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A Necessary Condition for ^4 -Stability of

Multistep Multiderivative Methods

By Rolf Jeltsch

Abstract.   The region of absolute stability of multistep multiderivative methods is

studied in a neighborhood of the origin.  This leads to a necessary condition for A-

stability.   For methods where p(f)/(f - 1) has no roots of modulus 1 this condition

can be checked very easily.   For Hermite interpolatory and Adams type methods a

necessary condition for A -stability is found which depends only on the error order

and the number of derivatives used at (x„*k, y^-i.^)-

1.  Introduction and Results.  A multistep method using higher derivatives for

solving the initial value problem y = f(x, y), y (a) = 77 is given by

k Ik

(!)      E  «V.+l -   Z  A'   £   hfU)^n + i^n + i) = 0,        « = 0, 1, 2, ... .
1=0 7=1 1=0

a,., j3/(. are real constants, ak * 0, Sf=0 |0„| # 0, |a0 | + ZJ=I \ßj0 \ + 0, x„ = a +

nh, « > 0, and

rm(x,y) -/(>.>■);

/n,i)=Ä^*/(,;l^     /-i.».'"'•

It is well known that the method has order p if

(2) Pie2) -  Z ^Oj(ez) =      Z   Cpi,      Cp+1#0,

z'=i z-P+i

where p(f) and a.-(f) are the polynomials

p(0= ¿«,r¿.   °ß)= ¿ß/.   7 = 1,2,...,/.
1=0 1=0

We shall always assume that the polynomials p and a-J = 1, 2, . . . , /, have no

common factor.  The method is convergent if and only if p > 1 and p(f) is a simple

von Neumann polynomial; that is, if f is a root of p(f), then If I < 1; and if If | = 1,

then it is a simple root (see R. Jeltsch [8]).

If the multistep method (1) is applied to the test equation,)'' = py,y(0) = 1,

p complex, then (1) is a Unear recurrence relation with constant coefficients.  The

corresponding characteristic equation is
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(3) p(f) -   ¿ z'oß) = 0,      z= ph.

For each z, (3) has k roots f,-(z), i = 1, 2, . . . , k.  The set A = {z\ lf,-(z)| < 1,

i = 1,2, ... ,k} is called the region of absolute stability.  Let 9A = A - A, where

A is the closure of A.  A method is called A -stable if A contains the whole left-hand

plane Rez < 0.

In several articles the boundary 9A of A has been plotted in order to determine

whether a method is .4-stable or not, see Brown [1], Enright [4], Jeltsch [7].  How-

ever, if all growth parameters À-, given by (4), are positive, then 9A will be extremely

close to the imaginary axis for z close to 0.  Roundoff errors may defeat the attempt

to determine whether 9A is in a neighborhood of z = 0 in H+ = {z G C|Rez > 0}

or in H~ = {z S C|Rez < 0}.  Our results fill this gap.  In particular, we shall find a

necessary condition for A -stability.  It should be noted that a method which violates

this condition may still behave numerically almost like an A -stable method even though

it is not A -stable.  In Section 2 this necessary condition for A -stability is applied to

Hermite interpolatory and Adams-type multistep multiderivative methods; and it is

found that these cannot be A -stable if the error order p is equal to 2lk + 1 modulo

4, where

o    if £ \ßjk\ = o,
z-i

'       if    Z     Iz3/fc I = 0 and /3fJt == 0.
/=f+i

The proofs are given in Section 3.

Let f/./ = 1,2, . . . , s,be the roots of p(f) with modulus 1.  Let us introduce

the growth parameters

W */» Oio/Vf/P'O/),      /=l,2,...,s,
and

(5) Pj - j^ (otf/) + rM<*/) - \ iftVff/)).   / -1,2..... •.

Furthermore, let the method have order p > 1.  Then we define recursively

(6) cj = (c, - ' Z   Cj-êij/so'      7 = P + 1, P + 2, . . . , 2p,

where s0, sx, . . . , s    x are given by

(7) Ziz'-laj(ez)=   Z  sizi + 0(zP).
j=i i'=o

For the disk {z 6 C| \z\<R} we shall use the symbol D(R).

Theorem 1. Let the multistep method of form (1) be convergent, of order

p > 1 and let p(f) have s roots of modulus 1, f;., i = 1, 2, . . . , s, with fx = 1.

Let X{ be real and positive, i = 1, 2, . . . , s; and define

k
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il, 1-1,

min       {2 Rep, -X?},      s > 2,
j=2,3,...,s '

where X¡ and p;- are given by (4) and (5), respectively.  Assume that one of the con-

ditions (I), (IIj)-(II4) holds, where

(I)  S < 0.
fjlj) 5 >0,podd, cp+1(-l)(p+1)/2 >0.

