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Interior Maximum Norm Estimates

for Finite Element Methods

By A. H. Schatz and L. B. Wahlbin*

Abstract.   Interior a priori error estimates in the maximum norm are derived from

interior Ritz-Galerkin equations which are common to a class of methods used in

approximating solutions of second order elliptic boundary value problems.   The

estimates are valid for a large class of piecewise polynomial subspaces used in prac-

tice, which are defined on quasi-uniform meshes.

It is shown that the error in an interior domain Í2j can be estimated with

the best order of accuracy that is possible locally for the subspaces used plus the

error in a weaker norm over a slightly larger domain which measures the effects

from outside of the domain Í2,.

0.   Introduction.   Let V be a bounded domain in RN, N> 2, with boundary

bV-  In order to illustrate the type of results we are seeking, consider a second order

elliptic boundary value problem

(0.1) Lu = - £   ¿- L(x)^) + £ bAx^ + dix)u =f   mV,

(0.2) Some boundary conditions on bV-

Assume that this problem has a unique solution u.  For 0 < « < 1, let Sn(V) be a one

parameter family of finite element spaces.  Many methods have been proposed in the

literature for finding an approximation un in Sn(V) to the solution of special cases of

the problem (0.1), (0.2), and we refer the reader to Bramble [2] for a survey of some

of these procedures.  Several of these methods differ only in the way they treat the

boundary condition (0.2), but have the same interior equations.  By this we mean that

if we let £2 C C Q, and let 5" (£2) denote the functions in Sh(V) with compact sup-

ports in £2, then

(0.3) A(u -un,x) = 0    for all x G 5" (£2),

where

(0.4) Ai,, „) = /„ ( I  ., g- (* + £ „^ + „„„) *.

In this paper we shall be concerned with deriving maximum norm estimates

for u - un on £2 j C C £2, where u and un are only required to satisfy the interior

equation (0.3).  This equation disregards what happens outside of £2.  For example,
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it disregards the behavior of u outside of £2, and the particular way a method handles

the boundary conditions, in fact, what these boundary conditions are.

We shall now briefly describe some recent work on error estimates for Galerkin

methods and then state and discuss our main result.  Typically, let 5'1(£2) Ç IV^(£2)

consist of the restrictions to £2 of a given class of piecewise polynomials defined on a

quasi-uniform partition which covers £2.  Let r > 2 denote the optimal order of « (the

"size" of the partition) to which functions in 5"(£2) can approximate functions lo-

cally in L   norms.  It was shown in Nitsche and Schatz [16] that if (0.3) holds, then

for 1 < q < °° and p > 0,

(0.5) B«-uAlL2(nl)<C(Al«-xI//1(n) + ««-«„»„,-,(„))    for any x G 5" (£2).

Here II • Ww"p(n) is the dual norm to that of WP>, 1/q + 1/q' = 1.

Interior maximum norm estimates, in cases where the spaces 5" are defined on

uniform ("regular", "translation invariant") meshes, were given in Bramble, Nitsche

and Schatz [3], Bramble and Schatz [5], Bramble and Thome'e [6], and Strang and

Fix [20].  Global maximum norm estimates for Dirichlet's problem were discussed in

Ciarlet and Raviart [9].   Recently, quasi-optimal global estimates for general quasi-

uniform meshes have been obtained.  The one-dimensional case of two point boundary

value problems was given in Wheeler [21] in the context of continuous, but not con-

tinuously differentiable, piecewise polynomial spaces (and then without the assump-

tion of quasi-uniformity), and the general case occurs in Douglas, Dupont and Wahlbin

[10].  In Scott [18], the Neumann problem was treated for the equation -Au + u =

/and N = 2. The Dirichlet problem for -Au = /in the case of N = 2 and r = 2 was

discussed in Natterer [14], and for N arbitrary and r>3 announced in Nitsche [15].

In [15] and [18] the authors, in their respective situations, obtained the estimate

(0.6) \\u-uh\\Loa(d)<Ch(\n^\\u-X\\wx(v)    for any X G 5*(P),

where

il     for r = 2,

(o     forr>3.

Let us return for a moment to estimates in L2.  If u G ¿2(£2) and 5"(£2) Ç

//2(£2), then one can show that the estimate (0.5) may be replaced by

(0.7) Wu-uJL2,no<C(\\u-xh2(n) + Wu-uh\\w-P(il))   for any x G Sh(£2).

A proof of this will be presented in Appendix 2 for coercive forms A. However, the

estimate (0.7) does not hold true if Sh(£2) £ //2(£2). For example, if the S"(£2) are

piecewise linear functions on triangles in the plane, then the equation (0.3) does not

in general make sense for u E L2(Q,).

In the present paper we shall show, for S" defined on quasi-uniform partitions,

that (see Theorem 5.1 for the precise assumptions)
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II" - «A »¿-(«0 < C((lnÍ")  "" " X"¿~(«) +  "" " "hKjP'SD

for any X G 5ft(£2).

Note that by partial integration over each element, the equation (0.3) makes sense

for Sn(£2) as above and u continuous on £2.  The estimate (0.8) has been previously

proved in Bramble and Schatz [5] in the case that the spaces Sh are smooth splines

on a uniform mesh and r > 3.  Their proof relies on Fourier methods, which are not

available in the general quasi-uniform case.

Comparing the estimate (0.8) to (0.6), we have reduced the local smoothness

requirements on the solution u, and we have also given estimates when r = 2 and N

>3.

The estimate (0.8) essentially says that, except for the factor ln(l/«) when r =

2, the Galerkin method is "locally bounded" in L„.  This is important since the esti-

mate is then applicable to a large class of problems for which the solutions are not

smooth in the interior.   For example, if m G IV;L(£2) for 0 < s < r, then the first term

on the right of (0.8) can be replaced by Chs(ln(l/h))r;  and the influences of the

smoothness of u outside of £2, and of the treatment of the boundary conditions in the

approximate procedure, are contained in the second term.  It is often the case that for

a particular boundary value problem and approximation method an estimate of the

form

IIu-mJI    2-r        <cVllull     mav/i  2-r+si,„,h   w¿   r(p) „/maxu.z   r+s)(v)

holds.  (For a survey of some methods satisfying this inequality, see Bramble and

Osborn [4].   In more special cases, cf. (0.7), the norm on the right-hand side can be

replaced by the norm in W^ax(0'2'r+s)(V).)  In this case we have that if u € R^ffi)

n M/max(i.2-r+*)(p) (or „ g WlÇl) O W^axi°'2~r+s\V)), then

II" -«A.tti,) <C72Í(lnÍ)"    for 0 <s <r.

In Section 6 (Theorem 6.1) we consider a model problem, namely the Neumann

problem on a smooth domain, and derive pointwise estimates for the Green's function

(cf. Bramble and Schatz [5] for a special case).  Briefly, if G^y\x) denotes the

Green's function with singularity at y, Gny\x) the usual Galerkin approximation, and

if x G £22, y E £2j with £2j C C £22, then

\G<y\x)-G<y*)\<c"Wyy-N£flf

provided \x — y\ > Ch.   Except for the logarithmic factor when r = 2, these estimates

are "locally optimal".  In Theorem 6.1 we also derive an estimate for the error when

\x - y\ < Ch.   As is well known, cf. [5], estimates of the above type can be used to

derive error estimates when the right-hand side /in (0.1) is nonsmooth.

We shall now give a rough outline of the main steps in our analysis leading to

the result (0.8).  Assume that the form A is coercive, cf. (4.1).  (The proof for non-
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coercive forms follows from this case via an argument involving a compact perturbation

of the elliptic operator, see Appendix 1.)  Let x0 E £2j be such that

sup   \(u - uh)(x)\ = \(u - unXxQ)\.
xen1

Let D C C £2 be a sphere with center at x0, and a> a smooth cut-off function which

is 1 in a neighborhood of x0 and has compact support in D. We set u = com and let

un E Sn(D) satisfy

A(u-un,x) = 0    for X G S"(D).

