Quasi-Amicable Numbers

By Peter Hagis, Jr. and Graham Lord

Abstract

If $m=\sigma(n)-n-1$ and $n=\sigma(m)-m-1$, the integers m and n are said to be quasi-amicable numbers. This paper is devoted to a study of such numbers.

Let $\sigma(N)$ denote the sum of the positive divisors of the integer N (where $N>1$), and let

$$
\begin{equation*}
L(N)=\sigma(N)-N-1 \tag{1}
\end{equation*}
$$

so that $L(N)$ is the sum of the "nontrivial" divisors of N. A qt-cycle (" q " for quasi) is a t-tuple of distinct positive integers $\left(m_{1}, m_{2}, \ldots, m_{t}\right)$ such that $m_{i}=L\left(m_{i-1}\right)$ for $i \neq 1$ and $m_{1}=L\left(m_{t}\right)$. A $q 1$-cycle is usually called a quasi-perfect number; and we shall call $q 2$-cycles quasi-amicable numbers. (In both [2] and [5] $q 2$-cycles are referred to as "reduced" amicable pairs. Garcia, however, calls them "números casi amigos" (see the editorial note in [5]).) No quasi-perfect numbers have been found as yet; and if one exists, it exceeds $10^{\mathbf{2 0}}$ (see [1]). They have been studied by Cattaneo [3], Abbott-Aull-Brown-Suryanarayana [1], and Jerrard-Temperley [4].

In [5] Lal and Forbes list the nine quasi-amicable pairs with smallest member less than 10^{5}. Beck and Najar [2] have continued the search as far as 10^{6} and found six more quasi-amicable pairs. Using the CDC 6400 at the Temple University Computing Center, a search was made for all quasi-amicable pairs with smallest member less than 10^{7}. Forty-six pairs were found including two (526575-544784 and 573560817479) with smallest member between 10^{5} and 10^{6} which apparently were missed by Beck and Najar [2]. These are listed at the end of this paper. (For the sake of convenience and completeness the pairs given in [2] and [5] are included here.)

It will be noticed that each pair in our list is of opposite parity, leading us to inquire: Are there any quasi-amicable pairs of the same parity? Now, the positive integers m and n are quasi-amicable if and only if $L(m)=n$ and $L(n)=m$ so that from (1), we have

$$
\begin{equation*}
\sigma(m)=\sigma(n)=m+n+1 . \tag{2}
\end{equation*}
$$

Therefore, since $\sigma(N)$ is odd if and only if $N=S^{2}$ or $N=2 S^{2}$, we see that a necessary condition for m and n to be quasi-amicable numbers of the same parity is that each be a square or twice a square. Making use of this fact a search was made for quasi-amicable pairs of the same parity in the range $\left[10^{7}, 10^{10}\right]$. None was found so
that we have:
Proposition 1. If $m<n$ and (m, n) is a quasi-amicable pair having the same parity, then $m>10^{10}$.

If m and n are relatively prime quasi-amicable numbers then, using (2), we have $\sigma(m n) / m n=\sigma(m) \sigma(n) / m n=(m+n+1)^{2} / m n>(m+n)^{2} / m n=2+m / n+n / m$ >4. Since, if p is a prime, $\sigma\left(p^{\alpha}\right) / p^{\alpha}<p /(p-1)$ and since $x /(x-1)$ is a decreasing function, it follows that if $m n$ has less than four prime factors then $\sigma(m n) / m n<$ $(2 / 1)(3 / 2)(5 / 4)<4$. If $m n$ is odd and $m n$ has fewer than twenty-one prime factors, then

$$
\sigma(m n) / m n<(3 / 2)(5 / 4)(7 / 6) \cdots(71 / 70)(73 / 72)<4 .
$$

We have proved:
Proposition 2. Let m and n be relatively prime quasi-amicable numbers. Then $m n$ has at least four different prime factors. If, also, m and n have the same parity (so that $m n$ is odd), mn has at least twenty-one different prime factors.