(112) 8 > 0, p eve«, cp + 2q(-l)^/2^+^ > 0, cp + 2/ = 0,/ = 1, 2, ...,<?- 1,

for some q < p/2.

(113) 6 > 0,podd, cp+1(-l)<"+1)/2 < 0.

77ze numbers Cj, j = p + 1, p + 2, . . . , 2p, are given by (6).   77ze« there exists

a disk D = D{R), R > 0, such that y = 9A fï £» is a continuously differentiable curve

which intersects the real axis and the imaginary axis only at z = 0.   77ze imaginary

axis is tangent to y at z = 0.  y divides D in two simply connected regions D~ = A

H D and D+ = D - D~, see Figure 1. Moreover, each of the conditions (I), (II3),

(II4) implies that D~ C ff~ w«z/e eac« of the conditions (IIj), (II2) implies that D+ -

{0} c H+.

Figure  1. Absolute stability region in a neighborhood of the origin

(a)  if one of the conditions (b)  if one of the conditions

(I), (II3), (II4) holds (IIj), (II2) holds

Remarks. 1.  Using (2) and (7), one finds the explicit formulas

min{u,/} .

^       T^Jy     Z   tim™"-''
¡=l       v'     It'   m = 0

« = p + l,p + 2, ...,

and

min{/i + l,/}

(9)   *n =      Z (n+'i-jY    Í Pimm"*1"''*      » = 0, 1, 2, . . . , p - 1.
Z—l v '''    m = 0

(8)

1     k
m
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Moreover, from (6), (7) and (2) follows

(10) cp+x =Cp+x/p'(l)*0

and

(ID cp + 2 = (cp + 2 - -^g- (ai(l) + 2a2(l))y p'(l).

2.  Let s = 1.  If p is odd, then Theorem 1 describes 9A close to z = 0 in all

cases since c +x =£ 0.  The methods with p even and c +2- = 0,/ = 1,2,. . . ,p/2,

are not covered by Theorem 1.  However, there are only a few methods with this

property since one has the following result by Griepentrog [6].  There exists no /c-step

method of form (1) with k > 2 and s — 1 for which 9 A lies exactly on the imaginary

axis in a neighborhood of z = 0.  Moreover, a one-step method of form (1) with p > 1

has 9A on the imaginary axis in a neighborhood of z = 0 if and only if ßjx =

(-\y+1ßjoj=\,2,...,/.

Theorem 2. // is necessary for a method to be Astable that all growth param-

eters are real and nonnegative,   5 > 0 and either (III) or (IV) holds, where 5 is de-

fined as in Theorem 1 and

(III) p«W,cp+I(-l)(' + 1>/2>0.

(IV) p eve«, either cp + 2j = 0,/ = 1, 2, . . . ,p/2,or cp+2/(-l)(p/2)+<? > 0,

cp+2j = 0,j = 1,2, ... ,q- I, for some q < p/2.

Remark. This necessary condition for A -stability is very easy to check for s = 1.

If p is odd, only c +x has to be calculated. If p is even one finds for most methods that

c +2 =£ 0; and hence, only c + 2 has to be calculated. The foUowing lemma simplifies

the problem of determining the sign of cp + x.

Lemma. Let the multistep method using higher derivatives be convergent, then

signp'(l) = signafe.

Proof. Since the method is convergent, all roots of p(f) and p'(f) lie in the unit

disk and hence the lemma holds.

2.   Application to Hermite Interpolatory and Adams Type Methods.

Definition 1.  A linear multistep method using higher derivatives of the form

Z «,y„+i -t i h%f{i)(xn+i,yn+i) = o
1 = 0 1=0  ;=1

is called Hermite interpolatory if the error order p is at least 2f=0/,- + k - I.

In Jeltsch [9] the foUowing theorem is proved.

Theorem   3.   Let a set of nonnegative integers l0, lx, . . . , lk with

max/=0 j     kl¡ = I > 0 be given.   Then there exists a unique Hermite interpolatory

multistep method with the given /,-, ak ¥= 0 and ßl k # 0.  77ze error order is p =

2£_0/(. + k - 1 and one has

signCp+1 =(-l)/fcsignafc.

A similar result can be established for Adams-type methods which are defined

as foUows.
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Definition 2.  A linear multistep method using higher derivatives is said to be of

Adams type if it is of the form

k      h

yn+k -yn+k-i - Z Z h%f{'Xxn+l,yn+t) = o,
1 = 0   /=1

and its error order p is at least 2Zk=0l¡.

