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Quasi-Amicable Numbers

By Peter Hagis. Jr. and Graham Lord

Abstract.   If m = o(n) - n - 1 and n = a(i7i) — m — I, the integers m and n

are said to be quasi-amicable numbers.   This paper is devoted to a study of such

numbers.

Let a(N) denote the sum of the positive divisors of the integer TV (where N > 1),

and let

(1) Z,(A) = o(A) - N - 1

so that Z(A0 is the sum of the "nontrivial" divisors of N.   A qt-cyc\e ("q" for quasi)

is a Muple of distinct positive integers (mx,m2, . . . , mt) such that m¡ = L(miX)

for i =£ 1 and mx = L(mt).  A gl-cycle is usually called a quasi-perfect number; and

we shall call <72-cycles quasi-amicable numbers.   (In both [2] and [5] í/2-cycles are

referred to as "reduced" amicable pairs.  Garcia, however, calls them "números casi

amigos" (see the editorial note in [5]).)  No quasi-perfect numbers have been found as

yet; and if one exists,it exceeds 1020 (see [1]).  They have been studied by Cattaneo

[3], Abbott-Aull-Brown-Suryanarayana [1], and Jerrard-Temperley [4].

In [5] Lai and Forbes list the nine quasi-amicable pairs with smallest member

less than 10s.   Beck and Najar [2] have continued the search as far as 106 and found

six more quasi-amicable pairs.   Using the CDC 6400 at the Temple University Comput-

ing Center, a search was made for all quasi-amicable pairs with smallest member less

than 107.   Forty-six pairs were found including two (526575—544784 and 573560—

817479) with smallest member between 10s and 106 which apparently were missed by

Beck and Najar [2].  These are listed at the end of this paper.  (For the sake of con-

venience and completeness the pairs given in [2] and [5] are included here.)

It will be noticed that each pair in our list is of opposite parity, leading us to

inquire:   Are there any quasi-amicable pairs of the same parity?  Now, the positive

integers m and n are quasi-amicable if and only if L(m) = n and L(n) = m so that

from (1), we have

(2) a(m) = a(n) = m + n + 1.

Therefore, since a(/V) is odd if and only if N = S2 or N = 2S2, we see that a neces-

sary condition for m and n to be quasi-amicable numbers of the same parity is that

each be a square or twice a square.  Making use of this fact a search was made for

quasi-amicable pairs of the same parity in the range [107, 1010].  None was found so
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that we have:

Proposition 1.   If m <n and im, n) is a quasi-amicable pair having the same

parity, then m > 1010.

If m and n are relatively prime quasi-amicable numbers then, using (2), we have

o(mn)/mn = a(m)a(n)/mn = (m + n + l)2/mn > im + n)2/mn = 2 + m/n + n/m

> 4.  Since, if p is a prime, oipa)/pa < p/ip - 1) and since x/ix - I) is a decreasing

function, it follows that if mn has less than four prime factors then aimn)/mn <

(2/1) (3/2) (5/4) < 4.  If mn is odd and mn has fewer than twenty-one prime factors,

then

aimn)/mn < (3/2)(5/4)(7/6) • • • (71/70) (73/72) < 4.

We have proved:

Proposition 2. Let m and n be relatively prime quasi-amicable numbers.   Then

mn has at least four different prime factors.  If, also, m and n have the same parity

iso that mn is odd), mn has at least twenty-one different prime factors.

Now, if im, n) = 1 and mn is odd then, as noted earlier, m and n are squares so

that from Proposition 2 we have rnw > (3 • 5 • 7 • •* 73 • 79)2 > 25 • 10s9.  If

n > m and n < 2.5m, then 2.5m2 > mn > 25 • 10s9 and m > 1030.  If n > 2.5m,

then a(m)/m = (m + n + l)/m > 3.5. m has at least thirteen prime factors since

(3/2)(5/4) • • • (37/36)(41/40) < 3.5; and m > (3 • 5 • 7 • • • 41 • 43)2 > 1030.

We have established:

Proposition 3.   If m and n are relatively prime quasi-amicable numbers of the

same parity, then m and n each exceeds 1030.

