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One-Step Piecewise Polynomial Multiple

Collocation Methods for Initial Value Problems

By J. P. Hennart

Abstract.   New methods are proposed for the numerical solution of systems of first-

order differential equations.   On each subinterval of a given mesh of size h, a poly-

nomial of degree I is constructed, its parameters being determined by a multiple col-

location technique.   The resulting piecewise polynomial approximation is of order

0(h      ) at the mesh points and between them.   In addition, the /'th derivatives of the

approximation on each subinterval provide approximations of order 0(h      "*), / =

1, . . . , /.   Some of the methods proposed are shown to be A -stable or even strongly

A -stable.

1.   Introduction.   Recently, "semidiscrete" Galerkin techniques have received

considerable attention for the approximate solution of evolution equations.  See, for

example, [25], [10], [24], [12].  When the space variables have been integrated out,

one typically has to solve a system of nonlinear differential equations.   Since the space

basis functions are usually taken of the finite element type, i.e. they are piecewise

polynomials with local support, a more comprehensive treatment would be achieved

by approximating the time behavior also by piecewise polynomials, in order to get a

fully piecewise polynomial approximation.

In this paper, we develop new one-step methods for systems of nonlinear first-

order ordinary differential equations.  Our basic idea is to find local /th degree poly-

nomial approximations on each subinterval of a given mesh, the free parameters being

determined by a multiple collocation technique based on the two-point Taylor interpo-

lation formula.  The resulting approximations are piecewise-continuous and, when com-

bined with "semidiscrete" Galerkin methods, they provide fully piecewise-continuous

approximations to initial-boundary value problems.   Earlier uses of piecewise polyno-

mials for systems of ODE's may be found in [21], [22], [29], [16], [7], [17], [18],

[6], [1], [2].   Finite elements in space and time have been proposed in [23], [3],

[30], [31], [5], [20], [27].

In Section 2, we introduce our multiple collocation techniques.  Section 3 is

devoted to the derivation of order of convergence results.  Section 4 examines the

stability properties of the proposed schemes while Section 5 exhibits some numerical

results.   Preliminary results have been reported in [13] and [14].   In our presentation,

we shall follow [17], [18] because of the similarity in the methods.  The novelty in

our schemes is that, instead of collocating at distinct abscissas in each subinterval as in
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[17], [18], we allow the collocation points to coalesce at both ends of the subinterval,

providing multiple collocation at the meshpoints.  After this work was completed, a

manuscript by J. Descloux and N. Nassif, in which similar methods are developed in-

dependently, has been brought to our attention (N. Nassif, personal communication,

1975).

2.  Piecewise Polynomial Multiple Collocation Methods.   Let us consider the solu-

tion of the following nonlinear first-order differential equation

W Y'(t) = f(Y(t), t),       tE[t0,tN],

subject to the initial condition

(2) Y(0) = Y0.

Although a single equation is considered, the methods and theorems which will be

presented carry over to systems of first-order equations.  We assume that f(Y, t) is of

class Ck, k>0, over R x [t0, tN] so that the exact solution Y(t) G Ck+ l [r0, tN].

Moreover / and some of its derivatives (as we shall see later) are supposed to satisfy a

Lipschitz condition over the same domain.

For the sake of simplicity, let II: t¡ = ih, i = 0, . . . , N, be a uniform mesh of

meshsize h, although a variable mesh 17 could have been considered without affecting

our arguments.  Then, over each subinterval of IT, we may approximate Y(t) by a

polynomial Y    (t) of degree I (I > 0)

(3) n0 - yp,q(tl      t E [r,, ti+1],i = 0,...,N-l,

uniquely and completely determined by (/ + 1) parameters which are its value and its

successive derivatives up to order (p - 1) at t = t¡ (if p > 0) and up to order (q - 1)

at t = ti+, (if q > 0), with p + q = I + l,p, q > 0.  Actually, we have

17-1 B (t - t     Y p-i A (t - t-Y

r=0 r\ i=0        s\

with

(5) A*=f1     dts

and

r yp,v '
l(t-ti+1y_

B.      ^
(6) r   df \{t-tty

\ypJ0
[if - t,Y t=ti+i

Equation (4) is a trivial extension of the two-point Taylor formula [8, p. 37].  The

parameters As and Br given by Eqs. (5) and (6) are linear combinations of the succes-

sive derivatives of Y    (t) at t = tt and ti+1.  These derivatives may be eliminated at
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both ends of the interval by multiple collocation using the original Eq. (1), namely

(7) Y£q(ti)=f<s-1\Ypq(ti),ti),      s=l,...,p-l     (mthp>2),

and

(8) Yp%+0 = f(r~l)(Yp,q(ti+l), ti+1),      r=\,...,q-\    (with q > 2).