Now, if (m, n) = 1 and $m n$ is odd then, as noted earlier, m and n are squares so that from Proposition 2 we have $m n \geqslant(3 \cdot 5 \cdot 7 \cdots 73 \cdot 79)^{2}>25 \cdot 10^{59}$. If $n>m$ and $n<2.5 m$, then $2.5 m^{2}>m n>25 \cdot 10^{59}$ and $m>10^{30}$. If $n>2.5 m$, then $\sigma(m) / m=(m+n+1) / m>3.5 . m$ has at least thirteen prime factors since $(3 / 2)(5 / 4) \cdots(37 / 36)(41 / 40)<3.5$; and $m>(3 \cdot 5 \cdot 7 \cdots 41 \cdot 43)^{2}>10^{30}$. We have established:

Proposition 3. If m and n are relatively prime quasi-amicable numbers of the same parity, then m and n each exceeds 10^{30}.

We note that no number in our list of quasi-amicable numbers is a prime power. If p^{α} and n are quasi-amicable numbers then, of course, $\alpha>1$. If $p=2$, then $\dot{\sigma}(n)$ $\left(=\sigma\left(p^{\alpha}\right)\right)$ is odd so that n is of the form S^{2} or $2 S^{2}$. From (2) $2^{\alpha+1}-1=2^{\alpha}+$ $n+1$ so that $n=2\left(2^{\alpha-1}-1\right)$. Therefore, $S^{2}=2^{\alpha-1}-1$. But this is impossible since $S^{2} \equiv 1(\bmod 8)$ and $2^{\alpha-1}-1 \equiv-1(\bmod 8)$. (For $\alpha>3$ since neither 2^{2} nor 2^{3} is a member of a quasi-amicable pair.) If p is odd and $2 \mid \alpha$, then $\sigma(n)$ and n are both odd and $n=S^{2}$. From (2) $1+p+\cdots+p^{\alpha}=p^{\alpha}+n+1$ so that $n=$ $p\left(1+p+\cdots+p^{\alpha-2}\right)$. Thus, $p \| n$ which contradicts $n=S^{2}$. Since we now know that p and α are both odd, it follows that $\sigma\left(p^{\alpha}\right)$ and n are both even. If $\alpha=3, n=$ $p(1+p)$ so that

$$
\begin{aligned}
\sigma(n) & =(1+p) \sigma(1+p)<(1+p)(1+2+3+\cdots+(p+1)) \\
& =(1+p)(1+p)(2+p) / 2
\end{aligned}
$$

But $\sigma(n)=\sigma\left(p^{3}\right)=(1+p)\left(1+p^{2}\right)$. It follows that $2+2 p^{2}<2+3 p+p^{2}$ so that $p<3$. This contradiction completes the proof of

Proposition 4. If $\left(p^{\alpha}, n\right)$ is a quasi-amicable pair, then p is an odd prime, α is an odd number greater than 3, and n is even.

Corollary 4.1. It is not possible for both members of a quasi-amicable pair to be prime powers.

