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Subtracting Out Complex Singularities

in Numerical Integration

By F. G. Lether

Abstract.   This paper is concerned with the numerical approximation of definite inte-

grals over [—1, 1], in which the function /to be integrated has isolated singularities

near [ —1, 1 ].   Complex variable techniques are used to study the effectiveness of the

method of subtracting out complex singularities.

1.  Introduction.  This paper deals with the approximation of integrals of the

form

Iif)=fl1<4x)fix)dx,

where u is a given weight function.

When / is well behaved, standard quadrature techniques often produce accurate

approximations to /(/) using relatively few evaluations of/.  However, it is well

known that singularities of / in the complex plane near [-1, 1 ], may have adverse

effects on the accuracy of the commonly employed numerical integration methods.

In this paper, a method is presented for approximating 1(f) when /has isolated

complex singularities near [-1, 1 ].  The idea employed is essentially an extension

into the complex domain of the method of subtracting out real singularities found in

[1] and [2, p. 202].  An error analysis is given that determines conditions under

which this technique is effective.

2.  Preliminaries.   Let

(2-1) Of) = Qnif) + Rnif),

where

Qn(f) =   t   >V(**)>
fc=l

be a given quadrature rule.  Assume that (2.1) has precision d and that xk G [— 1, 1].

We would expect Iif) » Qnif) to be a good approximation for nonpolynomial

functions/, provided/can be accurately approximated on [-1,1] by a polynomial

of degree < d.  This is generally not the case when / has singularities in the complex

plane near [-1, 1]. Therefore, it is reasonable to consider the possibility of sub-

tracting from / some function s, so that / - s has no singularities near [-1, 1 ].
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By (2.1) and the identity

fix) = six) + ¡fix) - six)]

we can write

(2-2) 1(f) = Ks) + ß» + Rn(v),

where

fix) = fix) - six).

Suppose that a function s can be determined so that a closed form for I(s) is known,

and that tp resembles a polynomial.  Then we may think of the right side of (2.2) as

consisting of the following components: a known definite integral; a quadrature rule

evaluation of <p = f— s; a remainder term.

3.  Subtracting Out Isolated Singularities.  Let /(z) denote the analytic continua-

tion of fix) into the complex z-plane.  Assume that /(z) is analytic in the finite z-

plane, except for isolated complex singularities at a- £ [-1, 1],/ = 1, 2, 3, . . .   .

Consider the m singularities a-, 1 < / < m, of/near [- 1, 1].  For each/, let

Ti and the constants bv • be given, and introduce the function

(3.1) Pfx) = ¿ bv/x - ajT,      1 </ < m.
v=l

Finally, set

m

s(x) = £ Pjix),
/=!

and as before, define «¿> by

m

fix) = ^ Pfr) + rfx).
/•=1

Then (2.2) becomes

m      r j

(3.2) /(/) = - X   Z b^-^Ku - 1)! + g» + /e„(^)s
;'=1  »=1

where we require a closed expression for

(See Section 5.)

Although (3.2) is valid for any choice of /w, t- and the bv 's, their selection

influences the accuracy of the method.  As a simple illustration, let

(3-3) fix) = qNix)ix - aj)"2(x - a2)~2,

where c^ is a polynomial of degree N > 4 and ax, a2 ^ [-1, 1].  Take m = Tj =

t2 = 2 and let èj • and b2 • be the Laurent coefficients in the principal part of/
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about the second order pole a-, / = 1,2. This choice forces (/> to be a polynomial of

degree N - 4. If the precision of (2.1) satisfies d > N - 4, then Rn(<fi) = 0 and (3.2)

becomes

(3.4) Iif) = -h [byjTU,) + b2JT,iaj)] + ß».
/=!

The work required to compute the Laurent coefficients is repaid, since Qnif) is more

accurate than Qnif).

Unless /is a rational function, as in (3.3), it is not always possible to choose the

parameters m, t¡ and the bvj's in (3.2) to make Rnif) = 0.  However, for general

functions /we can make R„if) negligible in certain cases by taking s to be the sum of

the principal parts of/at its nearby singularities, as was done in the previous example.