This is only possible if/is smooth enough, i.e. if k > max(p, q) - 2.  This condition

might seem somewhat restrictive:   actually, it is sufficient that it be satisfied in a piece-

wise sense and in particular over each subinterval of n, which is much less restrictive.

As a consequence of the collocation conditions (7) and (8), there remain at most two

parameters in the expression (4) of Y    (t), namely KJ+1 = Y q(ti+1) and (eventually)

Y    (t¡):   indeed, for reasons that will be explained later, we shall usually restrict our-

selves to the cases q=p, q=p+loiq=p + 2 so that Y    (t¡) will appear expli-

citly in the expression of Y    (t) except for / = 0, p = 0, q = 1 and / = 1, p = 0,

q = 2.  If Y    (t¡) appears explicitly, its value Y¡ is known either from the initial con-

dition (/ = 0) or from integration over the previous interval [t¡_1, t¡], i — 1, . . . ,

N - I, while Yi+1 is obtained by integration of Eq. (1) over [t¡, t¡+1] :

(9) Yi+ i = Yi+ Jf''+ ' dtjXYpq(t), t),      i = 0,...,N-l,

where Ypq(t) = Ypq(Yt, Yi+V t).

To obtain a computational form of (9), it is necessary to perform a numerical

quadrature, unless the integral may be evaluated analytically.   In general, we shall use

an «-point quadrature formula of the form:

(10) ft'+ ' f(Yp¡q(t), t)dt a h t »>,f(Yp>q(.Tlf), Ttj) + 0(hm + 2),
i /=i

(11) Tq^ti + Ojh,     j=\,...,n,

where w- and 0- are weights and abscissae for [0, 1].  No matter what quadrature

formula we choose, it should be accurate enough, i.e. in general k > m > I.   As a re-

sult, (9) becomes a nonlinear equation in the only unknown Yi+1 :

02) Yi+l = Yt + h± Wff(Yptq(Tif),Tff),

since Y  q(T¡¡) is a function of Y¡ and Y¡+1 only.  (12) defines thus a class of discrete

one-step integration methods depending on which quadrature formula is used.

The existence of a unique solution to (12) is guaranteed for h sufficiently small

by the following argument.  First of all,

Z  W//^^), T,,) -KY*^), Ttj))

n(13)

<hLZ iw/inv.«(r#)-y;.,(vi.
/•=i

where L is the Lipschitz constant for / over R x [t0, tN].
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Let us rewrite (4) as

(H) Yp,q(0 =   Z   Prp,qWti(ti+1) + "£   ̂ q(t)Y^(tl),
r~0 s=0

where Prpq(t) and ß£>(/(r) G P,.  Simüarly,

rç.,(o-E ^.«(OiíS)(íí+l)+E ô^c)^,.),
r=0 i=0

so that

W)-rç>) = e p;,q(t)(Y^q(ti+1)-YfqHti+1)),

27

and

(15)

r=0

r=0

<(Po+E^r}l^+l-í?+ll.

with

(16) P,=      max      I/*; ,0)1,      r = 0,...fí-l,
«=[<■,,»•,+il

while Lr is the Lipschitz constant (supposed to exist) for pr~1^ over R x [t0, tN]

with in particular L, = L.   Using (15), (13) becomes

i*i+i - y?+1\ <h¿( f iw,ij /p0 + Z /»/r\ irf+1 - í?+1i,

so that the right side of (12) appears to be a contraction mapping on R when

kaJl/i i%.ijK+ EHi"
A successive substitution iteration would consequently converge to the unique solu-

tion of (12).  However, we should mention that for practical purposes a Newton-

Raphson type technique would be much more efficient in presence of large Lipschitz

constants, i.e. for stiff equations.

3.  Orders of Convergence.   In this section, discrete and continuous error bounds

are derived for the methods developed hereinabove.    Discrete error bounds are ob-

tained from Henrici's theory of discrete one-step methods [15, Chapter 2].  Contin-

uous error bounds are then obtained from the discrete ones.

First of all, in order for Henrici's theory to apply, we must show that the in-

crement function h x 2?=1 wJ(Y  q(T¡¡), r«) is Lipschitz continuous with respect to

Y¡ over R x [t0, tN].  This can be easily done by repeating the argument given at

the end of Section 2 with Yt instead of Yi+1.
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Then, we may prove

Theorem 1. Assume that f(Y, t) is of class Ck, k > I, over R x [tQ, tN], and

let the multiple collocation method be defined as in Section 2 for some polynomials

Y    (t) of degree I.   Then, there exists a constant C such that

(17) ir(/,)-iV<CÄ'+1>    i = 0,...,N.

