A Note on Extended Gaussian Quadrature Rules

By Giovanni Monegato*

Abstract. Extended Gaussian quadrature rules of the type first considered by Kronrod are examined. For a general nonnegative weight function, simple formulas for the computation of the weights are given, together with a condition for the positivity of the weights associated with the new nodes. Examples of nonexistence of these rules are exhibited for the weight functions $(1-x^2)^{\lambda-\frac{1}{2}}$, e^{-x^2} and e^{-x} . Finally, two examples are given of quadrature rules which can be extended repeatedly.

1. Introduction. A quadrature rule of the type

(1.1)
$$\int_a^b w(x) f(x) \, dx = \sum_{i=1}^n A_i^{(n)} f(\xi_i^{(n)}) + \sum_{j=1}^{n+1} B_j^{(n)} f(x_j^{(n)}) + R_n(f),$$

where $\xi_i^{(n)}$, $i=1,\ldots,n$, are the zeros of the *n*th-degree orthogonal polynomial $\pi_n(x)$ belonging to the nonnegative weight function w(x), can always be made of polynomial degree 3n+1 by selecting as nodes $x_j^{(n)}$, $j=1,2,\ldots,n+1$, the zeros of the polynomial $p_{n+1}(x)$, of degree n+1, satisfying the orthogonality relation

The polynomial $p_{n+1}(x)$ is unique up to a normalization factor and can be constructed, for example, as described by Patterson [4]. Unfortunately, the zeros of $p_{n+1}(x)$ are not necessarily real, let alone contained in [a, b]. We call (1.1) an extended Gaussian quadrature rule, if the polynomial degree is 3n + 1, and all nodes $x_j^{(n)}$ are real and contained in [a, b].

The only known existence result relates to the weight function $w(x) = (1-x^2)^{\lambda-\frac{1}{2}}$, -a = b = 1, $0 \le \lambda \le 2$, for which Szegö [9] proves that the zeros of $p_{n+1}(x)$ are all real, distinct, inside [-1, 1], and interlaced with the zeros $\xi_i^{(n)}$ of the ultraspherical polynomial $\pi_n(x)$.

Kronrod [3] considers the case $\lambda = \frac{1}{2}$ and computes nodes and weights for the corresponding rule (1.1) up to n = 40. For the same weight function, Piessens [6] constructs an automatic integration routine using a rule of type (1.1) with n = 10. Further accounts of Kronrod rules, including computer programs, can be found in [8], [2].

Patterson [4] derives a sequence of quadrature formulas by successively iterating the process defined by (1.1) and (1.2). Starting with the 3-point Gauss-Legendre rule, he adds four new abscissas to obtain a 7-point rule, then eight new nodes to obtain a 15-point rule and continues the process until he reaches a 127-point rule. The procedure,

Received December 2, 1975.

AMS (MOS) subject classifications (1970). Primary 65D30; Secondary 33A65.

^{*}Work performed while the author held a fellowship from the Consiglio Nazionale delle
Ricerche, Italy.

Copyright © 1976, American Mathematical Society

even carried one step further to include a 255-point rule, is made the basis of an automatic numerical integration routine in [5].

Ramsky [7] constructs the polynomial $p_{n+1}(x)$ satisfying condition (1.2) for the Hermite weight function up to n = 10 and notes that the zeros are all real only when n = 1, 2, 4.

In all papers [3], [4] and [5], all weights are positive; however in [7], for n = 4, two (symmetric) weights $A_i^{(n)}$ are negative.

We first study a rule of type (1.1) with polynomial degree at least 2n and give simple formulas for the weights $A_i^{(n)}$ and $B_i^{(n)}$, together with a condition for the positivity of the weights $B_j^{(n)}$. We then construct the polynomial $p_{n+1}(x)$ in (1.2) for the weight functions $w(x) = (1 - x^2)^{\lambda - \frac{1}{2}}$ on [-1, 1], $\lambda = 0(.5)5$, 8, $w(x) = e^{-x^2}$ on $[-\infty, \infty]$, and $w(x) = e^{-x}$ on $[0, \infty]$, in each case up to n = 20, and give examples in which $p_{n+1}(x)$ has complex roots. We compute the extended Gaussian quadrature rules, whenever they exist, and give further examples of rules with negative weights $A_i^{(n)}$. Finally, we give two examples of quadrature rules which can be extended repeatedly.

2. The Weights $A_i^{(n)}$ and $B_i^{(n)}$. Let $k_n > 0$ be the coefficient of x^n in $\pi_n(x)$, and $h_n = \int_a^b w(x) \pi_n^2(x) dx$. Consider a rule of type (1.1) with real nodes $x_i^{(n)}$, j = 1, 2, ..., n+1, and polynomial degree at least 2n. Let $q_{n+1}(x) = \prod_{i=1}^{n+1} (x-x_i^{(n)})$ and define $Q_{2n+1}(x) = \pi_n(x)q_{n+1}(x)$. We assume the two sets of nodes $\{\xi_i^{(n)}\}_{i=1}^n$ and $\{x_i^{(n)}\}_{i=1}^{n+1}$ both ordered decreasingly.