For this choice of s, if has no nearby singularities and Gaussian rules can profitably be

used for (2.1) to maximize d.  This technique is particularly effective when /is a

meromorphic function having only a few low order poles.   For example [4], consider

the numerical approximation of

W = f-iix2 + l(T4)-VíÉe

by (3.2). The integrand has simple poles at aj = 0.01/ and a2 =a~1. Take co(x) = 1,

m = 2 and t1 = t2 = 1 to account for both of the poles.  The required residues are

i,pl = Res /(z) = -50/ exp(0.010
z=a j

and b1 2 = bl j.  (3.2) gives

Itf) = /1(s) +ß»+Ä»,

where

/,($) =-2Re{ô11r(a1)}

and r(z) = ln[(z + l)/(z - 1)]. For the basic generating rule (2.1), we use the n-

point Gauss-Legendre rule. Table 1 contains the Gaussian quadrature results Qnif)

and the improved approximation It(s) + Qnif).

Table 1

n Qnif) Ijjs) + Qn(f)

2 7.02     313.171804022

3 8891.32     313.172055084

4 13.24     313.172056236

/j = 313.172056239

The superiority of (3.2) over the Gauss-Legendre rule (2.1) is quite evident in this

case.
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4.  Error Analysis.  The idea of subtracting off singularities exactly, so that

Rnif) = 0, is in theory not restricted to the case when /is a rational function.  In

the following work we seek other functions/for which Rnif) = 0.

To discuss the effect the singularities a- have on the numerical approximation of

1(f), we introduce the following contour. Let T be a simple, closed, rectifiable contour

which contains [-1,1] in its interior, F¡. Assume that the only singularities in T{ - [-1,

1] are a-, 1 </< m.

Let (3.1) be the principal part of/at a;-.  If a- is an essential singularity, then

Tj = °° and (3.1) is an infinite series.  Since a- $  [-1,1], (3.1) is absolutely and uni-

formly convergent for z = x G [-1, 1].  Of course, this is immediate in the case when

a;- is a pole of order r-, since (3.1) is then a finite sum.  In the latter case the Laurent

coefficients can be expressed in the form

v = 1, 2, . . . , T, where r = t-

Theorem 1.   Under the previous assumptions on Y and (3.1), the quadrature

error in (3.2) is given by

(4-1) Rn(<p) = ^-Jrkn(z)f(z)dz,

where the kernel function kn(z) = Rn [(z - x)-1 ].

//

a = min|z| > 1,
zer

then

(4.2) LR»| < enliT)MTif)o-d-2i\ - a"1)"1^,

where

and

KT) = length of r,      en =    sup  \Rnix")\ < «
v>d+l

MM) = max |/(z)|.
zer

Proof.   For x E [-1, 1 ] the residue theorem yields

\    Ç m
^-r)viz-xylfiz)dz =/(x) + X Res [(z -x)"1/^)]

(4.3) i=lZ-"i

m

= /(*)-£ Pj(x) = f(x).
/=1

The linear functional Rn can be moved through the integral sign in (4.3) to obtain

(4.1).

For \z\ > 1, the series

iz-xy1 = Z xvz~»-1
v>0
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is uniformly convergent on -1 <x < 1.  Since (2.1) has precision d,

kniz)=    Z    Rnixv)z-v-\      \z\>\.
v>d+l

Therefore,

\k„(z)\<e„    Z    o'"-1 = eno-d-2H - o~lrl
v>d+t

for z G T.  (4.2) follows directly from this inequality and (4.1).  This completes the

proof.

Stenger [5] has tabulated the constant en for several of the Gaussian rules and

uses the notation vQi) in place of en.

The inequality (4.2) has an interesting application. Take r = Yr = {z: \z\ = r}.

Suppose we let r —► °° in such a way that no singularity a- G rr, and assume for this

sequence of radii there exists a constant c, independent of r, such that

(4.4) max |/(z)| < cr*.
\z\=r

By (4.2) and (4.4),

(4.5) »»Kcv-Hl-r^r1.

Since the right side of (4.5) approaches zero as r —>°°, we have the following result.