Theorem 4. Let a set of nonnegative integers l0, lx, . . . , lk with max/,- =

l> 0 be given. Then there exists a unique Adams-type multistep method with the

given I; and ßl k ¥= 0.   77ze error order is p = 2k=0l¡ and one has

signCp+i =(-l)fcsigno:fc.

Using Theorems 2, 3, 4 and the Lemma, one then finds immediately the

Theorem 5. A convergent linear multistep method using higher derivatives

which is of Adams type or Hermite interpolatory cannot be Astable if the error order

p satisfies

p = 2lk + 1    mod 4.

Example 1.  Brown's methods are interpolatory with

'o = >i = • ' • = h-i = 0,      ¡k = I-

Hence, the methods are not 4-stable if p = 2/ + 1 mod 4.   Especially the methods with

k = 4, / = 2, p = 5; k = 5, / = 3, p = 7 and k = 6, / = 4, p = 9 are not ^-stable.  The

method with p = 10, k = 1 and / = 4 is not covered by Theorem 5.  However, A. H.

Sipilä has computed Cxx and C12 using rational arithmetic and it was found that

cx2 =(Cn/3p'(l))H.653007...).

Hence, by our Lemma and Theorem 3, one has c12(-l)p'2 + ' < 0.  Hence, by Theo-

rem 2 this method is not .4-stable.  Note that in Brown [1] the plots of 9A lead to

the wrong conclusion that these methods are A -stable.

Example 2.  Consider the linear one-step methods using higher derivatives which

are based on the (r, l) entry of the Padé table of exp(x), see Jeltsch [8] or Ehle [3,

p. 89].  These methods have order p = r + I and are interpolatory.  It is known,

see Ehle [3], that the methods are A -stable for r = I, I - 1, / - 2.   From Theorem 5

it follows that the methods are not A -stable for r = I - 3.  This result has been found

by Ehle [3].

Example 3.  Enright's second derivative methods are of Adams type with /0 =

/j = • • • = lk_x = 1 and lk = 2, with order p = k + 2, see Enright [4].  Using the

Lemma and Theorems 1 and 4, one finds that for k = 3 mod 4 the region of absolute

stability behaves at the origin as given in Figure la and for k = 5 mod 4 as given in

Figure lb.

3.  Proof of the Results.

Proof of Theorem 1.  The algebraic function f(z) which satisfies (3) has »c

branches fy(z) with fy(0) = fy,; = 1, 2, . . . , k.  Since |f;.(0)| < 1 for/ = s + 1,

s + 2, . . . , k there exists a D(RX), Rx>0 such that |fy(z) |< 1 for all z £ D(RX),
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i = s + \, s + 2, . . . , k.  fy(0),/ = 1, 2, . . . , s, are simple zeros of p(f); and hence,

there exists a disk D(R2), 0 <R2 < Rx, such that the branches fy(z) are analytic in

D(R2).  By the method of undetermined coefficients one finds

(12) fy.(z) = f;.(0)(l +XjZ + p;Z2 +0(z3)),     / = 1,2, ...,s;

and hence,

(13) -*— =f/(0)X/ #0,      /= 1,2, ...,s.
02 z = 0

Hence, there exists an R3, 0 <R3 < R2, such that the mapping f .(z): z —» f =

f (z) is one to one on z € D(R3).  Moreover, R3 can be chosen so small that the curves

yU) = {zED(R3) | |f.(z)| = 1} are continuously differentiable.  Clearly, {0} e^'

and from (13) it foUows that the imaginary axis is tangent to 7") at z = 0.  If i ¥*j,

then either 7^ n 7 O is a finite set or 7^ n 7^ is a continuous curve which con-

tains z = 0.  Hence, there exists R, 0 < R <R3, such that either y¡ n y¡ = {0} or

y¡ = y¡ and y¡ n [-R, R] = {0} for / = 1, 2, . . . , s, where y¡ = D(R) n 7W).  Each

7; separates Z)(Ä) in the two sets DJ =(z£ £(£) | |f;(z)| < 1} and Df = {z G D(Ä) |

|f;(z)| > 1}.   Clearly, (-R, 0) C DJ,j = 1, 2, . . . , s.  We distinguish now two cases:

(i)  Consider f;-(z),/ = 2, 3, . . . , s. With z = iy,y G (-R, R), one finds from

(12)

|f,(z»| = |1 -.v2Rep, + z(X,;v -/Imp) + 0(y3)\

(14)
= sqrt(l -y2(2Repj - X2) + 0(y3)).

(ii)  Consider f x(z).  It is well known, see, e.g. Gear [5] that f x(z) - e2 =

0(zp+l).  Since ft(z) is analytic at the origin, we can write

(15) f1(z) = e2(l-    Z    c^ + 0(z2p+1)

\     i=P+i

If one substitutes (15) in (3) and uses (2), one finds easily that c-,y" = p + 1, p + 2,

. . . , 2p, are determined by (6) and (7).  Note that c is a real number.  Let p be odd.