Here un can be thought of as the approximate solution of a Neumann problem with

right-hand side equal to Lu.  Taking wn = u„ - un, we have

(0.9) (u - unXx0) = (u- unXx0) + whix0),

so that the error u - un consists of two parts, namely:

(i)  The error u - un in a projection for a "localized" u.   Lemma 5.1 will in

particular imply that

(0.10) \iu-unXx0)\<Cilnl/hY\\u   -XHWO)    for X G 5*(£>).

(ii)  The function wn G SH(D) which satisfies A(wn, X) = 0 for x G Sh(D)

having support in a small neighborhood of *0.  In Lemma 5.2 we shall show that

(0.11) I^K^»1^

The desired result now follows from (0.9), (0.10) and (0.11) since
"/(£>)

Wwh\\     _      <IIk-mJIj   (D\+\\u-uh\\h    W~P(D) h   L^U> n   W~P(D)

Here the first term on the right is again estimated via Lemma 5.1.

The proofs of (0.10) and (0.11) rely on the fundamental Lemma 5.3. Briefly,

Lemma 5.3 is concerned with error estimates in L1 -based norms for the Galerkin ap-

proximation vn of functions u which satisfy an elliptic differential equation with right-

hand side ip G C°° whose support is contained in a sphere Dn of radius Ch. For our

purposes, any such v may be thought of, after proper normalization, as a smoothed-

out Green's function. In Scott [18] maximum norm estimates were obtained by esti-

mating the Green's function in W\ ; that work motivated some of our considerations.

In Lemma 5.3 we shall show that

(0.12) '»-^■irj(0)<^/1+1o» my\w\\L2(Dh),

and for D¡ECD,

(0.13) Wv-vnWw2,h(D¡) <ChN/2(\n l/hf\\*\\L2,Dn),

where W2'h(DI) denotes the piecewise norm relative to the element partition.

We shall now indicate how (0.10) follows from the estimates (0.12) and (0.13).
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It suffices to prove it for X = 0. Instead of representing the error directly in terms

of the Green's functions, as was done in Scott [18], we proceed as follows. Taking

x0 to be the center of Dn we have, using inverse properties, that

\(u -uh)ix0)\< C{ luh„(D„) + h-N<2\\u - Uhh2(Dn)}-

We then employ a duality argument in order to estimate the second term on the

right-hand side:

(u-un, </>)
l"-"/,lL2(0/,)= SoUP Ml/

A(u-uh,v) A(u,v-v„)
=      sup        -¡¡—j-=      sup       -¡¡—¡¡-.

*ec-(D„)    l](f^2(Dn)       vec~(DH)   ]^]lL2(Dn)

Integrating by parts over each element and taking care of the boundary terms via the

trace inequality A.O of Section 2, one deduces with D¡ approximately equal to supp co,

l«-«Aa(DA) <     sup      chUf'l.-^l,       + *v-vn\\  2,n     ).
*ec~(Dn)     Ml2(d,,) l(  /} x   (  /}

The result (0.10) now follows using (0.12) and (0.13).

•The proof of (0:11) proceeds along somewhat similar lines.

To prove (0.12) (from which (0.13) follows) we start by subdividing D, which

for simplicity we assume has radius 1 and center at xQ, into annuli

£2;. = {XI2-0-1) < \x - jc0I< 2-''},     / = 0, . . . ,J,

and a sphere £2ft of radius C^h = 2~J, centered at xQ, so that D = £ln U ((j/_0£2).

Let e = v - vn. We have

Hell    ,       = Y   Hell   j      , + Hell    ,
w\(D)    p0       w\(nj) w\(sin)

We estimate each Hell    i        (and Hell   !        ) separately.  Using the Cauchy-Schwarz
w,(n.) w1(nll)

inequality

Hell   ,        <Cd?>2 Well, n

where d, = 2-;. We apply Lemma 3.2, or Lemma 4.4 in the case of/ = 0, both of

which are generalizations of the interior //^-estimates of Nitsche and Schatz [16], to

obtain

Hell   ,        <C(dfl2hr-x\\v\\   r     ,   +rfr'|lell . ),

where £2? = (£2_! U £2- U £2,+1) O D.  We then sum and estimate the terms on the

right-hand side, using in particular a "kickback" argument which involves choosing

C* = 2~J/h sufficiently large.  The details are quite technical. We wish to point out

again, however, the use in the proof of//'-estimates which depend on distances,

roughly equal to d¡, between domains £2;- and £2;?,where also d¡ is approximately the
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distance from d£2• to x0.  This idea is related* to estimating norms on annuli which are

weighted in terms of their distance to xQ.  The papers Natterer [14] and Nitsche [15]

use weighted norms to prove their results, and similarly Scott [18] employs weighted

norms implicitly.  The techniques applied in these papers have much in common with

the ideas of Nitsche and Schatz [16], as do the techniques of the present paper.

In a forthcoming paper we shall adapt the local techniques developed here to

analyze the error in approximating the solution of a Dirichlet problem on a plane

polygonal domain.  Some of these results were presented at the SYNSPADE III con-

ference at the University of Maryland in May 1975.

An outline of this paper is as follows.  In Section 1 we introduce some notation.

Assumptions on the finite element spaces are listed in Section 2.  In Section 3 we re-

call the interior //'-estimates of [16], and extend them somewhat.  Section 4 is con-

cerned with some estimates for an auxiliary Neumann problem.  Then, in Section 5,

we prove the estimate (0.8) in the case of coercive forms A; the proof for noncoercive

forms is given in Appendix 1.   Lastly, in Section 6, we give the application to point-

wise error estimates for the Green's function.

1.  Notation.  Throughout this paper, c and C will denote positive generic con-

stants.  Let £2 be a bounded domain in RN.   For 1 < q < °° we denote by L (£2) the

usual Banach spaces with norm h\\L ,ny  For m a nonnegative integer, Wm(£2) will

be the usual Sobolev spaces with norms

( m \\\q

Y  Mq j forl<q<°°,

iiuii „
wq (íí)     J       max    lui   ; for q = °°.

I III'    (Ol

/'=0,...,m <,(«)

Here H   ,•     * denotes the seminorms
w> rm

£    I^IILwV''     for !<<,<-,

w'q(n)

\a\=j

lui   .-
<(n) max H£>aullLoo(i2) for q = ~.

I a 1=/

We define the spaces IV™(£2) as the completion of ê°°(£2) in the norm of Wm(Sl).  If

q = 2, we shall write Wm(Q.) = //m(£2) and use the symbols IHIm_n and H/n for the

norm and seminorm, respectively.

For m a negative integer we use the notation II • Il   m       for the norm dual to

^m(£2), llq + l/q'= 1, i.e., "

sup

<™     vecW^T-rn (il)

where (u, w) = fn vwdx.   For q = 2 we again write IHIm n for 11-11   m
' ÍV2 (£2)
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Mffm(n).  We note that if £2, Ç£22, then

(1.1) Hull   m        < Hull   m

In the proof of Lemma 3.2 we shall also need the following result.

Lemma 1.1.   Let 1 < q < 2 and p>0. Furthermore, let £2;-, / = 1, . . . , /, be

disjoint sets and £2 = [J"í £2-.   77ze«

Y   llull2-P       <Null2_„     .
px      wqpin,) wqp(a)

Proof.   Let i¿. G CqÍSI¡),j = 1, ...,/, be such that lli/yll   p =1, where

l/q + l/q'=l.   Set ^'^

6,= Hull   _p and    ï)=yrV,;
' */(«/> /=,   '      7

note that ■/> G Cq (£2). We have

,„„     > ( fr,rt V _ <g-T<M»'

Taking the supremum of the right-hand side over -p., we deduce that

V<«>      ;=1

The lemma now follows since the norm in the sequence space /   majorizes the norm

w„p(n)     ~   ;

iws since th

in /2 for 1 <t7 <2.

