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Comparison of Algorithms for

Multivariate Rational Approximation

By Jackson N. Henry*

Abstract.   Let F be a continuous real-valued function defined on the unit square

[—1,11  x [-1, 1].   When developing the rational product approximation to F,

a certain type of discontinuity may arise.  We develop a variation of a known

technique to overcome this discontinuity so that the approximation can be pro-

grammed.   Rational product approximations to F have been computed using both

the second algorithm of Remez and the differential correction algorithm.   A dis-

cussion of the differences in errors and computing time for each of these algo-

rithms is presented and compared with the surface fit approximation also obtained

using the differential correction algorithm.

1. Introduction.  Let F be a continuous real-valued function defined on D =

[-1,1]  x [-1,1].  There are several methods by which we may obtain uniform

rational approximations to the function F on D (see [1], [4], [6], [7], [8]).  The

purpose of this paper is to describe briefly and then to compare several of these

methods with respect to their accuracy and the computer time necessary to calculate

the approximations.  We will make comparisons between the use of the differential

correction algorithm and the Remez algorithm in computing the rational product

approximation as introduced by M. S. Henry and J. A. Brown [3] and improved by

M. S. Henry and S. E. Weinstein [4].  These approximations will be compared to

the differential correction algorithm when used as a method of surface fitting as

given in Kaufman and Taylor [5].

In Section 2, we briefly describe the rational product approximation.  Section

3 is devoted to a description of the manner in which we employ our implementation

of the Remez algorithm and Kaufman and Taylor's implementation of the differen-

tial correction algorithm to obtain the rational product approximation.  In Section 4

we discuss a certain discontinuity which can arise and a method to overcome it.  We

conclude with a comparison of the algorithms with respect to several examples.

2. Rational Product Approximation.  This section presents a brief description

of the rational product approximation of a continuous function F.  For the theory

connected with this definition, the reader is referred to [1],  [3] and [4].

Let

^C'*>     QiB;x)       ZUbj*
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where C = (A; B) = (a0.am; b0, . . . , bk) satisfies

(i) QiB; x) > 0 for ail x G [- 1, 1],

(ii) P(A; x) and QiB; x) have no common factors other than constants,

(m) max0</<fc|è/| = 1.

Definition. Let R(m, k) denote the class of rational functions consisting of all

/?(C; x) satisfying (i), (ii), and (iii) above, and the zero function whose unique repre-

sentation we take to be RiC0; x) where C0 = (0, . . . , 0; 1, 0, . . . , 0).

Definition.   For each fixed y G [-1, 1], let F (x) be defined by F (x) =

Fix, v)for-l <x< 1.   Let

Ridy); x) = PiAiy); x)IQ{Biy); x)

denote the best uniform approximation to F Ax) from R(m, k).  Here the best uni-

form approximation from R(w, k) means that ||Fj,(x) - RiCiy); x)|| is a minimum at

Ciy) = iAiy); Biy)) = ia0(y), . . . , amiy); b0(y), ..., bkiy)) where /?(C(»; x)

ranges over all of Rim, k) and ||-|| is the supremum norm for C[~ 1,1], the real-

valued continuous functions on [-1,1].

Under suitable conditions [4], it can be shown that Ciy) is continuous on [- 1,

1]. Thus, the components a¡iy) and <b(y) possess a best uniform approximation from

Rim', k') which we denote by Paiy) and Qb,iy), i.e.,

a'w=r77 and Qb^ = rk'nb'vr
¿*q = 0  iqS £^q = OujpS

Definition.   For F a continuous real-valued function on D, the best rational

product approximation of F is given by

ZT^afyy
Tix, y) =

Zf=0Qbj(y)xr

3.  Methods of Computing Rational Approximations.  Our computation of the

rational product approximation using either the differential correction algorithm or

the Remez algorithm proceeds as follows:

(1) Fix m and k and let N = m + k + 2.

(2) Let IV = {Vj, y2, . . . ,yM}be a finite subset of [- 1, 1] where -I = yx

<---<yM = l.

(3) Starting with yx, compute RiCiyx); x) G RQn, k) using one of the above

algorithms.

