 1 = 0    (mod F6).

If S = min{Sx, S2, S3, . . . , Sn, S\, SÍ2, S'3,... , S'k} and none of Sx, S2, S3, . . . ,

Sn, S\, S2, S3, ... , S'k is a divisor of A, then, if G is defined as above and (1) and

(3) are both true, any prime of the first kind which divides N must exceed S + K.

Thus, M3 must exceed S + K; and this is usually an increase in the previous size of M3

as determined by the methods of [10].

Other methods which utilize the tests (1), (2), (3), or (4) can also be devised for

proving primality. Some of these will be discussed with respect to certain examples in

a later section.
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7. Some Computational Results.  A computer program similar in design to that

of Selfridge and Wunderlich [8] was written for an IBM/370-158 computer.  This

program incorporated the tests of [1], [10] and those of the present work (including

the selection of G as presented in Section 6) as a means of proving a given number A

prime.  This program attempts to factor A - 1, A + 1, A2 + 1, A2 + A + 1, A2 -

A + 1 by utilizing, as test divisors, all the primes less than a certain factor bound B.

The method described by Wunderlich and Selfridge [11] was used in this particular

program segment.

If, after the factoring, sufficient information is available to prove A a prime, the

required final tests are executed.   If insufficient information is available, Pollard's [7]

method is used to attempt to factor /?,, R2, R4.  If this produces enough additional

factors, the final tests are executed.

Should the computer still not have enough information to execute the final

tests, the algorithm of [8] is used when either Rx or R2 is a pseudoprime.  That is,

the computer attempts to prove the pseudoprime a prime, or, failing that, attempts to

increase the appropriate factor bound.  (See [1, p. 627].)

This program was run on all the pseudoprimes listed in the factorization tables

of ln and fn in [2].  Of the seventy-nine pseudoprimes, forty are easily found to be

prime by using only the tests of [1] and B = 5 x 10s.  Two of the remaining numbers

(the pseudoprime divisors of /331 and /353) have been discussed in [10].  The

remaining thirty-seven are also all prime, and the techniques needed to demonstrate

the primality of each one are described in Table 1.

In the first column of Table 1, we denote by Nn the large pseudoprime factor

of ln and by Nn the large pseudoprime factor of/n.  In the second column we give

the number of digits of the pseudoprime in the first column; in the third column we

give the value of B the program used.  When no entry appears in this column, B = 5

x 105.  In the fourth column the final tests needed to prove Nn or Nn a prime are

given.   These are presented as [1] to indicate that only the tests of [1] were needed;

[1], [10]  to indicate that the tests of both [1] and [10] were needed; and [1], [10],

PW to indicate that the tests of [1], [10] and those of the present work were needed.

Finally, in the fifth column we give some appropriate remarks.  When the letter P

appears in this column, it indicates that one of Rx or R2 is a pseudoprime, even though

this fact was not needed by the program to prove the corresponding Nn or Nn prime.

8. Some Special Cases.   In this section we discuss some of the more interesting

of the numbers of Table 1.

For N = A368, the number in the introduction, we have (using the notation of

[10])

M>6 x 1043,      M3 > 1024,

and consequently

A < min(MM3, M\).
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Table 1

No.   of

Dlpits
Tests Remarks

N

N

N

206

208

212

218

223

229

239

241

<247

'J259

263

263

278

281

':289

J
293

5
299

■j
307

*j
311

»311.

»314

316

319

N
321

N,„
Î9

332

337

38

29

36

42

30

45

44

38

31

42

40

46

53

46

48

56

56

62

61

44

57

60

50

36

31

64

58

1.6x10

3x10

1.1x10

!.5*10

6x10

[1],[10],PW

Cl],[10]

[1],Cio],pw

Cl],Cio]

Cll.Cio]

Ci],Cio],pw

Cl],C10]

Cl],CIO]

Cl],CIO]

C1],C10]

Cl],C10]

[l],[10j,PW

[1],[10],PW

Cl],CIO]

[1],[10],PW

Ci],[io]

Cl],Cio]

C1],C10],pw

C1],C10],pw

C1],[10],pw

Cl],[îoj.pw

Cl],[îoj.pw

Cl], [io],pw

[i]

Cl],Ciol,PW

Cl]

[1]

Pollard's method found the factor

8570437 of N+l .

Pollard's method found the factor

2948041 of N+l .

See discussion below.

R  (53 digits) proved prime using

[1],[7],PW (P), then N proved

prime using [1].

R„ proved pi.-ime, then N proved

prime.

N+l = 2 •3-7-83-59138939-R2.

R„ proved prime, then N proved

prime.

Pollard's method found the factor

12815681 of N-l .
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No. of

Digits
Tests Remarks

341

343

"356

357

"36£

371

372,

373

373

381

50

46

69

41

62

61

47

75

58

43

1.8x10

5x10

[1], [10]

[1]

[1], [10],PW

[1], [10]

[1],[10],PW

[1],[10],PW

[1], [10],PW

[1],[10],PW

[13, [10]

[1], [10],PW

Here R-l = F'R'.   R', then R ,
2      111'       2

then N proved prime.

