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Uniform Convergence of Galerkin's Method

for Splines on Highly Nonuniform Meshes

By Frank Natterer

Abstract.   Different sets of conditions for an estimate of the form

* - '"«¿«i«.» «c max »r vr+i)n¿ ,n
i °°x I'

to hold are given. Here, y" is the Galerkin approximation to the solution v of a

boundary value problem for an ordinary differential equation, the trial functions

being polynomials of degree < r on the subintervals I¡ = [x¡, x,-+j] of length h¡.

The sequence of subdivisions -n: Xq < Xj < ■ • • < xn need not be quasi-

uniform.

1. Introduction.  This note is concerned with the numerical solution of the

boundary value problem

2ra-l

Ly =y(2m) +   ¿ a„/»> =/   in (a, b),

(1.1) "=0
y<v\a) = yM(b) = 0,      v = 0,...,m-\,

av G Cvia, b),      v = 0,.... 2m - 1,

by projection methods such as Galerkin's method or collocation using splines as trial

functions.  By splines we mean the elements of

Sir, k, it) = {v G Ckia, b): v GPrin each subinterval of it}.

Here, r > k > 0 are integers, Pr denotes the set of polynomials of degree < r, and

it: a = x0 <Xj < ■ ■ ■ <xn = b is a subdivision of [a, b].  With each it we associate

the quantities

hi = xi+1 - xit   It = [Xp xi+ j ],    br| = max ft,..
i

By II we denote a set of subdivisions, and we put \[h = {it G U: \n\ < ft}.

If r, k, II are suitably chosen, then a typical error estimate for an approximate

solution.}'" calculated by some projection method reads as follows:   There are ft > 0,

C < °° such that yn is well defined for all y € C+lia, b) and all ir G Uh, and

(1.2) to-y"hmía,>)<c¡*rw'+1HLmítl>br

Such results have been obtained by de Boor-Swartz [3] for collocation methods and

by Wheeler [8], Douglas-Dupont-Wahlbin [4] for Galerkin methods.  The correspond-

ing multidimensional results are due to Scott [7] and Nitsche [6].
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The exponent r + 1 of \tt\ in (1.2) is best possible.  This follows from the fact

that the estimate

with C independent of tt, y is optimal as far as the exponent of \ir\ is concerned.

However, it has been shown by de Boor [1] that the sharper estimate

holds with C independent of it, y, if either r > 2k + 1 or the mesh ratio hjhj,

\i -/| < 1 remains bounded.  This estimate makes sure that local refinement of it at

points where y(r+1) is large reduces the overall error.  Thus it would be highly de-

sirable to sharpen the estimate (1.2) in a corresponding fashion, i.e. to prove that we

can replace (1.2) by

(1.4) liy-^II^^^Cmaxftr1!^1^^.).

For the Galerkin method, (1.4) follows easily from the work of Wheeler [8] in the

case m = 1, k = 0.  We will obtain (1.4) for arbitrary m, r> 2m - \,k = m - \.

For r > 2m - I, k > m - I; v/e will prove (1.4) under some mild assumptions on II

which are satisfied e.g. for the highly nonuniform family of subdivisions of [0, 1]

given by x¡ = (í/n)a, i = 0, . . . , n with a > 1 arbitrarily large.  This proof will be

based on estimates in weighted Sobolev spaces as used in Natterer [5] and Nitsche

[6] in connection with Lœ-estimates for the finite element method.

The estimate (1.4) follows immediately from (1.3) if the projection method is

quasi-optimal in L„,ia, b), i.e. if there is a constant C independent of it, y such that

Unfortunately, there are many quite reasonable projection methods which are not

quasi-optimal in Z.„(a, b).  We therefore introduce in Section 2 a weaker condition,

called local optimality, which still implies (1.4).  In Sections 3 and 4 we give differ-

ent sets of conditions for the local optimality of the Galerkin method.

We will show by an example (see Section 2) that, in general, collocation fails

to be locally optimal.  This matches with the fact that the best estimate for colloca-

tion methods obtained so far is

II? -ynhM) < C maxftr « |lyC-+ '\^(I¡) + OÍ\tt\'+2)

(see de Boor [2] ).  We therefore feel that for highly nonuniform meshes (as needed

e.g. in an adaptive code), Galerkin's method may be superior to collocation.  How-

ever, the numerical experience available so far does not allow any definite conclusion.

