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A Finite Element Method for the Stationary

Stokes Equations Using Trial Functions Which

Do Not Have to Satisfy div v = 0

By Richard S. Falk*

Abstract.   By adding a term to the variational equations, we derive a new finite ele-

ment method for the stationary Stokes equations which eliminates the divu = 0 re-

striction on the trial functions.   The method is described using continuous piece-

wise linear functions, and the optimal 0(h) order of convergence estimate is derived

for the error in the H (iî) norm.

1. Introduction.   A major obstacle in using finite element methods to approxi-

mate the solution of Stokes equations is the construction of trial functions satisfying

either zero divergence or some other condition which approximates it. We present in

this note a method for avoiding this problem by adding a term to the variational

equations.  The weighted method produced is then shown to give the optimal 0(h)

order of convergence estimate when applied using continuous, piecewise linear trial

functions.

For simplicity we confine ourselves here to the approximation of the stationary

Stokes equations, i.e.

Problem (P). Find u = (ul, . . . , uN) and p defined on fi such that

-i>Au + gradp = f    in fi,      divu = 0    in fi,      u = 0    on 9fi,

where u is the fluid velocity, p is the pressure, f are the body forces per unit mass

and v > 0 is the dynamic viscosity.

For other finite element methods for this problem, see the excellent bibliography

in Temam [7].  Some other recent methods not listed there are those of [1] -[5].

2. Notation.  We shall consider Problem (P) in the case where fi is a bounded

convex domain in R^ with C2 boundary.  The results of this paper will also hold for

fi a convex polygon.

Denote by (u, v) the ¿2(fi) inner product and by ||u||0 the norm (v, v)Vl.  For

m a nonnegative integer we denote by //m(fi) (//¿"(fi)) the completion of C°°(fi)

(Co"(fi)) in the norm

Mm = ( L    llo°<V.
\|a|<m /

For m a negative integer we define //m(fi) as the completion of C°°(fi) with respect

to the norm
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IMIm =     sup _     (v, w)
wec°°(í2)  IMLm"

We will also be using the inner product in //m(fi) which we denote by (u, v)m.

For vector valued functions v = (v1, . . . , vN) we let [Hm(Q,)]N be the space of

v with components v¡ G //m(fi). The scalar product and norm in [//m(fi)]N are given

by

N In

(u> v)m = Z («/. "/)„,    and    ||v||m =( J] llü/ll2« )   ,    respectively.
<= i V= i

Finally, for convenience we introduce the bilinear form

N      N    r     duk    dvk

a(u,v) = v  ¿    Z  Jn
k-   ,-  —   9*.    **i

dx

defined on [//¿(fi)]^ x [//¿(fi)]^ and the corresponding norm ||u||| = a(u, u).

3.   Approximate Problem and Error Estimates.  We begin our discussion with a

statement of a regularity result for the solution of Problem (P) and a description of

the subspaces we will use in its approximation.

Lemma  1 (Temam   [7]). // fi is an open bounded set of class C2 and if f be-

longs to [L2(£l)]N, then the solution u, p of Problem (P) satisfies u G [H2(Sl)]N,

p G //!(fi) and ||u||2 + ||p || j < C(v, fi)||f ||0. (We have assumed that p has been

normalized so that fnpdx = 0.)

We remark that a similar result has been proved by Kellogg and Osborn in [6]

for fi a polygonal domain.

Since fi is assumed convex, the finite dimensional subspaces we will use in the

approximation of Problem (P) can be described as follows.  Let h, 0 < h < 1, be a

parameter, and for each value of h, let fift be a polygon inscribed in fi with all its

vertices lying on 9fi and each side of the polygon of length less than or equal to h.

Let A^fi,,) be a regular triangularization of fift and Ah(fi) an extension of the tri-

angularization A^fi,,) to cover fi.   Set Vn = {vn: vn is continuous on fi and linear on

each triangle of A„(fi)} and V% = {vh G Vn: vn = 0 in fi - fi„}.

Then the following approximation results are satisfied by Vn and K° for some

constant C independent of u and h.

For u G//2(fi), there exists a vn G Vh such that

(*) II".-»A +ftll"-i>ftll1 <C722||u||2.

If u G H2(u.) n //¿(fi), then (*) is satisfied for aDjGFj.

From the point of view of approximation theoretic results like (*), one might

like to formulate an approximation scheme for Problem (P) of the form:

Problem (?'h).  Find u,, G [V%]N such that a(uh, \n) + yhT2(divuh, divvft)_j =

(f, v„) for all \n G [V°]N (y > 0 a constant).

For this type of scheme it follows in a very straightforward manner that

(1) Hu-uJfe+rtdivigL,

<C{||u-vÄ||£ + AllpHi +^1lldiv(u-vft)||_1}
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for all \n G [VJ¡]N.  Since ||div(u - v/l)||_1 < ||u - \n ||0, it follows immediately from

(1) and (*) that ||u - u„ l^ < Ch.

The obvious trouble with this scheme is that (divuft, divvft)_j is not a computable

quantity (in a practical sense).  The central idea of this note is to show how this

quantity can be replaced by a computable one, while still retaining the same 0(h)

convergence rate.

To do so, we define a bilinear form ¿(w, z) = Ä2(divw, divz) + (Qn(w), divz)

where Qn(w) G Vn satisfies

(2) (ß„(w), ¿„)i = (divw, V„)    for all ^heVh.