See discussion below.

Pollard's method found the factor

106929516613 of H2+l .

See discussion below.

See discussion below.

P

P

P

Thus, A = PjP2, where px and p2 are primes,

Pj =762385150126634192052929    (mod FXF2F4),      p2 > 1024,

and (C2 - \6D\px) = - l,(£>lp,) = -1.  By verifying (3) and using (b) forpj,it

was shown by actual division that any possible value of p, less than FXF2F4F6 is not

a divisor of A.  Hence

Pl>9 x 1023 x2.7 x 1013>2.4 x 1037    and    pxp2 > 2.4 x 1061 > A.

Thus N must be a prime.

For

^356 = 565768471959285714079262248889509474547974219027885983055827845016103

and 5 = 5 x 10s, we get

Fj = 2 • 3 • 659 • 1567,      F-, 23 • 53 • 89,      F4 = 2 • 5,

F3 = 3 • 7 • 2659,      F6 = 241 • 7759.

This is not enough to prove A356 a prime.  However, Rx and R2 are both pseudoprime.

The larger of these (/?2) is easier to prove prime than Rx.  In fact, if

N' = R2

(65 digits) and B = 3 x 106, we get

F\ = 23 • 3 • 67 • 7411 • 51169,      F2 = 2 • 5 • 31 • 23039,

F4=2-172-37,   F'3 =3 -7- 13-43 -61 -1087 -5119-10501,   F'6 = 2221.

- 14992804535702928611386004051555794852341907436609232114050981689

-|6
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By using the tests of [1], [10] and PW (neither R'x nor R'2 is a pseudoprime), A* can

be shown to be a prime.  It is then a simple matter to prove A356 a prime.

For

N = F37, = 1066891454330692360911118469915492770211286402568532457966113

and 5 = 5 x 107, we get

Fj = 2s • 29,      F2 = 2-3-7- 11 -53- 11239 > 2-7 x 108,

F4 =2-5-165041,      F3 = 1431907,      F6 = 3 • 13 • 19,

and Rx and R2 are both composite.  With this information it is possible to demonstrate

with the computer program that either A is a prime or it is the product of two primes

Pj and p2.   Further, if A = PjP2, px is a prime of the first kind; and p2 is a prime

of the second kind.

It follows by using the results of Section 6 that

Pj = rx, r\, r"x     (mod K),      p2 =■ r2, r'2, r"2     (mod K),

where rx, r2 are obtained by using the first case of (a) and (b), r\, r'2 by the second

case of (a), (b), and r", r"2  by the third case of (a), (b).

Now K = FXF2F3F4F6 > 3 • 7 x 102s and if

px =rx + t2K,      p2=r2 + t2K,

then

A= 7-j7-2 + (fj7-2 + t2rx)K + txt2K2.

We now make use of an extension of an idea introduced in [1].   For if

(N-rxr2)lK = T   (mod F2),

where \T\ < F2, then, recalling that rx = - 1 (mod F2), r2=\ (mod F2), we get

t1-t2=T   (mod F2).

If r1 - t2 ¥= T, then \tx - t2\>F2; and consequently, tx or t2 > F2 > 1.37 x

108.  It is possible to verify on the computer that

px Ï N,p2 IN   for 0 < tx, t2 < 6;

hence

pxp2 >6 x 1.37 x (3,7)2 x 10s8 >N.

If tx - t2 = T, we must have

A = (r, - r2 + KT)2 + AN

a perfect integer square.   It is easy to use the computer to find a small prime n ¡(K

such that (/4 | jt) = - 1.  In a similar manner we can dispose of the other two cases:
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Pj = r\, p2 = r'2 and px = r"x, p2 = r"2 (mod K).  By using this strategy the number A

was proved prime.

For

N = Ni01 = 11739610117429203651282768407085324070169775523763828726810201

and 5 = 3 x 108, we get

Fj = 23-52-7-307,      F2 = 2-3-431 -6911 > 1.78 x 107,

F4 = 2,      F3 = 737497,      F6 = 3 • 229;

and Rx, R2 are both composite.  None of the other numbers considered in Table 1

presented as much difficulty in proving primality as this one.  The strategy used to

prove A prime is a refinement of that used in demonstrating the primality of A371.

In this particular example use was made of tests (1), (2), (3), and (4) as well as all the

tests (I, II, III, IV) of [1] and the test (ß) of [10].