Quasi-Amicable Pairs

$$
\begin{aligned}
48 & =2^{4} \cdot 3 \\
140 & =2^{2} \cdot 5 \cdot 7 \\
1050 & =2 \cdot 3 \cdot 5^{2} \cdot 7 \\
1575 & =3^{2} \cdot 5^{2} \cdot 7 \\
2024 & =2^{3} \cdot 11 \cdot 23 \\
5775 & =3 \cdot 5^{2} \cdot 7 \cdot 11 \\
8892 & =2^{2} \cdot 3^{2} \cdot 13 \cdot 19 \\
9504 & =2^{5} \cdot 3^{3} \cdot 11 \\
62744 & =2^{3} \cdot 11 \cdot 23 \cdot 31 \\
186615 & =3^{2} \cdot 5 \cdot 11 \cdot 13 \cdot 29 \\
196664 & =2^{3} \cdot 13 \cdot 31 \cdot 61 \\
199760 & =2^{4} \cdot 5 \cdot 11 \cdot 227 \\
266000 & =2^{4} \cdot 5^{3} \cdot 7 \cdot 19 \\
312620 & =2^{2} \cdot 5 \cdot 7^{2} \cdot 11 \cdot 29 \\
526575 & =3 \cdot 5^{2} \cdot 7 \cdot 17 \cdot 59 \\
573560 & =2^{3} \cdot 5 \cdot 13 \cdot 1103 \\
587460 & =2^{2} \cdot 3 \cdot 5 \cdot 9791 \\
1000824 & =2^{3} \cdot 3 \cdot 11 \cdot 17 \cdot 223 \\
1081184 & =2^{5} \cdot 13 \cdot 23 \cdot 113 \\
1139144 & =2^{3} \cdot 23 \cdot 41 \cdot 151 \\
1140020 & =2^{2} \cdot 5 \cdot 7 \cdot 17 \cdot 479 \\
1173704 & =2^{3} \cdot 7 \cdot 20959 \\
1208504 & =2^{3} \cdot 11 \cdot 31 \cdot 443 \\
1233056 & =2^{5} \cdot 11 \cdot 31 \cdot 113 \\
1236536 & =2^{3} \cdot 7 \cdot 71 \cdot 311 \\
1279950 & =2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 23 \cdot 53 \\
1921185 & =3^{3} \cdot 5 \cdot 7 \cdot 19 \cdot 107 \\
2036420 & =2^{2} \cdot 5 \cdot 19 \cdot 23 \cdot 233 \\
2102750 & =2 \cdot 5^{3} \cdot 13 \cdot 647 \\
2140215 & =3 \cdot 5 \cdot 7 \cdot 11 \cdot 17 \cdot 109 \\
2171240 & =2^{3} \cdot 5 \cdot 17 \cdot 31 \cdot 103 \\
2198504 & =2^{3} \cdot 7 \cdot 11 \cdot 43 \cdot 83 \\
2312024 & =2^{3} \cdot 11 \cdot 13 \cdot 43 \cdot 47 \\
2580864 & =2^{7} \cdot 3 \cdot 11 \cdot 13 \cdot 47 \\
2958500 & =2^{2} \cdot 5^{3} \cdot 61 \cdot 97 \\
4012184 & =2^{3} \cdot 11 \cdot 127 \cdot 359 \\
4311024 & =2^{4} \cdot 3 \cdot 19 \cdot 29 \cdot 163
\end{aligned}
$$

$$
\begin{aligned}
75 & =3 \cdot 5^{2} \\
195 & =3 \cdot 5 \cdot 13 \\
1925 & =5^{2} \cdot 7 \cdot 11 \\
1638 & =2^{4} \cdot 103 \\
2295 & =3^{3} \cdot 5 \cdot 17 \\
6128 & =2^{4} \cdot 383 \\
16587 & =3^{2} \cdot 19 \cdot 97 \\
20735 & =5 \cdot 11 \cdot 13 \cdot 29 \\
75495 & =3 \cdot 5 \cdot 7 \cdot 719 \\
206504 & =2^{3} \cdot 83 \cdot 311 \\
219975 & =3 \cdot 5^{2} \cdot 7 \cdot 419 \\
309135 & =3 \cdot 5 \cdot 37 \cdot 557 \\
507759 & =3 \cdot 7 \cdot 24179 \\
549219 & =3 \cdot 11^{2} \cdot 17 \cdot 89 \\
544784 & =2^{4} \cdot 79 \cdot 431 \\
817479 & =3^{3} \cdot 13 \cdot 17 \cdot 137 \\
1057595 & =5 \cdot 7 \cdot 11 \cdot 41 \cdot 67 \\
1902215 & =5 \cdot 7 \cdot 17 \cdot 23 \cdot 139 \\
1331967 & =3 \cdot 7^{2} \cdot 13 \cdot 17 \cdot 41 \\
1159095 & =3 \cdot 5 \cdot 7^{2} \cdot 19 \cdot 83 \\
1763019 & =3^{3} \cdot 17 \cdot 23 \cdot 167 \\
1341495 & =3^{3} \cdot 5 \cdot 19 \cdot 523 \\
1348935 & =3 \cdot 5 \cdot 7 \cdot 29 \cdot 443 \\
1524831 & =3 \cdot 7^{2} \cdot 11 \cdot 23 \cdot 41 \\
1459143 & =3^{2} \cdot 7 \cdot 19 \cdot 23 \cdot 53 \\
2576945 & =5 \cdot 7 \cdot 17 \cdot 61 \cdot 71 \\
2226014 & =2 \cdot 7 \cdot 17 \cdot 47 \cdot 199 \\
2681019 & =3^{5} \cdot 11 \cdot 17 \cdot 59 \\
2142945 & =3^{2} \cdot 5 \cdot 7 \cdot 6803 \\
2421704 & =2^{3} \cdot 263 \cdot 1151 \\
3220119 & =3^{2} \cdot 7 \cdot 79 \cdot 647 \\
3123735 & =3 \cdot 5 \cdot 29 \cdot 43 \cdot 167 \\
3010215 & =3 \cdot 5 \cdot 13 \cdot 43 \cdot 359 \\
5644415 & =5 \cdot 7 \cdot 29 \cdot 67 \cdot 83 \\
3676491 & =3^{2} \cdot 7 \cdot 13 \cdot 67^{2} \\
4282215 & =3 \cdot 5 \cdot 7 \cdot 17 \cdot 2399 \\
7890575 & =5^{2} \cdot 7 \cdot 11 \cdot 4099 \\
&
\end{aligned}
$$