We shall also make use of spaces defined relative to partitions of £2.   Let 0 < h

< 1 be a parameter, and for each « let rf, 0 < i < 1(h) be a finite number of disjoint

open sets such that £2 Ç Uj=o •"?•  The sets ^^ ^ induce a partition of £2, and rel-

ative to each such partition, we define IV^"'/1(£2) (Cm,/1(£2)) as the space consisting of

those functions which belong to W™(if n £2) (Cm(T? n £2)), 0 < / < /(«). We in-

troduce the seminorms

'i(h)

Y   MQ m    h
fco      "'«(rfnn)

for 1 < q < <*>,

lui   m h
wq' (n)     1      max      lui   m   h forc7 = o°,

1 ,=o./(A)      <.(*?™>

and the corresponding norms Ml   m h      .  Note that if u G Wm(íl), then Hull   m n

—   II1/ Il      m •Wm(Sl)

2.  The Finite Element Spaces.   Let £2 C C RN be fixed throughout this section.

We shall describe a class of families of finite-dimensional spaces which have properties

that are shared by many quasi-uniform finite element spaces used in practice to ap-

proximate solutions of partial differential equations.
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For each 0 < h < 1, 5/!(£2) will denote a finite-dimensional subspace of W x„ (£2)

n C2''I(£2).  Our first assumption relates to the geometry of the partitioning sets rf.

We shall assume that a certain trace inequality holds on each of the jf.

A.O.  There exists a constant C such that for 0 < « < 1, and any /G W\(rf),

i = 0, . . . , /(«),

f  h IV/1 da < C Hl/I   i   h   + \f\   2   h
Jot?      * \hJ   w\(t?) W2(t?]

We remark that the assumption A.O is satisfied for a large class of partitions of

£2.   For example, it holds if the r¡  are taken to be A^-simplices or A^-dimensional

parallelepipeds of diameter c¡h, c¡ < C, provided the ratio of the diameter and the

radius of the largest inscribed sphere is uniformly bounded.  Briefly, to verify A.O in

these cases one maps each of the rf onto a standard domain.  The inequality can then

be proven, with « = 1, using integration by parts.  The desired inequality is then ob-

tained by mapping back to if.

For D CD., Sh(D) is defined as the restriction of 5ft(£2) to D, and

Sh(D) = {XIX G S"(D), supp X C C D}.

Let r > 2 be a given integer. We shall assume that there exist positive constants Cv

C2, C3, C4, k0, y, and 0 < «0 < 1 such that the spaces 5"(£2) satisfy the following

conditions A.1-A.4 for 0 < « < «0.

A.l.  Let s = 0, 1, or 2 and let Ö,CCÖ with distiöj, bD) > k0h and

dist(A d£2) > kQh.   Then for each u there exists a X G Sh(D) such that

(2.1)    llu-XH   tn        <C,«'_flul   / for 0 <r <s</<r, 1 <o<oo.

Furthermore, if D2 C C Dx with dist(D2, bD¡)> k0h and supp v CD2, then X G

A.2. Inverse Properties.   Let p > -1 be an integer and /), CCÍ) with

dist(£>,, bD) > k0h.  Then for X G Sh(D),

(2.2.a) hhj>i<C2h^+iHXi-p,D,

(2.2.b) hWws,h      )<C2ht-*-tf<1l'>i-1">Hxlwt,HiD) foT0<t<s<2,l<qi<q<°°.

A.3.  Let Dj C C D with dist(/),, bD) > k0h, and let w G ¿^(Z),).  Then for

each X G S"iD) there exists an r¡ G §n(D) satisfying

(2.3) I^X-r?ll1>D<C3«llcJllw,l(Di)llXllliDi.

Furthermore, let Z)4 C C D3 C C D2 C C Dj with dist(/)4, 9D3) > /c0« and

dist(/)3, bD2) > k0h.   Then if to = 1 on D2 we have rj = X on D3 and

(2.4) llwX-il»!,!, <C3hi0iwl{DJxll,DiV>4-
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We shall finally make the assumption that if a sphere or radius d in £2 is trans-

formed by similarity to a sphere of unit size, then the transformed finite element

space satisfies A.l, A.2, and A.3 with « replaced by h/d and with the constants occur-

ring the same as before.

A.4.  Let Dd C C £2 be a sphere of radius d > C4h with center at x0.  The

linear transformation y = (x - xQ)/d takes Dd into a sphere 25 and S"(Dd) into a new

function space 5(5).  Then 5(25) satisfies A.l, A.2, and A.3 with « replaced by h/d.

Furthermore, the constants occurring in A.l, A.2, and A.3 remain unchanged, in parti-

cular, independent of d.

Examples of finite element spaces for which the above assumptions obtain are:

(i)  The Lagrange and Hermite elements, cf. [8], which include, for example,

the restriction to £2 of piecewise linear elements, defined on a sequence of quasi-uni-

form simplicial partitions.

(ii)  The plane triangular elements of Bramble and Zlámal [7].

(iii)  The restriction to £2 of tensor products of one-dimensional piecewise poly-

nomials, cf. [3].

In these examples the properties A.l-A.3 are well known, cf. [11] and [19] in

the case of A.l, and [3] and [16] for A.3.  That A.4 holds with respect to A.l and

A.2 follows via a scaling argument.  For A.3, on the transformed spaces 5(25), one has

to consider the original proofs.  In the above examples, these proofs give (2.3) and

(2.4) with « replaced by h/d.

We shall now state two easy consequences of our assumptions.

Proposition 2.1. Assume A.l, and let RQ> 0 be fixed.   There exists a constant

C such that the following holds:

Let D CCD.be a sphere of radius R>R0 with dist(£>, bD.) > 2k0h.   Let s =

0, 1 or 2.   Then for each v there exists a X G Sh(D) such that

llu-xll   th       <C«,_íllull   i for 0<i <s</<r, 1 <q < °°.*   Wq'"(D) W'Q(D)

Proof.   The function u may be extended continuously in all W1 norms to a

sphere Dl of radius 2/2 such that

Hull   i <C(/?n)llull   i      .
rf^O,) °J        w'q(D)

The result now follows from A.l.

We shall need a way of cutting down functions in the finite element space to

have compact support.

Proposition 2.2. Let A.3 hold and let D3 C C D2 CCD1 C C D C C £2.

There exists a constant C such that if h is sufficiently small the following holds:

For each X G 5"(D) there exists an r¡ESh(Dl) with r¡ = xonD2 and

(2-5) Ux-T?ll1)D<CllXll1iDVD3.

Proof.   Let w G t°°(DA) and co = 1 on Ds, where D2 C C D5 C C 04 C C Dr.

By A.3 we can find i? G ¿"(D^ with t¡ = x on D2 such that
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Ho;X-t?II1j0<C«IIXII1;DND3.

Since 11(1 - co)XH1D < CllXll1;DVD > we obtain the desired result by the triangle in-

equality.

In what follows we shall set k = 2k0.

3.  Interior Estimates in Hx.  Consider the bilinear form A of (0.4) where, for

simplicity, afj, b¿ and d belong to C°°(£2) and a¡- = ajV  Assume that A is uniformly

elliptic on £2, i.e., there exists a positive constant Cell such that for all real vectors

£ -($!, . . .iN) and* G £2,

(3-D £   «i¿x*¿i>CmJt $■
/,/= i /= i

Let un E 5" (£2) be such that

(3.2) Aiu -un,x) = 0    for all X G §H(D).

Interior estimates for u - un in Hs norms were given in [16].  Our investigations will

rely on the following special case of a result from that paper.

Lemma 3.1. Assume that (3.1), A.l (for q - 2), (2.2a) of A.2 and (2.3) of A.3

hold.  Let p be a nonnegative integer and Dx C C D C C £2.  77zere exist constants

«j = hx(p, dist(/)j, bD)) and C such that the following holds:

Let u and un E Sh(D) satisfy (3.2).  77ze« for 0 < « < hx, 1 < q < °°, s = 0

or 1, and 1 < / < r,

(3.3) »«"«Ax,, < C{lt-*\u\l>D + lu-uHtw-P(D)}.

For D1 and D concentric spheres of radii Rl and R, the constant C depends on p,

and monotonically on C7u,(R - R,TX ,Wa¡¡\\   a      , lift,-Il   a       and II (ill   -,       for
-    ,      ...    .     *u       a     x " wl(n)'     ' wi(n) wl(n)J

some fixed positive integers a, ß, y.