2.  Locally Optimal Projection Methods.  We begin with some notation:

E, F are normed linear spaces. We always assume that E C Cia, b) is defined

by smoothness and boundary conditions only. E is normed by
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W = IMI¿«.(fl.6) =   max   \yix)\.
a<x<,b

For each subdivision it of [a, ô] we define the spaces

Ck={vG da, b): v G Cfc(/,), » = 0, ...,»- 1}

and the seminorms, respectively, norms

H,„ = maxft;ii>>(')|iiœ(/), \\y\\in = i:\yl.n-

A projection method for the approximate solution of Ly = /, L : E —> F being a lin-

ear map, is defined by a set of subdivisions II, integers r > k > 0, and a family of

linear maps iV)nen, $*: F—* Rd(l,), ¿(tt) = dimiSn), where S" = Sir, k, tt) n E.

If for arbitrary f G F there is a unique y* G S* such that ^Ly" - \pnf then we

take yn as an approximation to y.  In that case we put P"y = yv.  It is obvious that

P": E —> S" is a projection.

Definition 2.1.   A projection method is said to be locally optimal of order / if

(i)   Vtt en EC. C¡,

(ii)  there are constants C < °°, ft > 0 such that

V7ren„ WyGE    \\P7ry-y\\<C  mïjz-y\\ln.

Remark.   A projection method is locally optimal of order 0 if and only if it is

quasi-optimal in L„.

Definition 2.2.  A set II of subdivisions is called locally quasi-uniform if there

is a constant C such that

Vtt G n    ft,//!,. < C   if \i -/| < 1.

The proofs of the following lemmas are based on Hermite interpolation in the

case r > 2k + 1 and on the use of a local basis for Sir, k, tt) in the general case.

Lemma 2.1. Assume that U is locally quasi-uniform or r>2k + 1. Then the

norms ||-||, ||-||j n are equivalent on Sir, k, n) uniformly for ïïêII, i.e. there is a con-

stant C such that

Vtt G n    y y G Sir, k, tt)    Mi,* < C1MI-

Lemma 2.2. // II is locally quasi-uniform or r > 2k + 1 and if a projection

method for Ly = / is locally optimal of order I <r + 1, then there are constants C

< °°, ft > 0 independent of y such that

Vtt Gn„Vj6 Cr+\a, b)    \\y -y*\\ < C max ft- +V+1)llLoo(/(.)-

Remark.   The proof follows from Lemma 2.4 if y G Cr+1ia, b).  A more care-

ful analysis along the lines of the proof of Lemma 4.3 shows that y G Cm~iia, b)

nCrn+1 is sufficient.

Lemma 2.3. Assume that E C c\ for each tt G IL   Then a projection method is

locally optimal of order I if and only if there are constants C < °° ft > 0 such that
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Vrr en,,    \\Pny\\<Q\y\\ln.

As an easy consequence of Theorem 4.1 of [1] we obtain

Lemma 2.4. Let l\ be locally quasi-uniform and 0 < ju < v < r.   Then there are

constants t, C such that for all g G Cia, b), tt G U there is z G Sir, k, tt) satisfying

Vi    \(g - z)00^) < Cftr*W">, ft,., Z,!),

where l\ is the union of /,• and at most t adjacent intervals, and

co(/, ft,/) = sup{ \f(x) - f(x')\: \x-x'\< ft, x, x G I}.

The idea for the proof of the following lemma is well known and can be found e.g. in

de Boor-Swartz [3].

Lemma 2.5. Assume that n is locally quasi-uniform or r> 2k + 1 and E C Cln

for each tt GW.  Let L = L0 + Lx and assume that

(i) ¿Q1, L~x are defined on F,

(ii)   There is a constant C such that with K = L~¿lLx

Vtt e n Vj e £

\\(Kyiv\   (/#) < C j £ b^\milA + IH},      P-0.....I+1.
°°   ' (m=o J

Then, a projection method is locally optimal of order I for the operator L if this is

true for LQ.

Proof.   Denote the projections associated with the projection method for L, L0

by P", PJ, respectively.  We first show that there are constants C < °°, A > 0 such

that

(2.1) Vtt G n„ VyCS"    \\F«Ky - Ky\\ < CM \\y\l

Indeed, as the projection method is locally optimal of order / for LQ, we have with

suitable C < °°, ft > 0 for w e Uh

(2.2) \\F«Ky - Ky\\ < C inf \\z - Ky\\, ,.