THEOREM 1. We have

(2.1)
$$B_j^{(n)} = \frac{h_n}{k_n Q'_{2n+1}(x_i^{(n)})}, \quad j = 1, 2, \dots, n+1,$$

and all $B_j^{(n)} > 0$ if and only if the nodes $x_j^{(n)}$ and $\xi_i^{(n)}$ interlace. Proof. Applying (1.1) to $f_k(x) = \pi_n(x)q_{n+1}(x)/(x-x_k^{(n)}), k=1,2,\ldots,n+1$, we obtain

(2.2)
$$\int_{a}^{b} w(x) f_{k}(x) dx = B_{k}^{(n)} \pi_{n}(x_{k}^{(n)}) q'_{n+1}(x_{k}^{(n)}) = B_{k}^{(n)} Q'_{2n+1}(x_{k}^{(n)}).$$

Since $q_{n+1}(x)/(x-x_k^{(n)})=x^n+t_{n-1}(x)$, where $t_{n-1}(x)$ is a polynomial of degree at most n-1, we have, by the orthogonality of $\pi_n(x)$,

(2.3)
$$\int_{a}^{b} w(x) f_{k}(x) dx = \int_{a}^{b} w(x) \pi_{n}(x) x^{n} dx = h_{n}/k_{n}.$$

Since $h_n/k_n > 0$, we see that $Q'_{2n+1}(x_k^{(n)}) \neq 0$, and (2.1) follows from (2.2) and (2.3). Note in particular that the nodes $x_i^{(n)}$ are simple and distinct from the $\xi_i^{(n)}$.

Assume now that the nodes $x_i^{(n)}$ and $\xi_i^{(n)}$ interlace, i.e., $x_{n+1}^{(n)} < \xi_n^{(n)} < x_n^{(n)} < \xi_n^{(n)}$ $\cdots < \xi_1^{(n)} < x_1^{(n)}$. Since the polynomial Q_{2n+1} vanishes precisely at the nodes $x_i^{(n)}$ and $\xi_i^{(n)}$, and by normalization, $Q_{2n+1}(x) > 0$ for $x > x_1^{(n)}$, it is clear that the derivative Q'_{2n+1} will be alternately positive and negative at the nodes $x_1^{(n)}$, $\xi_1^{(n)}$, $x_2^{(n)}$, $\xi_2^{(n)}$, ..., hence, in particular; $Q'_{2n+1}(x_i^{(n)}) > 0$, j = 1, 2, ..., n + 1. By (2.1), therefore, $B_i^{(n)} > 0$.

Vice versa, suppose the weights $B_j^{(n)}$, j = 1, 2, ..., n + 1, are positive. Applying (1.1) to the function

$$f_i(x) = \frac{\pi_n^2(x)}{((x - \xi_{i+1}^{(n)})(x - \xi_i^{(n)}))}, \quad i = 1, \dots, n-1,$$

we obtain

(2.4)
$$0 = \int_{a}^{b} w(x) f_{i}(x) dx = \sum_{j=1}^{n+1} B_{j}^{(n)} f_{i}(x_{j}^{(n)}).$$

Since all the nodes $x_j^{(n)}$ are distinct from any $\xi_i^{(n)}$, the sum in (2.4) can be zero only if at least one of the numbers $f_i(x_j^{(n)})$ is negative. It follows that at least one node $x_j^{(n)}$, say $x_{j_i}^{(n)}$, satisfies the inequality

$$\xi_{i+1}^{(n)} < x_{j_i}^{(n)} < \xi_i^{(n)}, \quad i = 1, \ldots, n-1.$$

The existence of nodes $x_1^{(n)} > \xi_1^{(n)}$ and $x_{n+1}^{(n)} < \xi_n^{(n)}$ follows similarly by considering $f_0(x) = \pi_n^2(x)/(\xi_1^{(n)} - x)$ and $f_n(x) = \pi_n^2(x)/(x - \xi_n^{(n)})$, respectively. Having thus accounted for at least n+1, hence exactly n+1, nodes $x_j^{(n)}$, the interlacing property is established.

THEOREM 2. We have

(2.5)
$$A_i^{(n)} = H_i^{(n)} + \frac{h_n}{k_n Q'_{2n+1}(\xi_i^{(n)})}, \quad i = 1, \dots, n,$$

where $H_i^{(n)}$ are the Christoffel numbers for the weight function w(x). The inequalities

$$(2.6) A_i^{(n)} < H_i^{(n)}, i = 1, \ldots, n,$$

hold if and only if the nodes $x_i^{(n)}$ and $\xi_i^{(n)}$ interlace.