Lemma 3.1 was proved in [16] for q = 2, but follows for all q by use of Sobo-

lev's lemma.

In particular, if uh satisfies A(un, X) = 0 for all X G 5 (£2), then

(3-4) \\un\\StDi<C\\uh'Aw-P(D).

In Lemma 3.1 the domains D and Dl were arbitrary but fixed. We shall need

the precise behavior of the constants in (3.3) in the case when D and Dx may vary,

and are possibly close, with «.  We shall find this behavior by a scaling argument, us-

ing A.4, and applying Lemma 3.1 on domains of unit size.

Lemma 3.2.   Let (3.1), A.l, A.2, A.3 and A.4 hold.  Let p be a nonnegative in-

teger.   There exist constants C and Cs such that the following holds:

Let £>j CCÖCCU with dist(D, 3£2) > kh and dist(D1, bD) = d > Cs«.   //

u and un E Sh(D) satisfy (3.2), then for 1 < q < 2,

(3.5)   ll«-«ftH1>Dl <C{h"x\u\rtD +^(1/2-i/,)-(p+i)||M_Uft||^_p(D)}.
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Proof   We first note that if d is of unit size, then (3.5) is a special case of (3.3).

By (1.1), Lemma 1.1 and a covering argument it suffices to prove (3.5) with Dl and

D taken as spheres of radii d/2 and d, respectively, with centers at x0.  Assume xQ =

0 and let x denote the variable on D.   Let y = x/d be the new variable on the trans-

formed regions 25j and 25; note that dist(25j, 9/5) = lA.  Set

e(x) = u(x) - un(x)

and

E(y) = U(y) -Un(y) = u(yd) - un(yd).

We have

We\\lDl=dN(d-2\E\lDi + \E\lrDi)

so that if d < 1, as may be assumed,

(3-6) \\e\\ltDi<dNl2-x\\E\\hhi.

Next note that E satisfies the relation

(3.7) Ad(E, x) = 0

for X in the transformed space, where with 6¡ denoting differentiation with respect to

yt>

N

Adiv> w) = J~ (  £   iaifiydß^^.wiy))
U= i

+ ( d £   (bAyd)8;v(y)) + d2d(yd)v(y)) w(y)\ dy.
i=i !

This form is uniformly elliptic with the same modulus of ellipticity Cell as for the

original form A, and the norms of derivatives of the coefficients are decreased com-

pared to those of A.   From (3.7), A.4 and Lemma 3.1 we deduce that for h/d <h1 =

UCS,

(3.8) lEl^Kcfây^Wrf + m^^

One easily finds that

(3.9) \U\hS<d-N'2+'\u\LD,

and using the definition of the Wqp norm, we have for d < 1,

(3.10) ll£ll   _p ~   ^-^-"llell   _„     .
WqP(D) WqP(D)

From (3.6), (3.8), (3.9), and (3.10) we obtain the inequality (3.5).  This proves the

lemma.
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4.  An Auxiliary Neumann Problem.  In order to prove our interior estimates

we shall employ an auxiliary Neumann problem.  In this section we state this problem

and collect some facts relating to it.

Throughout this section we shall assume that if D Ç £2, then the form A is co-

ercive over HX(D), i.e., there exists a positive constant c independent of D such that

(4.1) cIw'Î.d <A(v, v)   for all u EHX(D).

Here the region of integration for A is D.   In the sequel the appropriate region of

integration will be clear from the context.

Let D Ç £2 be a sphere.  Then for each ip G L2(D) there exists a unique function

v in Hl(D) such that

(4.2) A(v, w) = O, w)    for all w G HxiD).

This may be thought of as the variational formulation of a Neumann problem for a

second order operator with the natural boundary conditions being the vanishing of the

conormal derivative.  The following a priori estimates are well known, cf. [17].

Lemma 4.1.   Assume that (3.1), (4.1), and (4.2) hold, let 1 < q < °°, and let

m be a nonnegative integer.   Then there exists a constant C such that

Hull   m + 2      <CM   m     .W™ + 2(D) Y   Wm(D)

We shall be particularly concerned with the problem (4.2) when <p has small sup-

port.  Let D have radius 1 and center at the origin, and let

Dla,b] ={x-a< \x\<b}.

Write Be for D,0 e,.  We have the following estimates.

Lemma 4.2.   There exists a constant C such that if v and ip satisfy (4.2), then

the following hold:

(i) // supp ip Ç Be, then

(4.3) \\v\\r_D[a2a]<Ca-N'2 + 2-reN/2h\\0>Be    for %> a > 2e, r > 1,

(4-4) ""V.o^e, <Ce2"r(ln WMrtC.).   r>2,

(4.5) Hull   , <Ce1-JVH^IILl(B >,

(4-6) Mwií{B¡e)<CiQeMLl(Be).

(ii) //suppipÇ/)[a2a], then

(4.7) Hull   2 <CM£   (Dl   „ n.
V      ' WÍ(D\D[a/2Aa]) V  L°°(Dla,2a])

(üi) ForyEL^D),

(4-8) lülw}(D)<CMi,(/».

Proof.   We have
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v(x) = jD G^(y)tfy)dy,

where G is the Green's function for the problem (4.2).  By [12] and [13],

iC(l + \\n\x-y\\)   for lal = 0,N=2,
(4.9)      IZ^G(*>(y)l<< ,  „ ,   ,

(Clx-^l2^1"'      forA^>3orA^=2, lal > 0.

Let us show how this implies (4.3); the other estimates are proved in a similar fashion.

For x ED,a 2a] and 1 < lal < r, we have

IZ)»I<L   \£%Glx)<y)\\<p(y)\ dy

< (¿e i*-^i-a^-2+lal>«iv),/2Mo.Be <a*,,2ä-ff+2-*W0tl

The same estimate is obviously true for lal = 0.  Squaring and integrating with respect

to x we obtain the estimate (4.3).

The classical Ritz-Galerkin approximation vn G Sh(D) to u is defined by

(4.10) A(v -vh,x) = 0    for all X G Sh(D).

We recall the following error estimates, cf. [1] and Proposition 2.1.

Lemma 4.3.   Assume (3.1), (4.1) and A.l (for q = 2).  There exists a constant

C such that the following holds:

Let v and o„ E Sn(D) satisfy (4.10).  77ie« for 2 - r < s < 1, 1 < / < r,

\\v-vJSiD<Chl-s\\v\\ltD.

We shall also need a local estimate near the boundary, corresponding to Lemma 3.1,

for the projection with respect to the form A.  The proof will follow along the lines

of Lemma 5.1 in [16] with some simplifications due to the fact that A is coercive.

Let D0 C C D, D'0 = D\D0, and define

S"(D'0) = {x E SH(D), x = 0 in a neighborhood of D0 }.

Lemma 4.4. Assume that (3.1), (4.1), A.l (for q = 2), (2.2.a) of A.2 and A.3

hold.  Let fl„ CCfl, C C D C C D be concentric spheres, and D\ = D\D¡, i — 0, 1.

77iere exists a constant C such that for h sufficiently small the following holds :

Let u G HriD'0) and vn E ShiD) satisfy A(v ~vh,x) = 0 for all X G Sh(D'0).

Then

(4.11) l»-»*!^ <Cih*-Hvlr>D.o + Hu-uJILl(DlU>0)).

Here C in general depends on the radii of D0, Dv D, the quantities CeU and the con-

stant in (4.1), and Ua,7II   <*,„,, ^b,K,ßf^> ^y      for some fixed a, ß, y.

Proof.   We shall first prove (4.11) in the case that u = 0 on D'Q, i.e. that if vn

satisfies
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(4.12) A(vn,x) = 0    forallxeW>'0),

then

(4-13) K\,D\<C\\vn\\Ll{D^DQ).