(4) Continue using the same algorithm to compute RiOy^iX) for I = 2,..., M.

When using the differential correction algorithm, we used M = 21 incrementing

the y/s by .1.  For the Remez algorithm we used M = 201, incrementing by .01, and

making an initial guess at the N alternating points for the approximation of F_,(x).

The above calculations have determined an A by M matrix where the ith col-

umn represents Ridy^); x).  Thus rows 1 through m + 1 represent the coefficient

functions a0iy) through am(y) and the remaining rows represent b0(y) through
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bkiy).  Figure 1 represents the matrix constructed by the Remez algorithm.

We now choose an m and k' and use the same algorithm we used above to

approximate, from R(m, k'), the functions determined by the rows of this matrix.

When these rows are approximated, we have calculated the rational product approxi-

mation.

The program we used for the differential correction algorithm was written by

E. H. Kaufman, Jr. and G. D. Taylor [5]. This program can also be used to obtain

a surface fitting approximation of F on a finite set of grid points contained in D.

For further discussion concerning this program, the reader is referred to [5] and [6].

A more complete discussion of the program utilizing the Remez algorithm is presented

in [2].

4.   The Discontinuity of C(y). We observed in Section 2 that under suitable

conditions, Ciy) is continuous. When these conditions are not met, M. S. Henry and

S. E. Weinstein [4] developed the following technique to overcome a certain type of

discontinuity which can arise.

If C(y) is continuous on [-1,1] except at v = y*, then by approximating Fy(x)

from R(m, k), we have

/?(C(y);x) =

P(40(y);x)

Q(B0(y);x)

P(Ax(y);x)

-1 <x< 1,-1 <y<y*,

•1 <x<l,y*<y< 1,
Q(Bx(y);x)'

where Q(B0(y); x) and Q(Bx(y); x) exist and are positive on D.   Now define

P(A0(y);x)QXBx(y);x),  -Kx < 1,-1 <y <y*,

P*(A*(y);x) =
P(Ax(y);x)QiB0(y);x),   -1 <x<l,v*<v<l,

and Q*iB*iy); x) = Q(B0(y); x)Q(Bxiy); x) on D.  We then define

R*iC*(y); x) = P*(A*(y); x)IQ*(B*(y); x).

Now by approximating the components of C*iy) = iA*(y); B*(y)), we obtain the

modified best rational product approximation of F(x, y).

This method can.be applied to a finite number   of discontinuities [4], but, for

the sake of simplicity, we shall restrict ourselves to the case of one discontinuity.

We observe that /?*(C*(y); x) is no longer a member of R(m, k). A discussion

of the new class of functions containing /?*(C*(y); x) is given by M. S. Henry and S.

E. Weinstein [4].

We note from our methods of computing the rational product approximation

that QiB0(y); x) can only be computed for values ofj> in [~l,y*) and QiBx(y); x)

can only be computed for values of y in (y*, 1] (see Figures 1 and 2).  Because of

this computational difficulty, a new technique to compute Q(B0(y);x) and Q(ßx(y);x)

was developed in [2].
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COLUMNS

1 50   51   52
I

489

201

I
P(A0(y)jx)     i

-1

Q(B0(y);x)

P(A!(y);x)

^BiiyJix)

Figure 2

We proceed as follows.  Suppose y* is such that - 1 < v* < 0.  Then there

exists a smallest positive integer N such that y* + N(y* + 1) > 1.  Let y¡ = iy* +

i- 1 for i = 0, 1,. . . ,NzndyN+x = 1.  Define BQl(y) = B0(y) for -1 <?<?,

and Bo,i+ iO) = Bopyt - y) for ?/ <y < ?{+1 where i = 1, 2, . . . , N.   Now de-

fine B'Jy) by

B'0(y) = Äo/y)   where>Vi < v <^-, i = 1, . . . ,^ + 1.

An easy argument shows that B'0(y) is continuous and positive on [- 1, 1]. We

also define B\ iy) as follows:

B\iy) =

Bli2y*-y),     -Kv<v*,

Bxiy), y*<y<l.