Using this form, we define another approximate problem as follows:

Problem (P„).  Find un G [V°]N such that

(3) a(uh, yh) + yh-2b(uh, v„) = (f, v„)    for all v„ G [V°]N    (y > 0 a constant).

Then the main result is:

Theorem  1. Let u and \xh be the respective solutions of Problems (?) and (Pn).

Then if f G [L2(fi)]N, there exists a constant C independent of h and f such that

llu - vh\\E + ||divu„||0 < CfcHfll,,.

In order to prove Theorem 1, we first establish some properties of the bilinear

form Z>(w, z).

Lemma 2. //w G [Hl(Sl)]N, then

lldivwlllj < 0>(w, w) = C[fc2||divwil2 + ||ß„(w)||2]

for some constant C independent of w.

Proof.   Let ß(w) be the solution in //"(fi) of (g(w), i//)j = (divw, \p) for all

\p G//'(fi).

Then by a well-known regularity result for elliptic boundary value problems,

(4) ß(w)G//2(fi)    and    ||Ö(w)ll2 < C||divw||0

for some constant C independent of w.  By (2),

(Ô(w) - ß„(w), tfj, = 0    for all i>n&Vn.

Hence,

llß(w) - ß„(w)||j < ||ß(w) - tfgi,    (for all *„ G Vn)

< C7i||divw||0        (by (*) and (4)).
Now

HdivwILj = ||g(w)||, < ||ß(w) -ß„(w)||, + ||ß„(w)Hi

<C*||divw||0 + MmWIIv
Hence,

Hdivwllij <C[A2||divw||2 + ||ß„(w)||2]

= Cb(w, w)    (since ||ßft(w)||2 = (ß„(w), divw)).
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Remark.  From Lemma (2) it easily follows that Problem (P,,) has a unique

solution.

Lemma 3.

2>(w, z) < %b(v/, w) + r22||divz||2 + ||divz||2j.

Proof.

b(w, z) = ft2 (divw, divz) + (ßh(w), divz)

</i2||divw||0||divz||0 + ||ßft(w)||j HdivzlLj

<1/4/i2||divw||2 + /i2||divz||2 + '/» ||ß„(w)||2 + Hdivzll2!

< %*(w, w) + /z2||divz||2 + ||divz||2j.

We now prove Theorem 1.

Proof.  Since u solves Problem (P), it follows easily that

fl(u, v) + yh-2b(a, v) = (f, v) - (gradp, v)    for all v G [7/0(fi)]w.

Since \xn solves Problem (P,,), we may subtract Eq. (3) from the above to get

a(u - u„, v„) + yh-2b(u - u„, v„) = -(gradp, v„)    for all v„ G [V^]N.

It follows easily that

llu - uj|| + yhT2b(u - u„, u - un)

■ «(a -u„, u - v„) + yh~2b(u - u„, u - v„) - (gradp, v„ - uh).

Now

-(gradp, \h - un) = (p, div(v„ - u„)) = (p, div(v„ - u)) + (p, div(u - u,,))

< IIP«! [Ildiv(vft - u)||_j + ||div(u - u„)||_,]

< Cllpll, [||div(vA - u)||_j + {ô(u - u„, u - uj}1/2]    (by Lemma 2)

<C7z2||p||2 + /T2||div(vrt-u)||2_1

+ lAyh~2b(u - \ih, u - un)   (using the arithmetic-geometric mean inequality).

By Lemma 3,

yh~2b(u-uh,u~\h)

< %yh~2b(u - uh, u - u„) + Tlldiv(u - v„)||2 + yh~2\\div(u - v,,)!!2.!,

and using the Schwarz inequality,

a(u - u„, u -yh)<V2\\u-un\\2E + K||u - vft|||.

Hence, after collecting terms, we obtain

llu - u„||| + yh~2b(u - u„, u - u„)

< C[||u - v„||| + ||div(u - v„)||2 + //-2||div(u - vJHij + Cllpll2]

for all v„ G [V°]N■

Since ||div(u - vft)||_j < ||u - vA||0, it follows immediately from (*) and Lemma 1
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that

llu - uh\\E + s/y~h~x {b(u - u„, u - u„)}"/2 < Cftllf ||0

and hence, using the definition of &(w, z), that

||u-uft||£ + ||divuJ0<Cfc||f||0.

4.   Final Comments.   In the preceding we have presented a method for the

approximation of the stationary Stokes equations which yields optimal 0(h) conver-

gence using piecewise linear elements with no zero divergence restriction.  For the

elimination of the constraint and the advantage of using such simple finite elements,

one must pay a price.  In this case it is the added complexity of the linear system

which must be solved.

Finally, we note that it is possible to formulate an optimal order method for

finite elements of order r > 2 by replacing the term yh~2b(vLn, \n) by

y  ±  h2-2">bm(nh,vn),
m = 2

where

bm(w, z) = Ai2m-2(divw, divz) + (ß™(w), divz)

and ß™(w) satisfies

(5) (ßiT(w), *Ä)«-i = (divw, t,n)    for all *n G s^1'2^2,

where s™~l'2m~2 is a finite dimensional subspace of Hm~x(£l) with the property

that for u G//2m_2(fi), there exists i//ft G S^~l'2m~2 such that

\\u-^hWm-X<Chm-X\\u\\2m_2.

However, because the auxiliary problems (5) increase in order, this does not seem to

be a practical approach.
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