In order to show this let DQ C C D2 C C D3 C C D4 C C D5 C C Di C C D be

concentric spheres and set /)' = D\D• .   Let co G C°°(D) with co = 1 on D\ and co =

0 on D3.  Then using (4.1), we have

(4.14) IvJId'i < *<*>*}]* < ^("«V Wft)-

A straightforward computation yields that

(4-15) A(uvh, uu„) = A(vn, co2u„) + I,

where

r N r N

I=)Dv2h    £    "-iPiUDjUdx + )D COU2   £   bPfUdX.
i,l= 1 i= 1

Since each D¡oo vanishes outside of D4\D3, we have that

.(4.16) l'l<Cllu„ll20;D4,D3.

Now from (4.12), we have for any X G S"(D'0),

(4.17) A(vn, u\) = A(vh, u\ - x).

By A.3 we can find an t? G 5 (D5) with r¡ = vn on D2 such that

(4.18) 11(1 -co2)vn -T?llfD <C7jIIuJI1>D5ND2.

Choosing X in (4.17) as x = u„ - r¡, we have that (¿2vn - X vanishes outside of

D5\D2 and

"WX  -X«l,OsV£,2   <  HO  -W2)U„  -rill1D.

Hence from (4.17) and (4.18),

(4.19) ^(u^,co2u/!)<C«lluJI2)Û5VD2.

From (4.14), (4.15), (4.16) and (4.19) we obtain

(4.20) Hh,D\<CKh,D5\D2>

and the desired result (4.13) follows on applying (3.4) of Lemma 3.1 to the right-

hand side of (4.20).

We are now in position to prove (4.11). With co as before, let (cju)„ G Sh(D)

satisfy A(u>v - (<*),, X) = 0 for all X G Sh(D). Then

(4.21) h-vh\\lM < llcou-(cou)Jl1;D.  + ll(cou)^ -uJlljD..

From Lemma 4.3 we obtain



428 A. H. SCHATZ AND L. B. WAHLBIN

(4.22) llcou - (cou)Jl1D < Chr-X llcoullr£) < Chr~x llull,>Z)¡).

Since A((cjv)n - vn, X) = 0 for all X £ Sn(D'5), it follows from (4.13) (with D0 re-

placed by D5), the triangle inequality and (4.22) that

ll(cou)„ -ujllöi <CH(cou)/1 -vh\\Ll(Dl\Ds)

(4.23) <C(\\uv-(uv)JLl,DlWs)+ \\v-vn\\Ll(Dl\D5))

<dtriMriD.Q + h-vn\\Ll(Dl\Ds)).

The inequality (4.11) now follows from (4.21), (4.22) and (4.23).  This completes the

proof of the lemma.

5.   Interior Maximum Norm Estimates.   In this section we shall state the main

result of this paper. We shall prove it here for coercive forms.  The case of noncoer-

cive forms will be treated in Appendix 1.

Theorem 5.1.   Assume that A.O, A.l, A.2, A.3, A.4 and (3.1) hold.  Let Dl C C

£2, let p be a nonnegative integer, and 1 < q < °°.   There exists a constant C and an

0 < hx < 1 such that the following holds:

Let u be continuous on £2 and un E Sn (£2) satisfy

A(u-un,x) = 0   for all X G 5* (£2).

77te« forO<h<hxand any X G 5"(£2),

(5.1) llW-U,ll¿oo(ííl)<C{(lnl/«)7l|w-xll¿oo(n) + HM-«JIK;_P(n)},

where

il    ifr = 2,

\o   ifr>3.

Proof of Theorem 5.1 for Coercive Forms A.   We shall make the additional hy-

pothesis that the form A is coercive, i.e., satisfies (4.1).  The case of noncoercive forms

will be given in Appendix 1. In what follows, D C C £2 will be a sphere of radius R

> 0 with center at xQ, where xQ E Dx is such that II« - un Hi^n,) = '(" _ unfixo)^-

We shall need the following lemmas.

Lemma 5.1.    Under the above hypotheses, there exists a constant C such that

the following holds:

Let u have compact support in the sphere lÁD.  If uh G Sh(D) satisfies

(5.2) A(u-un,x) = 0   forallx£S"(D),

then for 0 < « < «,,

(5.3) I« - UH HLoo(î4D) < C(ln Uhy\\u\\Loo{D).

Lemma 5.2.   Under the above hypotheses, there exists a constant C such that if

wn E Sh(D) satisfies
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(5.4) A(wh,x)=0   for all X G §"(D),

then

(5-5) \wh(x0)\<C\\wn\\w„P(D).

Before proving Lemmas 5.1 and 5.2, let us show how Theorem 5.1 follows in

the coercive case.  Let co G C°°QÁD) with co = 1 on VaD and set u = cj«.  Then taking

un E ShiD) satisfying (5.2), we have from (5.3) that

(5.6)       \uix0) - unix0)\ < C(ln l/«)7HÏÏIILoo(D) < C(ln l/«f y«l£oo(D).

For T? G 5" (VaD) we obtain

A(un -uh,rj) = A(u -un,r)) = 0.

Hence taking wh = un - un, it follows from (5.5) (with D replaced by VaD) and (5.3)

that

\(uh - uh)(xn)\ < C\\uh - un II   _pv  h        /i-"-  0' h        h   w  P'%d)

<C{\\u-un llw./4D) + Hw - un Ww-P{ViD)}

<C{(ln l//07ll"ll¿oo(O) + Wu-uJw-P(D)}.

Using this and (5.6), we obtain via the triangle inequality

ll"-"/Ill/.»(n1)<c{(lnl/'z)7|l"ll^(n) + ll"-"/1llH/-P(n)}

and the theorem follows upon writing u - un = (u - X) - (un - X) for X G 5" (£2).

The proofs of Lemmas 5.1 and 5.2 will depend on the following technical lemma.

Lemma 5.3.   Under the hypotheses of Theorem 5.1, let Dn C C lAD be a

sphere of radius C'h.   There exists a constant C such that for 0 < h < « t the follow-

ing holds.

Let ip G t°(Dn), and let u and vn E Sh(D) satisfy

(5.7) A(ip, v) = (\¡j, ip)    for all i|/ G HX(D),

(5.8) ,4(X, u - u„) = 0 forallXES"(D).

Then

(5.9) Hu-uJIh/1i(d) <C«^2 + 1(ln l//0?IMIO)D/i

and for D1 C C D,

(5.10) llu-uJI^^^CT^Cn l/«)7Hipll0>zv

Assuming Lemma 5.3 for the moment, we shall prove Lemmas 5.1 and 5.2.

Proof of Lemma 5.1. Let \\u~ un\\Lœ/yiD) = \(u - un)(xi)\. For simplicity

in notation we shall assume that x1 is the center of D. Let Dn be a sphere of radius

C'h, C' > k, with center at Xj.  Then
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I(«-h„X*,)I <!"(*,)! + l«>i)l

<lîfe.)i +ch-N'HuhlL2(Dh)

< 1^)1 +Ch-Nl2\\uh-u\\L2(Dh) +Ch-Nl2\\u\\L2(Dh)

<C{\\u\\LUDh)+h-Nl2\\uh-u\\L2(Dh)}.

Here we used (2.2.b) and the triangle inequality.

Now (5.3) would follow once we had shown that

(5.11) h-N'2\\u- uJ0iDn <C(lnl/«)7ll«llWD).

We have

,~    ~ „ ("-"ft,</0
lu-»hh,Dn=    !«p     "O-

For each such <p, let u and vn satisfy (5.7) and (5.8).  Then

(5.13) (u - un, ip) = A(u - uh, v) = A(u, u - vn).

Let L denote the second order operator corresponding to A (given by (0.1)), L* its

formal adjoint, and 9/9« the conormal derivative.  Integrating by parts, we have

ul-{v - vh)ax -i- 2_,   k h u
iei " '' mi       •

where, since u vanishes outside VtD, we may take / = {ilif O VxD # 0}.  Let D¡

Uieirf.  Then

(5.12)

A(u, v-vn)=Y, jTn uL*(v - vn)dx + £ jdT„ Ufaiv- vh) do,

£   f ft uL*(v- vn)dx
| tei     i

In view of our assumption A.0,

<CWu\\L„iD)\\v-vJw2,h(Di).