From Lemma 2.4 we see that

(2.3) inf \\z-Ky\\In<C\Ky\l+Xn.
zes"

By assumption (ii) and Lemma 2.1 we obtain

(2.4) l^l/+l!7r<C|7r¡lly||;^<C|7r||H-

Now (2.2)-(2.4) combine to yield (2.1).

Consequently, the operator T: 5" —► Sn defined by

T=iI + PlK)\sn

possesses for |ttI < ft', ft' > 0 suitably chosen, an inverse because I + K = L^L does;

and there is C < °° such that
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(2.5) Vtt G n„ Vy G S"   HP-^II < C\\y\\.

We now show that the operator Q = T~XF"0(I + A') coincides with P" for \tt\ < ft'.

Using VLqPI = VL0 and the identity

P"Q(I + K)Q = Pl(I + K)

which can be verified by direct calculation, we get

VLQ = VI¿1 + K)Q = VLJ&I + K)Q

= rL0F%(I + K) = ^nL0(I + K) = VL.

Thus P" exists for \tt\ < ft' and Pn = ß.   By (2.5), Lemma 2.3 and assumption (ii)

we obtain for y G E

\\P"y\\ = IIP~'Po(/ + K)y\\ < Q\Pl(I + K)y\\

< C||(7 + K)y\\ln < CMt,«

with C independent of tt, y.   The lemma follows by Lemma 2.3.

Example.   In order to solve y = /, y(0) = 0 by collocation with piecewise lin-

ears at Gaussian points, we put r = 1, k = 0 and

E = {v G C(0, 1): v piecewise continuous, v(0) = 0},

F' — ii'- g piecewise continuous in [0, 1]},

VgGF   (V"¿>,. =£(*,.+ i/2-0),      i = 0,...,n-\,

where xi+l,2 = (x¡ + x¡+1)/2.  We obtain

(P«y) (*,) = £ hfy'(x¡+, /2 - 0),      i = 0, ...,«- 1.
/=o

For a uniform mesh, ft,- = ft, i = 0, . . . , n - 1, n even, define y G E by

y(x + 2h) = y(x).

ftll/ll = 3,

hence an estimate of the form \\P"y\\ < Q\y\\l n with C independent of y, tt cannot

hold. Thus, collocation is not locally optimal of order 1. Using a smoothing proce-

dure, it is seen that it is not locally optimal of any order.

3.  Local Optimality of Galerkin's Method in the Case k — m - 1.  In order to

apply the results of Section 2 to the Galerkin method for (1.1), we put

E = Hm(a, b),      F = H~m(a, b),

2m-l

v=j>(2m),   v- £ a»y{v)-
v=0

Then

1x/h, 0 < x ̂  ft,

1, ft<x<5ft/3,

6 - 3x/h,       5ft/3 < x < 2ft,

iP"y)ix2i) = i,      ILvll = 1,
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Uk = m-l, then S" = {v G S(r, k, tt): v{v)(a) = viv)(b) =0,v<m-l}. For each

g G F we define (\png)i = (s,, g), i = 1, . . . , cf(7r), where ( , ) denotes the pairing be-

tween E, F and {Sj, . . . , sd(?r J is a basis for 5".

Assumption (ii) of Lemma 2.4 for / = m - 1 is an immediate consequence of

the following lemma, the proof of which is left to the reader.

Lemma 3.1. For y G Hmia, b) let z G Hmia, b) be the solution ofLQz = Lxy.

Then there are functions cVß, cv G Cia, b) such that for v < m + 1

*(p) = L v(M) + c»>
M = 0

where cVß independent of y and \\cv\\ < C\\y\\ with C independent ofy.

Theorem 3.1. Assume that the homogeneous problem (1.1) has only the trivial

solution.   Then, the Galerkin's method for the solution of il.I) is locally optimal of

order m - 1 for k = m - 1, r > 2m - 1.