Proof. Letting

$$f_i(x) = q_{n+1}(x)\pi_n(x)/(x-\xi_i^{(n)}), \quad i=1,\ldots,n,$$

in (1.1), we have

(2.7)
$$\int_{a}^{b} w(x) f_{i}(x) dx = A_{i}^{(n)} Q'_{2n+1}(\xi_{i}^{(n)}).$$

Applying the *n*-point Gaussian rule to f_i , and noting that the remainder is

$$\frac{f_i^{(2n)}(\xi)}{(2n)!k_n^2} \int_a^b w(x) \pi_n^2(x) \, dx = \frac{h_n}{k_n},$$

we find that

(2.8)
$$\int_{a}^{b} w(x) f_{i}(x) dx = H_{i}^{(n)} Q'_{2n+1}(\xi_{i}^{(n)}) + h_{n}/k_{n}.$$

From the last two relations, (2.5) follows, since again, $Q'_{2n+1}(\xi_i^{(n)}) \neq 0$.

If the nodes $x_i^{(n)}$ and $\xi_i^{(n)}$ interlace, then $Q'_{2n+1}(\xi_i^{(n)}) < 0$ for all *i*, proving (2.6). Vice versa, if (2.6) holds, consider

$$f_j(x) = q_{n+1}^2(x)/((x-x_{j+1}^{(n)})(x-x_j^{(n)})), \quad j=1,\ldots,n.$$

By applying (1.1) we have

(2.9)
$$\int_{a}^{b} w(x) f_{j}(x) dx = \sum_{i=1}^{n} A_{i}^{(n)} f_{j}(\xi_{i}^{(n)}),$$

and from the n-point Gaussian rule, with remainder, similarly as above,

(2.10)
$$\int_{a}^{b} w(x) f_{j}(x) dx = \sum_{i=1}^{n} H_{i}^{(n)} f_{j}(\xi_{i}^{(n)}) + h_{n}/k_{n}^{2}.$$

By subtracting (2.9) from (2.10) we obtain

(2.11)
$$\sum_{i=1}^{n} (H_i^{(n)} - A_i^{(n)}) f_j(\xi_i^{(n)}) = -h_n/k_n^2 < 0.$$

Since $H_i^{(n)} - A_i^{(n)} > 0$, i = 1, ..., n, inequality (2.11) is possible only if at least one of the numbers $f_j(\xi_i^{(n)})$ is negative. This means that at least one $\xi_i^{(n)}$, say $\xi_{ij}^{(n)}$, satisfies the inequality

$$x_{j+1}^{(n)} < \xi_{i_j}^{(n)} < x_j^{(n)}, \quad j = 1, \ldots, n,$$

which, as before, implies the interlacing property.

Clearly, Theorems 1 and 2 both apply to the extended Gaussian quadrature rules, if one chooses $q_{n+1}(x) = p_{n+1}(x)$.

3. Numerical Results. We have constructed the polynomial $p_{n+1}(x)$ satisfying condition (1.2) for $w(x) = (1-x^2)^{\lambda-\frac{1}{2}}$, $\lambda = 0(.5)5$, 8, up to n=20, by using an algorithm similar to the one described in [4]. When the zeros of these polynomials are all real, the corresponding weights $A_i^{(n)}$ and $B_j^{(n)}$ were computed by means of (2.1) and (2.5). For all rules thus obtained, the nodes always satisfy the interlacing property; nevertheless, in some cases we find negative weights $A_i^{(n)}$. Cases of complex zeros also occur. A brief list of the values of λ and n, for which negative weights and complex zeros were observed, is reported in the following table (where k(i)l denotes the sequence of integers k, k+i, k+2i, ..., l).

λ	$n\ (A_i^{(n)} < 0)$	n (complex zeros)
4	13, 15	
4.5	7(2)13, 16	15, 17, 19
5	7, 9, 14, 16	11(2)19, 20
8	3, 5, 6, 8	7, 9(1)20
1		

Similarly, we examined $w(x) = e^{-x^2}$ and $w(x) = e^{-x}$, again up to n = 20. In the first case, studied already in [7] up to n = 10, we have confirmed that extended Gaussian rules exist only for n = 1, 2, 4. For the second weight function, when n = 1, the zeros of $p_2(x)$ are real, but one is negative, while for $2 \le n \le 20$ some of the zeros are complex.

4. Extended Gauss-Chebyshev Rules. The extension of Gauss-Chebyshev rules can be carried out explicitly by virtue of the identity

$$(4.1) 2T_n(x)U_{n-1}(x) = U_{2n-1}(x),$$

where $T_n(x)$ and $U_n(x)$ are the *n*th-degree Chebyshev polynomials of first and second kind, respectively.