^   r      ~9(u - u„),
£   L ft u -^-r—^do
¡ri JdT¡ dn
iei

and therefore

<Clli/llLoo(D)(/r1llu-uJI    , +Wv-vJ   2n       ),

\A(U,V-Vn)\<C\\u\\L,D)(h-X\\v-Vn\\     ! +  IIU-UJI     2/i )•

Now using Lemma 5.3 we obtain

\A(u, v - vh)\ < C\\u\\Laa(D)hNl2 (In l/«)7ll«pll0D/j,

and (5.11) follows from this, (5.13) and (5.12).  This proves Lemma 5.1.

Proof of Lemma 5.2.  Using Proposition 2.2, there exists a function r\n G

S"(3/aD) such that rj„ =w„ on ViD and Ht^II,^ < Cílw„ ll1D.  Then

lwÄ(*0)l= lr7/1^0)l<OI-^2llr?JI0>      =Ch-»<2       sup       £^-,
* *ec   (D„)  Mojja

where diam />„ < Ch.   Let ip G C°°(Dh) be fixed and let u and u„ satisfy (5.7) and

(5.8) so that
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(rth, <P) = A(vn, v) = A(r¡n, vn).

Let xn G S iViD) with xn - vn on VaD be as r¡ in Proposition 2.2.  Since A(r¡h, xn) =

A(wn, xn) = 0, and using (2.5), we have

(5 iVn, V) = AiVn, Vn -XH)<ChHh,3DI4Kil,3Df4\Dia

<C\\wh\\UD\\vJl3Dl^D/8.

Since vh satisfies A(x, vn) = 0 for X G Sh(D\Dn), (3.4) yields

(5.16) ^ft"l,3D/4\û/8<ClluJIM/1(D).

Using Lemma 5.3 and (4.8),

HuJI     ! <  IIU-UJI     ! +  Hull     ! <C«Af/2I^H0D    .
"   W\(D) h   W\(D) W\(D) °'Dh

Thus, from (5.16), (5.15) and (5.14) we obtain

\whix0)\<C\\wh\\UD.

Replacing D by ViD, the desired result (5.5) follows from (3.4).  This proves Lemma

5.2.

Proof of Lemma 5.3. We shall first prove (5.9). For simplicity in notation, let

Dn and D be concentric spheres with centers at the origin and with radii « and 1, re-

spectively.   Let £2- denote the annuli

£2;. = {xl2~'w < 1*1 <2-/},

and let J be the largest integer such that 2     > C%h, where C* is to be chosen later

(sufficiently large).  Set d¡ = 2~'\ £2ft = £»\U/=0 n/> and let

£2J = (£2/W U £2/W+, U • • • U £2/+;) n D,      1= 1,2, ... .

Furthermore, set e = v - vn. We have

(5.17) Hell    ,       = £   Hell    ,        + Hell    ,

Using Lemmas 4.3 and 4.1, we obtain

(5.18) Hell   , <CCNI2hNI2\\e\\, „   < CCN'2hNl2 + x M0 D .

By Lemma 3.2, or Lemma 4.4 in the case of/ = 0, it follows that

Hell   ,        < Cd?12 Hell. a. <, Cd^1 {h^ Hull      , + d7Nn~x Hell,,, (n ?}}.

By (4.3) we have

Hull     ! <Cd7N'2 + 2-rhN'2W0D .
r,n¡ I "'"ft

and thus
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£  Hell   ,        <c/£ d2~rhN,2+r-x \mL d   +CYd7xWe\\ ,

(5.19)

<c7z^2 + 1(lnl//07H^IOjDii + C-/,

where

We shall now estimate /.   Let

/= £ d7x \\e\\ , .

7 =CJille"Li(nft) + Ç d/I|el¿i(n/)

and note that / < 8/.  Now,

Z^hMLl(nh)<CiC^'2-xh^2-x\\e\\L2(nh)

and by Lemma 4.3 and 4.1,

(5.20) -L leIil(tÎA)<C(C,)AÎ/î-1^2 + lM0)D/i.

Next write

'¿ !(«/)= «¡P

Letting Aiw, \¡>) = (w, t?) for w G #'(£)) and letting X G 5/1(£>),

(5.21) MA|(0#>-       sup       ^*^>
DEC    (Iî;.)    '^"¿„(íí;)

We have

(5.22M(e, ip-x)< Hell   !        2H^-XH   ! 2  + Hell      2ll0-XH      2.
v      /    v   y    K) w\(D\nf) r    A wl(D\sif) i,aj        A i,n2

By A.l (cf. Proposition 2.2 for / = 0) and by (4.7) we obtain for a suitable X,

(5.23) 110-xl    1 2   <<WII   2 !   <CftltjllL   fn.),
wl(D\nf) rV£,(DUi/) L„(ll,)

Furthermore, by Lemma 3.2 and (4.3),

Hell      2<Ch\\v\\      3 + G/riV/2_1llell 3

< Chd7NI2hNI2 llipIL _   4- Cd7N/2~x Hell        3 ;

and we can take X such that

110 - x\ „a < C7iH0ll2>n < ChhKja, < CMin Wwo/)-

Thus,
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■'■ui»1* -xli.o/ ^{«"'^IMI^ +*c-*M       3,) lijlL.(n/)

and from this and (5.21), (5.22) and (5.23),

llellL,(ii)<C{«Hell   ,        2   +hd7lM        3   + hN/2 + 2 M0 D  }.

Now using (5.20), we have

/ <C Lv/2-,„JV/2 + ,+„iV/2 + 2   ¿   d7Xl\\o\\0>Dn

+ ChY id7x Hell    ,        2 ) + C £ [ %-\d7l Hell 3
£/> W\(D\S12)> ,to\diJ  ' M"/>

<CCi//2-1«7V/2 + 1ll^llOD    + £llell    ,       + £/.

Thus, choosing C# large enough we obtain

7<Cct/2-1«iV/2 + 1l^llÛD   +£llell   ,     ,
* Y  0,D„        C^ w\'D)'

and from this, (5.17), (5.18) and (5.19),

Hell   .       <CC^/2«^2 + 1(lnl/«)7H,pH + £ Nell   ,      .
W\(D) * '     V  0,Dn        C* W\(D)

Hence,

Hell   ,       <C«JV/2 + 1(lnl/«)7HipHnD ,

which completes the proof of (5.9).

We shall now prove (5.10).   Letfl^CC D2h CC^CCD^CC DSn

C C D6h be concentric spheres with dist(/)//J( bD(j+l^h) = kh, j = 1, . . . , 5. We

have

(5.24) IIu - U„ II    2 ft < I'« ~~ Vh II    2 ft + llu - uJI    2 ft
V ^ "    rV2>"(D!) "    W2'/,(D1\D4A1) "    w]'n(D4h)

For x G S'XZT) it follows from (2.2.b) that

llu-u.II  2n        <Hu-xll  2ft        + or1 llx-u„ II   ,
(5.25) x   (D4h) x   (D4h) w>sn)

<llu-xll   2ft          + C7T1 llu-xN   i          + C&~IHu-uJI   .      .
A   W2*(DAn) *   lfJ(DSÄ) "    W\(D)

Choosing x to satisfy (2.1), we have

Hu-xll   2ft +C7r1llu-xll   i

<CHull   2 <C«iV/2Hull2D     <CVV/2IMI0D .

From this, (5.25) and (5.9) we obtain
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(5.26) "»"VI   2,ft,n       <c7;"/2(lnl/«rlMI
1     *    4ft' '

As in (5.25), we have that for any r¡ G Sh(D)

(5.27) !   (UNW4ft'

<Hu-t/II   2rt + C7T1 lu-tjI   ! +OT1llu-uJI   ,      .
w\'n(D\D^n) w\(D\D3n) «    W\(D)

Choosing 7] to satisfy (2.1) and using (4.4), we arrive at

llu-r/ll   2n + OT1 llu-77II    !    ,
w\<\D\D4h) w\(D\D3n)

<ar~2M   , <C(lnf|IMILia. ^O^/lnfYllipll
W\(D\D2n) y     h J L\(°h) ^     hj 0,0/

This together with (5.9), (5.24), (5.26) and (5.27) proves (5.10).

