# Some New Primes of the Form $k \cdot 2^{n}+1$ 

By G. Matthew and H. C. Williams


#### Abstract

All primes of the form $k \cdot 2^{n}+1, k$ odd, for $9 \leqslant k \leqslant 99,512 \leqslant n \leqslant$ 1000 and for $101 \leqslant k \leqslant 129,1 \leqslant n \leqslant 1000$ are determined and factors are found for the Fermat numbers $F_{744}$ and $F_{556}$.


Recently Hallyburton and Brillhart [1] found, by means of a computer search, a new factor of each of the Fermat numbers $F_{12}$ and $F_{13}$. In this note we present two new factors of Fermat numbers which were found by using the method of Robinson [2]. In [2] Robinson tabulated all primes of the form $k \cdot 2^{n}+1$ for $k=3,7$, $1 \leqslant n \leqslant 1279$, for $k=5,1 \leqslant n \leqslant 2004$, and for odd $k$ such that $9 \leqslant k \leqslant 99,1 \leqslant$ $n \leqslant 511$. In this note we extend his table to include all primes of the form $k \cdot 2^{n}+1$ for $9 \leqslant k \leqslant 129,1 \leqslant n \leqslant 1000$. These results are presented in Tables 1 and 2 .

Table 1
Primes of the form $k \cdot 2^{n}+1, k$ odd, for $9 \leqslant k \leqslant 99,512 \leqslant n \leqslant 1000$

| $k$ | values of $n$ | $k$ | values of $n$ |
| ---: | :--- | :--- | :--- |
| 9 | 663,782 | 63 | $626,693,741,768$ |
| 13 | 1000 | 65 | 553 |
| 15 | $517,522,654,900$ | 67 | $598,726,870$ |
| 17 | 747 | 69 | 515,842 |
| 21 | 899 | 71 | 705 |
| 23 | 649 | 75 | $675,831,984$ |
| 25 | $554,664,740,748$ | 77 | $559,655,667$ |
| 33 | $525,726,828$ | 79 | 538,970 |
| 35 | 663 | 81 | $539,577,592,711,809,852$ |
| 37 | 712 | 85 | 624 |
| 39 | $518,818,865$ | 87 | 518,602 |
| 43 | 778 | 89 | 589,711 |
| 45 | 801 | 91 | 696 |
| 47 | 583 | 93 | 686 |
| 49 | 594 | 95 | $533,621,661,753,993$ |
| 51 | 695,825 | 97 | 652,722 |
| 53 | 857 | 99 | 631,894 |
| 57 | 719 |  |  |

Table 2
Primes of the form $k \cdot 2^{n}+1, k$ odd, for $101 \leqslant k \leqslant 129,1 \leqslant n \leqslant 1000$

| $k$ | values of $n$ |
| :--- | :--- |
| 101 | $3,9,17,21,27,39,45,47,71,95,117,123,143,173,387,389,513,633$, <br> 827,971 |
| 103 | $16,18,30,40,58,138,250,616,622,736$ |
| 105 | $1,2,5,7,8,12,14,23,27,33,38,49,61,62,85,93,94,107,155,182$, |
|  | $215,273,382,392,413,434,490$ |
| 107 | $3,7,23,27,291,303,311,479,567$ |
| 109 | $6,14,58,62,318$ |
| 111 | $1,4,28,32,44,47,71,128,137,193,676$ |
| 113 | $1,5,13,33,145,365,409,509,553,673,733,961$ |
| 115 | $2,12,20,26,42,114,228,396,456,482$ |
| 117 | $3,4,6,10,16,30,36,91,94,156,382,454,643,867$ |
| 119 | $1,3,7,13,21,23,45,63,553$ |
| 121 | $8,12,44,84,96,228,264,320,732,788$ |
| 123 | $6,8,17,21,29,32,46,57,69,128,141,268,333,476,742,832$ |
| 125 | $1,5,7,17,25,35,67,281,331,491,581,941$ |
| 127 | $2,12,18,24,54,72,114,180,214,504,558,964$ |
| 129 | $3,5,21,27,59,75,111,287,414,786,966$ |

Each of the new primes found was tested as a possible divisor of a Fermat number and only the two following factors were found:

$$
17 \cdot 2^{747}+1\left|F_{744}, \quad 127 \cdot 2^{558}+1\right| F_{556}
$$

Department of Computer Science
University of Manitoba
Winnipeg, Manitoba R3T 2N2, Canada

1. JOHN C. HALLYBURTON, JR. \& JOHN BRILLHART, "Two new factors of Fermat numbers," Math. Comp., v. 29, 1975, pp. 109-112. MR 51 \# 5460.
2. RAPHAEL M. ROBINSON, "A report on primes of the form $k \cdot 2^{n}+1$ and on factors of Fermat numbers," Proc. Amer. Math. Soc., v. 9, 1958, pp. 673-681. MR 20 \# 3097.