Corollary 1.   The rule

(4.6) 1(f) = -Z   Z V^W'-OÎ+Ô»
j>\  v=l

is exact for all functions f satisfying (4.4), where the summation on j extends over all

isolated singularities off.

McNamee [3, p. 379] has previously considered the special case of (4.6) when

/has simple poles and (2.1) is the M-point Gauss-Legendre rule.

It follows from Corollary 1 that (4.6) is exact whenever/is a rational function,

provided the precision d of (2.1) is sufficiently large.  This agrees with our comments

regarding (3.4).  However, (4.6) is not restricted to rational functions.  For example,

it holds for the meromorphic function (x + 2)_2(sin IOttx - l.l)-1, which has an

infinite number of poles, and the function (x + X)-2 exp[(x + X)-1], X > 1.  The

latter function has an essential singularity at -X.

That (4.6) is exact for certain functions having an infinite number of isolated

singularities, or an essential singularity, is mainly of theoretical interest.  In practice,

we cannot subtract out the singularities exactly to make Rnif) = 0, because s con-

tains an infinite number of terms in these cases.  The goal is to subtract off as much

of the singular part of / as practical, in order that <p = f- s resemble, but not neces-

sarily coincide with a polynomial.

5.  Hubert Transforms.   In applications of (3.2) it is convenient to have a closed

form for the Hubert transform 7(z).  These can be worked out for several of the

commonly encountered weight functions.



228 F. G. LETHER

Case 1.   Tiz) = Jij ¡x|m(z -x)-1 dx.

T(z) = zmln Z-^\ - 2  Z zm~l-2kH2k +1)    if m = 2/,
/c = 0

and

z2 *
riz) = zmln -j—: - y zm-2klk   if m = 2t + 1,

z   _1     *=i

m = 1,2,3,... .   The second summation is defined as zero when t = 0.

ase 2.  Tiz) = /¿xm_1/2(z -x)"1 dx.

— \lz — 1 m — \
Tiz) = -(Vz)2m-1 In ̂ y - 2   £ zkH2m -2k- 1),

»i = 0, 1, 2, . . .   .  Here the summation is defined as zero when m = 0.

Case 3 [6, p. 75]. i\z) = /Ij(l -x)a(l + x)<J(z -x)-1 dx, a, ß > - 1.

e=   0   /3=   0    r(z) = In ̂ -^
v ' z - \

a=   0   ß=   1    7Xz) = (z + 1)^1^-^-2
z — 1

a=   0    ß=   2    r(z) = (z + l)2 In ̂ -f -2z-4
z — 1

a=   0   (3=   3    Tiz) = iz + l)3 InZ-^--2z2 - 6z - ^
Z — \ 5

a =   0   /3 =   4    7-(z) = (z + l)4 ln^f - 2z3 - 8z2 - Çz - Ç
z — 1 3 3

a =   |   /3 =   |   r(z) = «z - <2 - l)x/2(z + I)1'2

<* = -\   ß=~\    Tiz) = itl[iz-\yi2iz + l)1'2]

a=   \   ß = ~l-   r(z) = 7T-1r(z-l)l/2/(z + l)1/2

a =   1    (S =   1    Tiz) = il- z2)\nZ-^\ + 2z
z — 1

«=    I     0=    I     n^) = VT[(z-l)1/2(z + l)1/2]3-7TZ3+yZ.

The Gauss-Jacobi rules on -1 < x < 1 corresponding to the special cases a = 0

or ß = 0 are frequently tabulated [2, pp. 118-121] on [0, 1].  For this reason we

list the Hubert transform in the form given in Case 2.  All of the results in Sections

1—4 then apply with [—1, 1] replaced by [0, 1].

In the above listing the branch cut for the complex natural logarithm and square

root functions is taken to be the negative real axis.  When computing Tiz) the stan-

dard FORTRAN library routines CLOG and CSQRT can conveniently be employed.

For \z\ > 1, it may be useful to compute Tiz) from the series
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T(z)= Z Iixv)z~v-\
v>0

provided the moments corresponding to co are known.
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