Proof.   We shall follow the same general method of proof as for Theorems 1 of

[17], [18], except that we define the local truncation error differently, thereby cor-

recting a technical error that exists in Hulme's proofs of the order of convergence of

his methods, although his conclusions are correct. Indeed, the local truncation error is

defined by

•f/+i

r'-=Jf, f(Y(t), t)dt-hZ wjf(Ypq(Tij), rtj),
/-I

where in the last term Y¡ = Y(t¡).  Thus,

,. = ¡J*1 f(Y(t), t)dt-^+l f(Ypq(t), t)dt

+ i?+1 KYp qit), i)dt-h ¿ wjf(Ypq(Tij), riy),
1 /=i

and

(18) lr,.l < j jf_'+ ' (f(Y(t), t) - f(Ypq(t), t))dt j 4- 0(hm + 2)

in virtue of (10).  Moreover,

\S^ (f(Y(t),t)-f(Ypq(t),t))dt

< if.'+ ' l/WO, t) - f(Yp¡q(t), t)\dt<L Jfi'+1 I KO - Ypq(t) I dt.

To analyze this term, let us make use of the fact that whenever / is independent of

Y and /G P,_1, the exact solution Y E P¡ and Y(t) = Y  q(t) over any interval.  This

follows because the quadrature (10) is exact for polynomials of degree m > I so that

Y(ti+1) = Yi+1 if Y(tj) = Y¡.  Over each interval Y(t) and Y    (t) are thus polyno-

mials of degree / satisfying the same interpolation conditions (7) and (8).  By unique-

ness, they are consequently equivalent, so that L(Y) = Y(t) - Y    (t) is a linear func-

tional of Y, equal to zero for all polynomials of degree /.   It is a straightforward ap-

plication of the Peano kernel theorem [8] that

where

Cr-

idO = J^t /f.'4 ' Y«+1\x)(t - x)l+ dx,

t      \{t-x)1,      t>x,

\ 0, t < x,
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and Lt means the linear functional L applied to the expression

f '+1 YV+1)(xXt-xtdx,
J t¡

considered as a function of t.   As a consequence,

(i9) »no-írP(,(o«Jr~If/,fí+l]<c<A,+i)

where C¡ is some constant depending on lly*'+1'llLo<>,f. f      ,, and

ffi+1 \Y(t)-Ypq(t)\dt

is thus of 0(h' + 2). From (18) and (19), It, | < Ch'+2, where we used the fact that

m > I.   The bound (17) follows immediately from Henrici's Theorem 2.2 [15].  Q.E.D.

Continuous error bounds are given by

Theorem 2. With the hypotheses of Theorem 1, there exist constants C-, / =

0, . . . , /, such that

(20) «î-(/)(0-^(0«£-If/(f/+ll<9"+»-/.

Proof.   Using the same two-point Taylor interpolation formula (4) for Y(t) as for

Yp>q(t), we have

(21) n0 = Z PrPtq(t)Y^(ti+1) + £ <fpq(t)Y(°Xti) + R,(t), t E [tt, ti+1],
r=0 s=0

where R,(t) = 0(h'+1).  Subtracting (14) from (21), we get

ino-YPtq(t)\<e ^,,(oii^(r)(íl+1)-^>i+i)i
r=0

+ E '^,,(01 n^^f,) - >-<>,) I + 0(«'+1)
ï=0

(22) /        9-1 \

<K,o+E/>Ajiní|+,)-rl+1i

+ (fio + E] ÖA] ' Y(U) - Yt\ + 0(hl+l),

where Lr is again the Lipschitz constant for pr~1' over R x [t0, tN], Pr is given by

(16) and Qs is defined similarly by

Qs=      max     \(fpq(t)\,      s = 0,...,p-l.
re[fi,f,+ 1]

The bound (20) for / = 0 is then a direct consequence from (19) and (22).   For / ¥=

0, let us differentiate (14) and (21)/ times before subtracting; using R¡'(t) =

0(hl+1-'), we get
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<?-l

E
r=0

Y(f)(o- yjftcoi< E 0')|&<%i)-^(W

+ E ^(oii^a,)-^)^.)!
s=o

+ 0(h'+1~'\      j=\,...,l.

A similar argument to the one given hereinabove leads directly to the bounds (20) for

/#0.  Q.E.D.
Except for the approximations p = 0, q = 1 and p = 0, q = 2 ioi which

y   _(ff) does not appear explicity in (4) and is therefore not necessarily equal to Y¡,

the approximation Y    (i) of Y(t) is continuous over [t0, tN] and we have:

Theorem 3.   With the hypotheses of Theorem 1 and if p > 1 there exists a con-

stant C such that

(23) W)-Ypiq(t)lL„ltotN]<Œ'+1.