This completes the proof of Lemma 5.3.

The proof of Theorem 5.1 in the case that the form A is coercive is now ac-

complished.  As mentioned previously, the case of noncoercive A will be given in

Appendix 1.

Theorem 5.1 was proved under the assumption that the domains £2, and £2

were fixed.  Analogously to Lemma 3.2 we have the following result when the do-

mains may vary and be close with «.

Corollary 5.1. Assume that the conditions of Theorem 5.1 hold and let

£2j C C £22 C C £2.   There exist constants C6 > 0 and C such that if C6h < d,

dist(£2j, 9£22) > d, and dist(£22, 9£2) > d, then for 0 < / < r,

Wu-uJ,   fn,i <cWlnr)lwl   ; + d^'"-" II« - uH>'r    ÍÍ2 , 1 ** L w    in —       K      ; tu       • ■   ■  II« - Uh II    _„ (,

where C is independent of h, u, un, £2j, £22 and in general depends on p, CeU,

Ha,, II   a      , lie,-II   a       , \\d\\   .y       for some a, ß, y.
" wZ,(si)      ' rví(n)        wl(n)J

Proof.   We shall mimic the proof of Lemma 3.2.   Let x0 G £2t be such that

l(« - u„X*o)! = "" - "ft "¿«.(ííj)-  Without loss of generality we assume that Di

and £22 are concentric spheres with center at x0 and diam £2j = 2d.   Let y =

(x - x0)/d and transform the problem to the new variables y on £22.  The new sets

7?  satisfy A.O with « replaced by h/d.   From A.4 it follows that A.l, A.2 and A.3

are satisfied on the new domain ñ2 with « replaced by h/d.   To verify that A.4 is

satisfied on ti2, let y0 E £l2 and transform a sphere of radius d> C4h/d in £l2 via

the transformation z = (y - y^)fä.  It is seen that this is equivalent to transforming

a sphere of radius dd in £22 via the transformation z = (x - x^/dd for some point

xx G £22.  Since dd > CAh, A.4 yields that A.l, A.2, and A.3 also hold with h/d re-

placed by h/dd.   Hence Corollary 5.1 is valid on the domains ?il and ?12, and the

desired result follows by transforming back to the original domains.

6.  Pointwise Error Estimates for the Green's Function Near the Singularity.  In

this section we shall apply the results of Section 5 to derive estimates for the error in
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the Green's function.  We shall restrict our attention to the Neumann problem on a

smooth domain, but the techniques given below are suitable for investigating other

boundary value problems and methods for solving them.

Let V be a bounded domain in RN with a smooth boundary 9f, and let A be

a bilinear form of the type (0.4), where A is coercive over //', i.e., there exists a

constant c > 0 such that

(6.1) cM\v<Aiv,v)   for all u G HX(V).

Let Sh(V) be a one parameter family of subspaces of W^CD) having the global prop-

erty that

(6.2) inf     llu - x'l ! v<Ch'~x Hull, p    for 1 < / < r.
xes"(P)

In addition, the spaces will be required to satisfy the conditions of Theorem 5.1 on

interior subdomains.

Let y E V and Giy)(x) and G(ny)(x) E Sn(V), respectively, be the Green's func-

tion and approximate Green's function defined by

A(G(y), v) = v(y)    for all u G Wl(V),

and

A(Gny\ x) = xOO    for all X S S\V).

We wish to estimate \G^y\x) - GJy\x)\ where y is in the interior of V and x may be

close to y. More precisely we have:

Theorem 6.1.  Assume (6.1) and (6.2). Let £2j C C £22 C C V and suppose

that the conditions of Corollary 5.1 are satisfied.   There exist constants Cand C7

such that if h is sufficiently small, then for y E £2,, x E £22.

(i) If\x-y\>C1h,

(6.3) \G<J\x) - G%\x)\ < Chr Mn(^-^ Y\7lx _y\N-2+r

(ii) If0<\x-y\ <C7«,

(6.4) \G^(x)-Gny\x)\<C

In t—=—: +1    forN' = 2,
\x -y\

1

.y\N-2       forN>3.

This theorem can be applied, e.g. in the following situation, cf. [5].  Let / have

compact support in V-  Then

(a - uh)(y) = Jsupp f iG<y\x) - Gny\x))f(x)dx,

and using the results (6.3) and (6.4), the error can be estimated in various domains

under weak regularity assumptions on /

Proof.   Let d = \x — y\ and denote by Brix) the sphere of radius r around x.

Furthermore, set e^y' = 67"'' - Gny\  Note that there exist a fixed domain £23
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independent of d, £22 C C £23 C C V, and a constant c,, 0 < cx < Vi such that for

any x G £22,

ö-£Cld(*)cC£23.

Let /)1 = By2C dix) CCD.   Applying Corollary 5.1 to Dl C C D, we obtain

(6.5)      \e(y\x)\<C-
d

«'  ln£    \G™\   r        +d~N~r+2 Cv)|

"" V" h J "       'rvl(o) ' "^"'(D)!"

Since dist(D, y) > Vid, it follows from (4.9) that

(6.6) \G{y)\   .       <Cd-N~r+2.

We shall next estimate the second term on the right in (6.5).  We have

(6.7) He(j,)ll,. 2-r      =       sup        (e V ' ^

Let u G Wl(V) satisfy ¿(w, u) = (w, <p) for all w G Wj(í>).  Then

(e(y>, ip) = Aie(y\ V) o „(j,) - ^(y),

where u„ G 5"(í>) satisfies 4(X, u - vn) = 0 for all x G Sn(V).  Since y G £2j, we may

apply Corollary 5.1 to (u - vn)(y) on the spheres Z)j C C D' of diameter u78 and

o74, respectively, with center at y.  Then

Ku-uJM^cWln^Jlul^^^Tci-^llu-uJI^pJ.

Note that áist(D', D) > d/A.  Using the fact that ip G t°°(D), we have, cf. the proof

of Lemma 4.2, that

Hull     r        ,    <CM     r-2        ■
Wrm(D') r   !V„    (D)

Furthermore, from (6.2), cf. Lemma 4.3,

Hence

llu - u„ l0>p < Chf\\^2<D < ŒdN'2 i^n     2(o).

„Cv)    " ---i.  Id
\(e^,)^œ\in^yww,_2w.

This together with (6.7), (6.6) and (6.5) proves (6.3).

We shall next show (6.4).  Let d = \x -y\ < C7«.   In view of (4.9) it suffices

to show that

ÍClnf     forA^=2,
INCh2~N    foiN>3.

We define xQ by
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(6.9) sup    I67<'>(*)!= \Gny\x0)\.
xen2

We may assume that Bkn(xQ) Ç £22; otherwise \xQ - y I ̂  V2 dist(£2j, £22) and (6.8)

follows from (6.3) and (4.9).

Let AD denote the form A with the integration extended over the domain D.

We have with e to be chosen later,

Gj?\x0) = A(Gnxo\ GOO) = ,4(C(*o), rjOO)
(6.10)

= ABeh(xo)(G^),G^) + Av,Beh(xo)(G^o), ciy)) = ¡x +/2.

Using the inverse property (2.2.b) and (4.9), we have

/, <CIIG(>')II   . N67(*o)||   .
(6H) wl(Beh(x0)) w\(B£n(x0))

<^\G^(x0)\-eh = Ce\Giy\x0)\.

For /2, the Cauchy-Schwarz inequality and (4.9) give

I2 <Cll67(j:o)|| \\G(y)L „
2 l,V\Ben(x0)      «        >.»

<

C(e)(lnl/«),/2|lG^)|lliP   for/V=2,

C(e)h-NI2 + x\\Gnyh\ud   for N > 3.

Note that by (6.1) and (6.9),

HG^)|l2iP < CA(Giy\ rj<») = CG^(y) < C\GJ*\x0)\;

thus

t~        I        .   ...
for A'=2,feln-TelG^)!