When $w(x) = (1 - x^2)^{-\frac{1}{2}}$ we may choose $p_{n+1}(x) = 2^{-n+1}(x^2 - 1)U_{n-1}(x)$, $n \ge 2$, and (1.1) becomes the Gauss-Chebyshev rule of closed type (see for example [1])

$$\int_{-1}^{1} (1 - x^{2})^{-\frac{1}{2}} f(x) dx = \frac{\pi}{2n} \left[\sum_{i=1}^{2n-1} f(x_{i}^{(n)}) + \frac{1}{2} f(-1) + \frac{1}{2} f(1) \right] + R_{n}(f),$$

$$n \ge 2,$$

where

$$x_i^{(n)} = \cos \frac{i\pi}{2n}, \quad i = 1, 2, \ldots, 2n-1.$$

 $p_{n+1}(x)$ satisfies the required orthogonality condition (1.2) by virtue of (4.1). As a matter of fact, (1.2) holds for all $k \le 2n-2$, $n \ge 2$. Since the coefficients $A_i^{(n)}$, $B_j^{(n)}$ are uniquely determined, they must be as in (4.2), which is known to have not only degree 3n+1, but in fact degree 4n-1. For n=1 we have $p_2(x)=x^2-3/4$ and (1.1) coincides with the 3-point Gauss-Chebyshev rule.

A natural way of iterating the process is to add 2n new nodes, namely the zeros of $T_{2n}(x)$, so that, by virtue of (4.1), the new rule will have as nodes the zeros of $(x^2 - 1)U_{4n-1}(x)$ and polynomial degree 8n - 1. In general, after p extensions, having reached a rule with $2^p n + 1$ nodes, we add $2^p n$ new nodes, namely the zeros of $T_{2p_n}(x)$, to get a rule of the type (4.2) with $2^{p+1}n + 1$ nodes and polynomial degree $2^{p+2}n - 1$.

In a similar way we may extend the Gaussian quadrature rule for the weight function $w(x) = (1 - x^2)^{1/2}$. Recalling again (4.1), we choose $p_{n+1}(x) = 2^{-n}T_{n+1}(x)$, and obtain

(4.3)
$$\int_{-1}^{1} (1-x^2)^{1/2} f(x) \, dx = \frac{\pi}{2(n+1)} \sum_{i=1}^{2n+1} (1-[x_i^{(n)}]^2) f(x_i^{(n)}) + R_n(f),$$

the Gaussian rule constructed over the 2n + 1 zeros

$$x_i^{(n)} = \cos \frac{i\pi}{2(n+1)}, \quad i = 1, 2, \dots, 2n+1,$$

of the polynomial $U_{2n+1}(x)$. It has polynomial degree 4n+1. As before, the process may be iterated.

Acknowledgement. I am grateful to Professor Walter Gautschi for many constructive suggestions and constant guidance during this work.

Department of Computer Sciences Purdue University West Lafayette, Indiana 47907

- 1. M. M. CHAWLA, "Error bounds for the Gauss-Chebyshev quadrature formula of the closed type," Math. Comp., v. 22, 1968, pp. 889-891. MR 39 #1113.
- 2. P. J. DAVIS & P. RABINOWITZ, Methods of Numerical Integration, Academic Press, New York, 1975.

- 3. A. S. KRONROD, Nodes and Weights for Quadrature Formulae. Sixteen-Place Tables, "Nauka", Moscow, 1964; English transl., Consultants Bureau, New York, 1965. MR 32 #597, #598.
- 4. T. N. L. PATTERSON, "The optimum addition of points to quadrature formulae," *Math. Comp.*, v. 22, 1968, pp. 847-856; Addendum, *ibid.*, v. 22, 1968, no. 104, loose microfiche suppl. C1-C11. MR 39 #3701.
- 5. T. N. L. PATTERSON, "Algorithm 468-Algorithm for automatic numerical integration over a finite interval," Comm. ACM, v. 16, 1973, pp. 694-699.
- 6. R. PIESSENS, "An algorithm for automatic integration," Angewandte Informatik, v. 9, 1973, pp. 399-401.
- 7. Ju. S. RAMSKIĬ, "The improvement of a certain quadrature formula of Gauss type," Vyčisl. Prikl. Mat. (Kiev), Vyp. 22, 1974, pp. 143-146. (Russian) MR 50 #6121.
 - 8. W. SQUIRE, Integration for Engineers and Scientists, American Elsevier, New York, 1970.
- 9. G. SZEGÖ, "Über gewisse orthogonale Polynome, die zu einer oszillierenden Belegungsfunktion gehören," *Math. Ann.*, v. 110, 1934, pp. 501-513.