We note that no number in our list of quasi-amicable numbers is a prime power.

If pa and n are quasi-amicable numbers then, of course, a > 1.  If p = 2, then airi)

(= a(pa)) is odd so that n is of the form S2 or 2S2.  From (2) 2a+1 - 1 = 2a +

n + 1 so that n = 2(2a_1 - 1).  Therefore, S2 = 2a~1 - 1.  But this is impossible

since S2 = 1 (mod 8) and 2""1 - 1 = - 1 (mod 8). (For a > 3 since neither 22 nor

23 is a member of a quasi-amicable pair.)  If p is odd and 2|a, then a(ri) and n are

both odd and n = S2.  From (2) 1 + p + • • • + pa = pa + n + 1 so that n =

p(l + p + • • • + pa~2).  Thus,p || n which contradicts n = S2.  Since we now know

that p and a are both odd, it follows that a(pa) and n are both even.  If a = 3, » ■

p(l + p) so that

ain) = (1 + p)a(l +p)<(l+ p)(l + 2 + 3 + • • • + (p + 1))

= (1 + P) (1 + P) (2 + p)/2.

But o(n) = a(p3) = (1 + p)(l + p2).  It follows that 2 + 2p2 < 2 + 3p +p2 so that

p < 3. This contradiction completes the proof of

Proposition 4.   If (pa, n) is a quasi-amicable pair, then p is an odd prime, a

is an odd number greater than 3, and n is even.

Corollary 4.1.   It is not possible for both members of a quasi-amicable pair

to be prime powers.
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75 = 3 •

195 = 3 •

1925 = 52

1638 = 24

2295 = 33

6128 = 24

16587 = 32

20735 = 5 •

75495 = 3 •

206504 = 23

219975 = 3 •

309135 = 3 •

507759 = 3 •

549219 = 3 •

544784 = 24

817479 = 33

1057595 = 5 •

1902215 = 5 •

1331967 = 3 •

1159095 = 3 •
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1341495 = 33

1348935 = 3 •

1524831 = 3 •

1459143 = 32
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2226014= 2 •
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7-17-59

13 • 1103

5 • 9791

11-17-223

■ 13 • 23 • 113
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• 7 • 20959

•11-31-443

• 11 • 31 • 113

■7-71-311

3 • 52 • 7 • 23 • 53

'5-7-19-107

'5-19-23-233

53 • 13 • 647

5 • 7 • 11 • 17 • 109

5-17-31-103

23 • 7 • 11 • 43 • 83

23 • 11 • 13 • 43 • 47
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72 • 13 • 17 • 41

5 • 72 • 19 • 83

• 17 • 23 • 167

•5-19-523

5-7-29-443

72 - 11 - 23 - 41

•7-19-23-53

7-17-61-71

7 • 17 • 47 • 199

•11-17-59

• 5 • 7 • 6803

• 263 • 1151

•7-79-647

5 • 29 • 43 • 167

5 • 13 • 43 • 359

7-29-67-83

• 7 • 13 • 672

5 • 7 • 17 • 2399

• 7 • 11 • 4099
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5088650 = 2 •

5416820 = 23

6081680 = 24

6618080 = 2s

7460004 = 22

52

• 5

• 5

• 5

• 3

7875450 = 2 • 32

8713880 = 23 • 5

8829792 = 25

9247095 = 33

• 72 • 31 • 67

•43-47-67

• 11 • 6911

•7-19-311

• 23 • 151 • 179

• 52 • 11 • 37 • 43

5 • 7 • 31121

32 • 23 • 31 • 43

5-11-13-479

6446325 = 3 • 52 • 23 • 37 • 101

7509159 = 33 • 7 • 67 • 593

9345903 = 3 • 7 • 17 • 47 • 557

12251679 = 3 • 11 • 17 • 21839

10925915 = 5 • 7 • 11 • 13 • 37 • 59

16381925 = 52 • 72 • 43 • 311

13693959 = 32 • 17 • 37 • 41 • 59

18845855 = 5 • 7 • 23 • 41 • 571

10106504 = 23 • 47 • 26879
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