Proof.   By Lemma 2.4 and Lemma 3.1 it suffices to consider the equation L^y

= f   Generalizing an idea of Wheeler [8], we construct the Galerkin approximation

yn to y locally.  For each z 6 Hm(It) we define g,-z G Pr by

(3.2) z-ß,.ze//"(/,.),

(3.3) Vu e pr n //«(/.) [ iz- ß/Z)(m)u(m)dx = 0.

h
QjZ is well defined.   Indeed, as r > 2m - 1, the dimension r + 1 of P,. coincides with

the number of conditions in (3.2), (3.3); and if z = 0, then the choice v = Q¡z in

(3.3) yields (Qiz)(-m^ = 0, hence Q¡z = 0.  Furthermore, there is a constant C inde-

pendent on /,-, z such that

m-\

(3-4) ikWIl.i:/,) <cZ *?II*wII£o.(/,)-
y=0

If we can prove this estimate for /,■ = (0, 1), it follows for arbitrary intervals by homo-

geneity.   For /,• = (0, 1) it is seen from (3.2) and from (3.3) by integrating by parts

m times that

Qf = I (V^0)+ ft^O» + \0yz(x)dx,
v=0

where av, ßv, y GPr are independent of z.  This proves (3.4).

If z G H™(a, b), then we may define Qnz by piecing together the functions

Q¡z.  As k = m - 1, Qf is a projection from H™(a, b) into Sn.  From (3.4) we con-

clude that there is a constant C independent of y, tt such that llß^yll < C|[>>||m_j>7r.

By Lemma 2.3 the proof is complete if we can show that yn = Qny, i.e.

(3.5) Vues*   fab(y-Qny)(mVm'>dx = o.

For each v G Pf we can find u,. G P2m_x such that v - v¡ G Pf n Hm(I^.  We now

apply the definition of Of, integration by parts and (3.3) to get for each v G S"
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¡„(y - Qfy){m)^m)dx = £ X.O - ßijO(mV'")dx
1 = 0       '

= "¿(-ir l(y-QM2m)dx
i=0 ''

= z (-iri.o - ß^)(" - ^)(2m)^
1=0 '

mZ fi(y - Qiy)(m)(» - »«)(m]>dx
1 = 0        '

= 0.

This proves the theorem.

4.  Local Optimality of Galerkin's Method in the Case k > m - 1.  For general

r, k, we prove the following result, which is slightly milder than the preceding theo-

rem.

Theorem 4.1.  Assume that the homogeneous problem (1.1) has only the trivial

solution.  Let XI satisfy the following assumptions:

(4.1) For each e > 0 there is an integer I such that

Vtt e n Vi, /   ft,./[x,. - xf\ < e   if \i - /I > L

(4.2) There are constants C < °°, a < 0 such that

n-\ ¡h\-2a + 2m-i I   h       Y2a

Viren V/        £[-!) l^—r)        <C

Then, the Galerkin method for the solution o/ (1.1) is locally optimal of order m for

k>m-l,r>2m- 1.

Examples. (1)   Define a set n of subdivisions n„: 0 = xQ < x x < • •    < xn = 1,

n = 1, 2, . . . , as follows:   Choose a > 1 and put x¡ = ii/n)a, i = 0, . . . , n.  Then

the hypotheses (4.1) and (4.2) of the theorem are satisfied.

(2)  If we put x0 = 0, x¡ = q"~', i = 1, . . . , n with 0 < q < 1, then it is easily

seen that (4.1) is not satisfied.

Theorem 4.1 will follow from certain estimates in weighted Sobolev spaces, the

weight functions being defined by

(4-3) Paix) = ip2+ix-x)2r,

where a is a real number, p > 0 and x G [a, b].  The only estimate on pa we need is

Note that the constant in this estimate depends neither on p nor on x, but only on a, v.

If tt is a subdivision of [a, b], we put

k =maxftI.||p_,/2||Loo(/.).
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Let / be the index defined by x < x < x;+ j.

Lemma 4.1. If XI satisfies (4.1) and is locally quasi-uniform, then for each e > 0

there is K > 0 such that with p = À7i

Vtt e n    k < e.

Proo/   If e > 0, then by (4.1) there is / > 0 such that for x G /,.

hfp.l(x)<(hll(x-x)y   <e2    if |i-/|>/.

If |i - j\ < /, then ft,. < C'ft, with C independent of /, ¡, /, rr because n is locally quasi-

uniform; hence

h2p_i(x)<tK-\hilhjfi <(C'/*)2.

The lemma follows by choosing K = C'/e.