Then c +xip+l = c +1(-l)^p+1^'2 is real and nonzero.  Hence we find for z = iy,

y real,

lfi(WI = l«','lll-<?,+i*'+V+1 +0(yP + 2)\
(16)

= sqrt(l -2cp+1(-l)(p+1)/V+1 + 0(yP + 2))    for p odd.

Let p be even.  Then cp + 2jip + 2> = cp + 2/(-l)(p/2)+/ is real for / = 1, 2, . . . , p/2.

Hence, we find for z = iy,y real

Ifi0»l 1 - Z cp+2jip+yyp+v
¡=i

(17) -/ PZ1Cp+2j+Ap+2iyp+2i+1+o{y2p+i)
z=o

= sqrt (l - 2 P£ cp + 2j{-l){P/2)+iyP + 2i + 0(y2P+1)\    for p even.
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Assume now that condition (I) holds.  Then it follows from (14) that there

exists R,0<R<R, such that \Çf{iy) | > 1 for y real, 0 < | y \< R for at least one

/ S {2, 3, . . . , s}.  Therefore, r = An D(R) = D^DJ n D(R) C ff".

If (IIj), (II2), respectively, hold then by (16), (17) and (14) there exists R, 0 <

R <R, such that |f,(/»| < 1 and \C¡{iy)\ < 1,/ = 2, 3, . . . , s, for y real, 0 < \y\

<R.  Therefore, D+ = \JsjsxiDf n D(R) satisfies D+ - {0} C H+ since Df n D(R)

- {0} C H+.  Similarly, one finds that (II3), (II4) imply D~ C \i".  This completes

the proof of Theorem 1.

Proof of Theorem 2.  Let Xj = dei0, d>0,<pe(0, 2zr). Clearly,

*-T-H!'t)    «"   * + *e(T'T)-
Hence, using (12), one finds

|f;(«'*)| = |1 + rde''«"^ + 0(r2)| > 1

for all r > 0, r sufficiently small.  Therefore, the method is not .4-stable.  Let X- > 0,

/ = 1, 2, . . . , s, and 6 < 0.   From (14) follows immediately that the method is not

4-stable.  Similarly, using (16) and (17) one finds that (III), (IV) are necessary for A-

stability.  This establishes Theorem 2.

Proof of Theorem 4.  In Jeltsch [9] it is shown that to given nonnegative

integers lQ, lx, . . . , lk with max/,- = / > 0-there exists a unique Adams-type method

with the given l¡, ßt k =r= 0 and that the error order p = 2f=0'<-  Hence> it remains to

show that

(18) signCp+1 =(-l)/fcsignafc.

To show this we construct the method explicitly.  Let P(x) be the interpolation poly-

nomial of degree S*_0/f - 1 which satisfies

^i-x\Xi) =y% = /(/>(xB+/,yn+i),     / - 1,2,... , lt, i = 0, 1,2, . . . ,k.

The multistep method is obtained by setting

(i9) yn+k-yn+k-i=fx"+k, ,nx)dx

To find the error order and C +l we apply the method given by (19) to a suffi-

ciently smooth function y(x).  Clearly,

* u
(20) y'(x) - P(x) = f*(x)   Y\{x- xn + i) ',

1=0

where f*(x) is the generalized divided difference of the function y'(x) on the set

S = {x,xn,xn, ... , xn, xn+ x, xn +j, ... fXn + x,xn + 2, ... ,xn + k, xn+k, ... , xn + k},

l0 -times /j-times lk -times

see e.g. Conte and de Boor [2, p. 223].  Hence,
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f "+*     (y'(x) - P(x)) dx = f" f*(x) U(x- x„+i)1' dx
xn+k-l xn+k-l ,=o

Jx n + k fc i

n(^-^+,)'^'
xn + k-l   ;=0

since the factor Ilf=0(x -xn + i)1 does not change sign in the interval [xn + k-X,xn + k] ;

and hence, the second mean value theorem of the integral calculus can be applied,

fe [xn + k-x,xn + k].  But/*(f)= l/((p+l)!)>-(p+1)(T?),whereî?G [xn,xn + k];

and hence,

(21) (X" + k     (y'(x)-P(x))dx=KhP+ly{p+l\v),
Jxn+k-l

where

(22) *=   (pTT)!   flUis + k-l-i^ds.

Using (21), it is easy to see that the method given by (19) is of error order p and that

C +x = K.  From (22) foOows that signC +x = (-1) k.  The proof of Theorem 4 is

complete since there exists exactly one Adams-type method.
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