We have M = 1 + B3FXF2F4 > 1038.   In order to show that A is the product

of at most two primes, we must obtain a large (> 1.2 x 1023) lower bound on any

prime of the first kind p which divides A.  We have

P = l    fai^i).      p=-l    iq2F2),

and if ip\P)3 = 1,

P ~ l     (<73F3)>       P - * 1     (?6F6)>

where q¡ is some prime divisor of R¡ iq¡ > B).  In this case we have p > 1 + B2FXF3

= 2.5 x 1028 > 1.2 x 1023.  Since F3 and F6 are both primes, there are four

possibilities for p modulo K (= FXF2F3F6 > 6.48 x 1020) when (p |F)3 =£ 1.  These

are given by

p = N   (mod F3 ), (ps-/V-l    (mod F3),

p=A   (modF6), |p=A    (mod F6).

ip=N    (mod F3), ip=-A-l     (mod F3),

(p=-/Y+l      (modF6),       |p =-A+l      (mod F6).

We can obtain positive integers Ax, A2, A3, A4 such that p =A¡ (mod K) for some

/' < 4 (Ai < K). It was shown by machine that A¡ + t¡K |A for 0 < t¡ < 186 and

1 < 2 < 4; hence, if p is a prime of the second kind and p |A, then

p> 186 x 6.48 x 1020 = 1.2 x 1023.

We have M\> N and M3M > A; it follows that A is prime or N = pxp2, where

Pj is a prime of the first kind and p2 is a prime of the second kind.  We suppose that
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A is the product of two primes and deal with the three possible cases.

Case 1.  (p2\P)3 = I.  We have

p2 = 1    (qxFx),      p2 = 1    (<72F2),      p2 = 1    (q3F3),      p2 = 1    (<76F6);

hence,

p2> 1 +B4K>A x 1054    and   pxp2>N.

Case 2.  (px \P)3 = 1.  We have

Pi = 1    fai^i),      P2 - l    i<li<l2FiF2)>      Pi - l    (Í3F3>;

thus,

Pj > 1 + B2FXF3 > 2.85 x 1028,      p2 > 1 + Ä2FjF2 > 3.45 x 1029.

We also have

j p, = - 1     (mod F2),        Í p2 = A   (mod F3),

(Pi 3-1     (mod F6),        J p2 = -N    (mod F6).

Hence, we can determine integers r,, r2 such that

Pj = 7-j    (mod K),      p2 = r2    (mod K).

If we use the argument employed in the discussion of A371, we see that for some k

we must have

Aik) = (r, - r2 + KT + M:F2)2 + 4A

a perfect square, where

T = iN-rxr2)¡K   (mod F2),      \T\< F~2,

px = 7-j + ijA:,      p2 = r2 + r2/T,       ij - t2 = T + kF2.

Let fi be the set of all primes, which do not divide K and are less than 100.  It

was easily verified by using a sieve process that

iAik) 17r) = - 1    for some 7T G II

for each k such that 0 < \k | < 3.6 x 104.  Thus, since min(p,, p2) > 2.85 x 1028,

and one of tx, t2 must exceed (|7v| - 1/2)F2, we have

pxp2 > 2.85 x 1028 x 6.48 x 1020 x 1.78 x 107 x 3.6 x 104 >A^.

Case 3.  (px \P)3 -h 1, (p2 |F)3 ^ 1.  We have

-A-l=Pj=p2    (mod F3),      -A+l=Pj=-p2    (mod F6).

Hence, we can find rx, r2 (different from the preceding rx, r2) such that

Pj =rx +txK,      p2 =r2 +t2K.
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Using reasoning similar to the above, we get

tx+t2=T = rxxiN-rxr2)/K    (mod FXF3),

where \T\<FXF3.  We verified that

Aik) = (7-j + r2 + KT + kKFxF3)2 - 4A

cannot be a perfect square for any k such that 0 < k < 8.6 x 104, and we also

verified that rx + txK ÏN for 0 < tx < 1040.

Let

f, + r2 = 2a > (/c - l/2)FjF3 > 2.7 x 1016.

Since p2 > 3.45 x 1029, it follows that tx < t2; hence,

tx = a - b,      t2 = a + b,

where 0 < b < a.

If 6 > .999a, then r2 > (1.999)a > 2.698 x 1016 and

PjP2 > 1040 x 6.48 x 1020 x 2.698 x 1016 x 6.48 x 1020 > A.

If b < .999a, then

tx >(.001)a> 1.35 x 1013,      t2 >a> 1.35 x 1016,

and Pjp2 > A.

Since A cannot be the product of two or more primes, it must be prime.

In conclusion, we remark that had we wished to use factors of (A5 - 1)/(A- 1)

or (A5 + 1)/(A + 1) to prove the primality of A307, we would find with B = 106

that

(A^s - 1)/(A- 1) =5-11 -821 -R5,

(A5 + 1)/(A+ 1 ) = 241 -9311 -9851 -35461 • 151381 • Rxo.

The unfortunate aspect of investigating factors of higher cyclotomic functions of Ais the

very rapid proliferation of possible residue classes to which suspected prime divisors of

A could belong.   For very large A the creation of all the residue classes becomes so

tedious and the resulting test divisions become so numerous that any advantage obtained

by knowing a large collection of congruences that a suspected prime divisor must satisfy

appears to be destroyed.
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