Lemma 4.2. // n satisfies (4.1) and is locally quasi-uniform, then for each a

there are positive constants K, C such that with p = Kh,

Vît e n Vi    max pa(x)/min pa(x) < C.
xei¡        / xeij

Proof.   Let pa assume its maximal (minimal) value in /,■ at ¿*0(rj).  Then by the

mean value theorem and by (4.4),

IPaCoKCl)"1  - H <Ä<Pa(i1)-||lp;ilLoo(/()

(4.6)

<CPa(^o)Pa(fl)"lÄ,HP-l/2llz. ..(/,)•

By the preceding lemma we can choose K such that Chi\\p_i ,2\\L   ,j^ < 1/2, where

Cis the constant in (4.6).   Then from (4.6) we get paitQ)lpa(tx) < 2.   This proves

the lemma.

We now introduce in the Sobolev spaces Hvil), I an interval, the seminorms

\»\v,a,i = \[pMv)}2dx}

If / = [a, b], we drop the index /. These seminorms are not to be confused with

\u\vn defined in Section 2, where tt always denotes a subdivision. We also use the

notation l«l„iai/ if u G H"il. O I) for /,• n 7 # 0 in an obvious way.

Lemma 4.3.   Let r > k > m - 1. If U is locally quasi-uniform then there are

constants C, t such that for all g G E n Ckia, b) n C£+ ', tt e n there is z G Sn satis-

fying

V/    a?-*U,o^<°Ç+i~mWr+i.O,/}.

where l\ is the union ofI¡ and at most t adjacent intervals.

Proof.   The inequality follows immediately from Lemma 2.4 if g e//r+1(a, b).

The case considered here requires some extra work.

Approximating g<-k + 1^ by w G Sir - k - 1, - 1, tt) and solving t/fc + ' * = w,

we find u e Sir, k, n) such that
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r-ki
V'   \g-v\k+UOJ.<Chr %u,)0>/..

Since g-uGHk+>ia, b), we can use Lemma 2.4 to obtain u G Sir, k, tt) such that

V.    \g-v-u\mi0rl.<Chk+1-m\g-v\k+l,0J¡.

<chri+i-m\g\r+l¡oXr

Putting z = u + v proves the lemma.

Lemma 4.4. // n satisfies (4.1) and is locally quasi-uniform, then for each a

there are positive constants K, C such that with p = Kh:

m

VrrenVueS"    infn\pau-z\m_a <Ck £ MVi0l_m + v.
zesn „=o

Proof.   It follows from Lemma 4.3 and Lemma 4.2 that there is a z e S" such

that

(4.7) Vi    \pau - z|m>_ttj/. < Cft[+ l~m \pau\r+, ^r.

Due to Lemma 4.2 we have for u G S" the inverse estimate

l«l,.-a,/;.<Cftr"l"lM,-a,/;.. ">*

By Leibnitz' rule, (4.4) and the inverse estimate we obtain

r

ni IPa"'r+l,-a,/   ^ C"i 2- ^a "      'o,-a,/
v-0

<Ch¡+1-m ¿l«l,,a-,-,+,,/J
v=0

m

z
i>=0

<cte+»-" Zl"l,,a-,-i+,,/;.

+   F    ft- + 1~"lwl
v=m + l '

<c   K,+ l-m   £|uUa_ +      ¿     ^+1-iU|m>a,
( w=0 v=m + l \

m

v=0

The lemma follows.

Now let P"0 be the projection associated with Galerkin's method for the solution

of L^y = f where LQ is defined as in Section 3.

Lemma 4.5.   Let k > m - 1. If XI is locally quasi-uniform and satisfies (4.1),

iften /or each a there are positive constants C, K such that with p = Kh¡



466 FRANK NATTERER

Vtt e n VM e Hmia, b)   |/>lm>a < C{ |/>l0>a-m + M«,«>-

Proo/   As in Nitsche [6], we start out from the identity (integrals from a to b)

Ku\2m,a=](I%u)W(pJ>lu)Wdx

Cl(™)/(P5«)(mHm"")(W(,')Ä-

With z e 5^ it follows from the definition of P"0 that the first term on the right-hand

side of this identity becomes

J(PSw)(m)(paPSw)(m)dx = ¡(Plu^ipJ^u -zf^dx + fu<mWm>dx

< Ku\mt0l\pJ»u -z|m_a + Mm>lm,_a.