Again, Bxiy) is continuous and positive on [-1, 1].

If 0 <y* < 1, then B'0(y) and B\(y) are defined in a similar manner.

Now define

P'(A'(y);x)

and

and

P(AQ(y);x)Q(B\(y);x),    -\ <X <1,-1 <J <7*,

^lö');*)«^);*).    i <* < i.y* <y < U

Q'(B'(y); x) = Q(B'(y); x)Q{B\(y); x)   on D

R'(C(y); x) = PXA'iy); x)IQ'(B'(y); x).

Since B'0(y) = B0(y) on [- 1, v*] and S',(y) = Bx(y) on [y*. 1], it follows

that R'(C(y); x) = R*(C*(y); x); and by virtue of Remark 1 of [4], R'(C(y); x) =

R(C(y); x) on D except possibly at y = y*.  It follows that we obtain the modified

best rational product approximation
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t'(x, y)
ZZV'.p)*'

where P'a.(y) and Q'b.(y) are the best uniform approximations to a\(y) and b'iy)

from R(m', k').

With this new method, we now have the means to determine the values of B'Jy)

and B'x(y) for all values of v in [-1, 1] using only the values determined on [- l,y*]

and [y*, 1].

We conclude this section with an example to illustrate the differences between

C*(y) and C(y).  Let

y + 2 + 2*

y + 2 + ^0 + l)x
-1 <x<l,-l <^<0,

F(x, y) -1 <x < I,y = 0,

2y + 1 +-x

\y + 1 + \(y + l)x

1 <x <l,0<y < 1.

Then,

(y +2,i;y+2,i(y + l))

dy)= <   (1,0; 1,0),

(2^ + i,\\\y

-Ky<0,

y = o,

0<y<l.rr      .     a,|0   +   l)),

Apply both techniques and we obtain

(2+2y + ^^+S_y + 7_tl_y + L

l-y2 +2y + 2,^y2 +¡y + ¡,¡y2 +\y + ¡),    -Ky<0,

C*(y) =

(2 + 4y + 2y2,y2 + 1-±y + 1-,1-y + 17;6 '6'

1^^ + 2.^+1, + 11^+1, + D.  <*<,-< i,

and
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0

(

1   2 . o     1   2     7      ,7      1,1

f-2y2+3y + 2,-y2 + l-y + l,-¡y + \;

5. Comparisons.  This section is devoted to making comparisons among the

three different algorithms.  In the first example, we used m = k = m' = k' = 1 for

the rational product approximations.  In the remaining examples we used m = k =

m = k' = 2.  For the surface fit approximation using the differential correction al-

gorithm, we approximated all of the examples by rational functions of the form

a0 +axx +a2x2 +a3y + a^y2 +a5xy + a6x2y + a7xy2 +asx2y2

b0 + bxx + b2x2 + b^y + b^y2 + bsxy + b6x2y + bnxy2 + b8x2y2

We used 121 evenly spaced grid points in [-1, 1]  x [-1, 1] for this approximation

in each of the examples.   All of the examples were executed on the Xerox Sigma 7

located at Montana State University using double precision arithmetic.

Table I gives the amount of time (in minutes) used by the central processor

unit (CPU) to compute the rational approximation for the three algorithms.   From

this table we see that using the Kaufman-Taylor implementation of the differential

correction algorithm in conjunction with rational product approximation used the

least amount of CPU time.   However, this version of the differential correction algo-

rithm produced a discontinuity in the coefficient functions of exy and sin (xy) which

the Remez algorithm did not.   For example, when approximating sin(xy), the imple-

mentation of both the Remez algorithm and the differential correction algorithm

produced coefficient functions a¡(y) and b¡(y) which computationally appeared to

satisfy

and

limat(y) = 0 = lim bÁy)    for i = 0, 1, 2;/ = 1, 2,
v->o y->o

lim bQiy)
v->0

Both algorithms computed «0(0) = fl,(0) = a2i0) = 0 and Z>0(0) = 1.   However, our

implementation of the Remez algorithm calculated 2>,(0) = b2i0) = 0 while the

Kaufman-Taylor implementation of the differential correction algorithm calculated