Proof.   The bound (23) follows directly from Theorem 2 and the fact that

Ypq(t) is C°[tQ,tN].  Q.E.D.

4. Stability Properties.  When applied to the test equation Y' = \Y, the methods

of Section 2 give

(24) Yi+1=Rpq(hX)Yi,

with Rpq(hX) = Pp(h\)lQq(hk), Pp(p.) and Qq(p) being polynomials in p. of degree p

and <7 respectively, with constant coefficients.  This follows directly from the observa-

tion that the collocation conditions (7) and (8) become

yj&(.*ù - *%,,(',)>   s = i,... ,p -1 (with p > 2);

and

yj&(f,+ i) - *'WW«      r -«,... ,fl - 1 (with «7 > 2).

Since the method is of order / + 1,

*M(AX) = e** + 0(hl+2).

Hence Rpq(p) is the (c7, p) entry of the table of Padé approximants to e?, namely

[19]:

Rpq^=i£^y(iblA

with

(p + q - k)\ p\
au =

k     (p+q)\k\(p- k)\

and
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(p+q-l)lq\
b, = (-l)'

(p + q)\ l\ (q - l)\

Following Dahlquist [9], a method is called Astable if all its solutions tend to

zero, as i —* °°, when it is applied with fixed positive h to the test equation Y' = \Y,

where X is any complex constant with negative real part.  For the one-step methods

(24), this implies

(25) lKp«,Gi)l < 1.   V/i complex with Re(ju) < 0.

If, moreover, \Rpq(p)\ —► 0 as Re(/i) —> - °°, the one-step method considered is

strongly Astable; such a method should be particularly effective for stiff systems of

equations since rapidly decaying components of the solution will be represented by

rapidly decaying components in the approximate solution for any h.   If (25) is valid

only for larg(-X)l < a, a E [0,7r/2], then the corresponding method is called A(ar

stable [28], ^4(7r/2)-stability being equivalent to ^4-stability.  For many space discretized

parabolic problems, the eigenvalues of the Jacobian matrix are real negative:   in this

case, j4(0)-stability is quite sufficient.  In [26], Varga has shown that all the Pade ap-

proximants to exp(/i) with q > p give rise to ^4(0)-stable one-step schemes.  That the

diagonal (p = q) Padé approximants to expiju) provide A -stable schemes was proved by

Birkhoff and Varga [4].  Later on, Ehle [11] has shown that the Pade' approximants

to exp(j¿) with q = p + 1 and q = p + 2 lead to strongly A -stable schemes.   Ehle has

exhibited moreover some Pade' approximants with q = p + 3 which do not satisfy con-

dition (25) and do not lead therefore to A -stable schemes.

All the schemes developed hereinabove are thus A -stable for q = p, p + 1 or

p + 2.  Ifc7=p+lorp + 2, they are moreover strongly .4-stable and should there-

fore be preferred in the case of stiff systems of differential equations.  This was shown

in a previous work [13] for the nuclear reactor point and space kinetics equations.

5.  Numerical Experiments.  In this section, we give numerical results for some

sample problems.   First of all, we considered the case of a single equation:

(26) Y'(t) =Y- 2t/Y,    Y(0) = 1,    Y(t) = (2t + l)Vl,      t € [0,1 ],

computed with some methods of Section 1, namely the simplest ones for which no

derivatives of/are to be evaluated, i.e. p, q < 2, using moreover a three-point Gauss-

Legendre quadrature formula in (12).  Table 1 exhibits the discrete error norms

,2Ti \\e(t; h)V =   max'left,; A) I
0<i<N

for h = 1/2^, N = 1,.. . , 6, with e(r,-; h) = Y(t¡) - Y{, as well as the computed orders

of convergence (in parentheses)

log[l#;Myiefr;M'1„ , . .
(28) a =-W/^) /+1

based on successive meshsizes hl and h2. The nonlinear equations (12) were solved by

successive substitution at each step [t¡, ti+, ] until Yf+, satisfied a relative error toler-

ance 10_u.
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Next, we considered the system:

Y[(t) = Y\Y2,    r,(0) = 1,    r,(0 = exp(0,
(29)

Y'2(t) = - 1/y,,    r2(0) = 1,    Y2(t) = exp(-0.

Tables 2 and 3 exhibit the discrete error norms and the computed orders of convergence

for Y1 and Y2, respectively.
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