$$
\begin{array}{lll}
5088650=2 \cdot 5^{2} \cdot 7^{2} \cdot 31 \cdot 67 & & 6446325=3 \cdot 5^{2} \cdot 23 \cdot 37 \cdot 101 \\
5416820 & =2^{3} \cdot 5 \cdot 43 \cdot 47 \cdot 67 & \\
7509159=3^{3} \cdot 7 \cdot 67 \cdot 593 \\
6081680 & =2^{4} \cdot 5 \cdot 11 \cdot 6911 & \\
6618080=2^{5} \cdot 5 \cdot 7 \cdot 19 \cdot 311 & & 12251679=3 \cdot 11 \cdot 17 \cdot 21839 \\
7460004=2^{2} \cdot 3 \cdot 23 \cdot 151 \cdot 179 & 10925915=5 \cdot 7 \cdot 11 \cdot 13 \cdot 37 \cdot 59 \\
7875450=2 \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 37 \cdot 43 & 16381925=5^{2} \cdot 7^{2} \cdot 43 \cdot 311 \\
8713880=2^{3} \cdot 5 \cdot 7 \cdot 31121 & 13693959=3^{2} \cdot 17 \cdot 37 \cdot 41 \cdot 59 \\
8829792=2^{5} \cdot 3^{2} \cdot 23 \cdot 31 \cdot 43 & 18845855=5 \cdot 7 \cdot 23 \cdot 41 \cdot 571 \\
9247095=3^{3} \cdot 5 \cdot 11 \cdot 13 \cdot 479 & 10106504=2^{3} \cdot 47 \cdot 26879
\end{array}
$$

Acknowledgement. The authors were informed almost simultaneously and inde: pendently by the referee and Professor R. Najar of the work of Lal and Forbes [5] on "quasi-aliquot" sequences and quasi-amicable numbers. An earlier version of the present paper contained many of the results to be found in [5], and we are grateful for being informed of this duplication of effort.

Department of Mathematics
Temple University
Philadelphia, Pennsylvania 19122
Département de Mathématiques (Actuariat)
Université Laval
Québec, P.Q. G1 K 7P4, Canada

1. H. L. ABBOTT, C. E. AULL, E. BROWN \& D. SURYANARAYANA, "Quasiperfect numbers," Acta Arith., v. 22, 1973, pp. 439-447. MR 47 \#4915.
2. W. E. BECK \& R. M. NAJAR, "More reduced amicable pairs," Fibonacci Quart. (To appear.)
3. P. CATTANEO, "Sui numeri quasiperfetti," Boll. Un. Mat. Ital., v. 6, 1951, pp. 59-62.
4. R. P. JERRARD \& N. TEMPERLEY, "Almost perfect numbers," Math. Mag., v. 46, 1973, pp. 84-87. MR 51 \#12686.
5. M. LAL \& A. FORBES, "A note on Chowla's function," Math. Comp., v. 25, 1971, pp. 923-925. MR 45 \#6737.