By Lemma 4.4 we can find z GS'" such that

m

(4.9) IV> - z\m _a < C« £  lf>.„,«_„ + ,,.
i>=0

Using Leibnitz' rule and (4.4), we see that z also satisfies

(4.10) lzL,-«<lrV>-*L.-« + IP«^"'«.-«    < C  f   IK«!   .   m+,-
v=0

The second term in the identity can be estimated by (4.4):

171 — 1 /      \     /- 171 — 1

(4.11)  z r))(p>){mvrv\nu)(v)dx <cv*?^ z irxa-m+v-

Using (4.8)—(4.11) in the identity yields

n<,a <Gyn<,a + wm.an»\m,a

171-1 )

+ (Mm,a + n»L,a)   Z   ̂ «Ua-m + 4-
y=0 )

From this inequality we remove the derivatives of order v, 1 < v < m - 1, by using

repeatedly the estimate

Hi,0+1 < Cieiu|2ji3+2 +e~1\v\0ß,

which is easily established by (4.4) and integration by parts for all v GHl0(a, b) O

H2(a, b) and 0 < c < 1, with C independent of v, e. We obtain for each e > 0,

171-1

£ rou\Vitt.m + v <C{e|P5«|m,a +eI-"1lP0«l0,a_m};
f=0

hence

rç«lm.a < C«" + Wo<,a + l«U,«l^"l«.a

+ e1-m(i"¡m,a + ^"im,a)ií,S"i0;a_m}.
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By Lemma 4.1 we can choose K in such a way that C(k + e) < M in this inequality.

Applying the inequality |aft| < ôa2/2 + ft2/(2ô) in an appropriate manner completes

the proof.

Lemma 4.6.   Let k> m - I and r > 2m - 1. If XI is locally quasi-uniform and

satisfies (4.1), then for each a there are positive constants C, K such that

Vrr e n V« GHm(a, b)    |/>|m>0( + Ku\0a_m < GWm,a + Mo,«-«}-

Proof.   Let w G Hm(a, b) be the solution of

(-l)mw(2m)=Pa-m/>

Then, for each z e Sn we have

KK,a-m = ¡Plu(-l)mW^2m^dx = /(/>)(mVm> dx

= ¡(F%u - u)(m)iw - z)(m)dx + §u(m)w(mUx

(4.12)

= j(P"0u - uim\w - zfm)dx + fpa_muPludx

< IPS" - «lM(fl> - Z\m_a + \u\0M_m [Po"l0,a-m-

By Lemma 2.4 and Lemma 4.2 we can find z G Sn such that

I" - zL,-a,/,. < Ch? Wm.-aJ¡   < Chm IPX,«-,*,,/;

<CKMi¿o5«i0>a_M,/'j-

Thus, cancelling one factor \P\]u\0 a_m we obtain from (4.12)

n<,a-m < Wo" - «U,« + Mo,a-m-

Now we estimate |P2«lm a on the right-hand side of this inequality by means of

Lemma 4.5 to get

K^O.a-m <CWm,a + M0,*-m + "Wo.e.-«}-

By Lemma 4.1 we can choose K such that Ck < 1/2 in this inequality.   It follows

that

n<,a-m<C{\u\moi + \u\0a_m}.

The result follows by Lemma 4.5.

Proof of Theorem 4.1.  The above estimates in weighted ¿2-norms are shifted

to the uniform norm by means of the obvious inequalities

pa(x)((nu)(x))2 <ChJirou\20iaJ.  <Ch2m-l\Plu\2>a_mj.

<chfm~lr0u\ia.m.
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We apply Lemma 4.6 to obtain

pa(x)((Plu)(x))2 < Ch2m~l  £ l<a_m + „.

Observing that pa(5c) = p2a = (/Vft;)2a > Chja and for a < 0

<«-*W, < ^«-«-r JUt,(f,)*<Wli..(f/)

= Cft/~2l'IIPa-m + ,llz.00(/,.)l"l^7r

<Ch¡-2v(hf + \xr -xr\)2^~m + ̂ \u\2v^

with |i - i'| < 1, |/-/'| < 1, we obtain from (4 13)

|(/»(x)|2 <Cmax "£ hj2"+2m-]hj-2v(hj + ^-xf\)2(a-m+v)\\u\\2mt1x.
v=0   1=0

By (4.2) the factor of Hull2,, n on the right-hand side is bounded independently of u,

tt, x if a is chosen such that the series (4.2) converges. Thus, we have obtained the

final estimate

\\Plu\\<C\\u\\mfn,

which shows that Galerkin's method is locally optimal of order m for 7Q.  As in

Section 3 we use Lemma 3.1 to verify assumption (ii) of Lemma 2.5 in the case / =

m.   Now Lemma 2.5 shows that Galerkin's method is locally optimal of order m for

L, too.
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