(C(e)h-N + 2 +e\Gny\x0)\
(6.12) I2 <

for N>3.

Choosing e small enough we obtain the desired inequality (6.8) from (6.9)-(6.12).

This completes the proof of the theorem.

Appendix 1.   Proof of Theorem 5.1 for Noncoercive Forms A.  Assume that we

have proven the following weaker version of Theorem 5.1.

Lemma A.1.   Under the assumptions of Theorem 5.1, if u G Wxm(D) and

Aiu-un,x)=0   forXE§hiD),

then

(A.1) \\u-uh\\L„(ViD)<C(\\u\\wUD) + \\u-uh\\^P(D)).

We shall first show how Theorem 5.1 follows from this.  Let ïbea positive

number such that the form AK, AK(v, w) = A(v, w) + K(v, w) is coercive, i.e.,

satisfies (4.1).  Let co G t°°(ViD), cu = 1 on VaD, let u = u>u and let un E Sh(D) be
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given by

AK(u-uh,x)=0    for x S Sn(D).

By Lemma 5.1,

(A.2) ll"-"ftllwy.D)<cAnij Mím(pr

Next note that

A(Zn -un,x) = ~K(u„ - «, X)    for X S ¿"(KO).

For D' = cD with sufficiently small c, the form .4 is coercive over HX(D').   Let then

\p EHx(D')be suchthat

A(\¡j, v) = K(un - u, v)    for u G HX(D').

Thus,

AW ~(un - un), x) = 0    for all X G Sh(D');

and hence using Lemma A.1 and (A.2),

»#"(«/, - "/,)*L„(54ß')

< Cil 011   ,       tCIIi// -(«„ -"Jii  -o   ,

<Clli//ll   ,     ,  + Cll«.-«II   _D + C(lnl/«)7H«II,   (nv
wl(D') " Wqp('AD) V ' ¿=o(D)

Thus, by (A.2) and the triangle inequality,

""""A   ii4D')<Cll^l   .     ,   + CIIm„-«II   _„,        + CÍln ¡7)  lui,   fnvft   ¿00I/4/J J »"    w^(£) ') ft W   P(V4D) \       « y ¿oo(D)

By elliptic regularity, cf. Lemma 4.1, and (A.2),

so that finally

^-^hK^D')<cL^\\u\\Loa(D) + C\\u-uh\\w^(D).

Theorem 5.1 follows from this.

It remains to prove Lemma 4.1. We shall, under the general assumptions of

Theorem 5.1, prove the following:

Lemma A.2.   Let Ü CCD be concentric spheres.  If2<q<p<°° with 1/q

- 1/p <1/N, then

l«-"*,¿J,(o,)<OÍ,l'lwi(í)+ I'" ""ftI'l^o))-

Lemma A.1 follows from Lemma A.2, for, by iteration of Lemma A.2 one has

H«-«Jlr   ,1/m<Cll«ll   i +CII«-«.!!,   tvn\-ft    LoeCAD) jy'  (l/2£)) ft    L2(ViD)
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By Lemma 3.1,

"" ~~ "Jl/,ui/,m ^ Cllull   i       +11«-«„II   _0ft   L2(AD) wl(D) n   Wpq(D)

and thus, Lemma A.1 obtains.

Proof of Lemma A.2.   Let K be such that AK is coercive.  Now,

AK(u -uh,x) = K(u -un,X)    for x £ Sh(D).

Let 0 be such that

AK(\p, v) = K(u-un, v)    allvEHx(D),

and \ph G Sn(D) such that AK(\p - i//„, X) = 0 for all X G Sh(D).  Note that

^(«-M/I-^,X) = 0    for x G Sh(D),

and we may apply Theorem 5.1 in the coercive case to deduce

^ - »h - *hh„(D') <C\\u\\wÍ(d)+ C\\u- uh\\0D + CHn\\0J3.

Since

^ftllo,D<CH0jl1)D<Cll«-«JIO;D

and

""-"„"vu') < *"-«/,-Mvz>') + lhhp(D'y

the desired result will follow if we can show that

(A.3)    Hnhp(D')<C^-uhhq{D)    for2<p<oo,0<l/c?-l/p<l/7V.

Since

ll0-^ftHo,D<l^-^ft|li,D<C'll0ll1>D<Cll0ll^(D),

we obtain using Sobolev's lemma and elliptic regularity,

II^IWD') < ^ - 0A„(D')  +  Ml.(D')

(A'4) <chL i\'wwim(p) + CH - 0JIO,D + ci^l^d,.)

< CHWwl(D) < CH0IIh/2(d) < Cll« - un \\LAD)    for 1/s < l/N.

Similarly,

(A.5) *
< Cll« - uh \\Ls(D)    for 1/s - 1/2 < 1/JV.

By interpolation between (A.4) and (A.5) we obtain (A.3).  As noted, this proves

Lemma A.2.

This completes the proof of Theorem 5.1 in the case of noncoercive forms.
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Appendix 2.   Proof of (0.7).  As mentioned in the Introduction, we shall take

the form A to be coercive, i.e., satisfy (4.1).  We assume that A.1, A.2 and A.3 hold

(see Section 2), and furthermore that Sh(D) C//2(£2). We shall then prove that if

A(u -un,x) = 0 for all x G 5ft(£2), then for £2j C C £2, p > 0, 1 < q < °°,

(0.7)   l«-«Al£2(„l)<C(l«-xlL2(n)+««-«/,«B,-p(n>)    foranyXG5»(£2).

Let £2j C C £22 C C £23 C C £24 C C £2 where we may assume that 9£24 is

smooth.   Let co G C°°(£23) with co = 1 on £22, and put u = cou.   Let un E 5"(£24)

satisfy A(u - un,x) = 0 for all x e 5rt(£24), where the form A is now taken over

£24.  Then

(A.6) ,"-«A,o,n, < '«-"a'o.îï, + ""ft -«A.n,-

We shall estimate the two terms on the right-hand side.  We have

~    ~ I ( u ~ un, ip) I
(A-7> ll"-"ftl|o,ii4=     «up      —¡r-jj-■

i£C   (n4)      lll^llo,n4

For each such ip let u G //2(£24) satisfy A(\¡j, v) = (\p, ip) for all \p E //!(£24).  Hence

if vn E Sh(DA) satisfies ^(x, v - vh) = 0 for all X G Sh(D,4), we have

(u-uh,ip) = A(u- un,v) = A(u, v - vn).

Integrating by parts and using Schwarz' inequality, we obtain

(A.8) l(ÏÏ-«„,ip)l= l(u,/,*("-^))l<Cllull0)n3llu-u/)H2)f23.

For a suitable X G 5/1(£24), given by Proposition 2.1, we have on using the inverse

property A.2 and the fact that II u - »„l,,^ < C infxeSft(rÎ4)llu - xll,,n4,

iv-»*h,a3 < l|tJ-xll2,n3 + lx-uAl2)n3

<Hu-xll2!ÍÍ3+C«-1llx-uJllií24

(A.9) < llu - xll2,n3 + OTx \\v - Xl, t„4 + CbTx \\v - vn I, >r,4

<llu-xH2,n3+C7I-1Hu-Xll1)í24

<CHuH2in4<CH^II0in4.

In the last step we used elliptic regularity, cf. Lemma 4.1.   It follows from (A.7),

(A.8) and (A.9) that

(A.10) llu- u/1llon4 <Cliill0iiÎ4 <Clliill0>n.

For the second term on the right of (A.6), we note that .4(«„ - un, x) = 0 for

all x G Sh(D2).  By (3.4) and (A. 10) (and assuming without loss of generality that

q < 2 below), we have
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""ft-Mo.n, <Cll"*"MAVp(n2)

(ATI) <all"-"JI0,n2 + ""-"ft11^^))

<C(ll«ll0o + Hu-u.II   _„     ).v     o,n ft Wqp(iiy

Inserting (A.10) and (A.11) into (A.6) we obtain the result (0.7) with x = 0.  The

general case follows by writing u - un = (u - x) ~ ("/, _ x)-  Tliis completes the

proof of (0.7).
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