¿7,(0) = b2i0) = 1.  Because of the discontinuity produced by the differential correc-

tion algorithm in the functions bx(y) and b2(y), the error of the approximation was

greater than when either the Remez algorithm or the surface fit approximations were
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F(*,y)
REMEZ

RPA CPU
DIFF-CORR

RPA CPU
SURFACE
FIT CPU

1 +  .lx ■L^y^  ,5

2y + g +  ,2x
1 +  ,2x

.7399

•5ör<Ll

.3525 2.0179

-x2-y
3.7815 I.OI34 2.2306

DIFF-CORR RPA
DISCONTINUITY

2.9869 1.1483 2.1669

sln(xy)

DIFF-CORR RPA
DISCONTINUITY

2.693I I.I9I6 2.I858

x+y 2. .9331 I.9I76

Table I.  CPU time used to compute approximations

F(x,y)
REMEZ

RPA ERROR
DIFF-CORR

RPA ERROR
SURFACE

FIT ERROR

2y + g + -1*  _1<v<_ 51 + .lx      ■L^yi- °

2y + 2 + .2x
1 + .2x- •5¿y¿i

2.03664E-2

cpu=1.9445

2.71356E-2

CPU=1.7779

1.71996E-2

CPU=.5976

-x2-y
4.36716E-3

CPU= 3.1884

4.43229E-3

CPU= 2.4824

4.95098E-3

CPU=.6974

„xy

DIFF-CORR RPA
DISCONTINUITY

3.80978E-4

CPU =2.8307

1.10875E-2

CPU= 4.0424

1.01874E-4

cpu= .6716

sln(xy)

DIFF-CORR RPA
DISCONTINUITY

1.54656E-3

cpu= 2.8302

1.43324E-2

CPU= 3.9858

1.35252E-3

CFU= .5835

x+y
4.72317E-4

CPU- 2.9871

4.60886E-4

CPU= 2.4821

4.26705E-4

cpu= .6540

Table II.   Error of approximation and CPU time used to determine error
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used (see Table II).  This increase in the error is a result of introducing a nondiffer-

entiable point in [-1,1] when the technique of Section 4 is applied.

The error listed in Table II was obtained by finding the maximum difference

between the rational approximation and F(x, y) on Z x Z, where Z ■'{—!., -.99,

.99, 1.}.  The CPU time given in Table II is the amount of time needed to com-

pute the error of the approximation obtained.  When the CPU times of Table I and

Table II are added, we see that when the error is also calculated, the surface fit approxi-

mation uses the least amount of time in all examples except the first.   For those

functions in which no discontinuities were present in the coefficient functions, the

errors for the algorithms are all of the same magnitude.

It is clear that calculation of the maximum error on 40, 401 grid points is very

time consuming for rational product approximation.   By using an increment of .1 in

both the x direction and y direction, we significantly reduce the time needed.   For

example, in the rational product approximation using the differential correction al-

gorithm, the CPU time used to compute both the approximation and the error is re-

duced to 1.0549 from 3.4152 for ex+y with increments of .1.

From the data we have obtained from our examples, it appears that one should

use the rational product approximation with the differential correction algorithm,

especially if checking the error at a relatively small number of grid points.  The main

drawback to this approach is the introduction of discontinuities in the coefficient

functions.   If a discontinuity does appear, our results suggest that a check on this

approximation should be made by utilizing one or both of the other algorithms.   The

use of the Remez algorithm may result in the disappearance of this discontinuity and

an improvement in the accuracy of the approximation.  The main disadvantage of

the Remez algorithm is that of the initial guess at the alternating points.  In a few

cases we have had difficulty in finding a good enough guess for the coefficient func-

tions.  Clearly, the surface fitting approximation presents no discontinuity problems.

In checking the error on a large number of grid points, this is apparently the best

algorithm to use.

Based on our experience with these and other examples, none of the algorithms

appear to be consistently superior.   Each has its advantages and disadvantages.   As

stated above, we would begin by using the differential correction algorithm in ration-

al product approximation and then use one of the other methods if a discontinuity

occurred.
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and revision of this paper.
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