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The Application of Linear Multistep Methods

to Singular Initial Value Problems*

By Frank R. de Hoog and Richard Weiss**

Abstract.   A theory for linear multistep schemes applied to the initial value problem

for a nonlinear first order system of differential equations with a singularity of the

first kind is developed.   Predictor-corrector schemes are also considered.

The specific examples given are systems derived from partial differential equations

in the presence of symmetry.

1. Introduction. Ordinary differential equations with singular coefficients are of-

ten obtained from partial differential equations when symmetry is present. Although the

reduction of these equations to a first order system can be achieved in a variety of

ways, the form

(1.1a) / - Mylt = fit, y),      0<f<l,

0-lb) 60(0), X0) = 0,

where M is a constant matrix, and /, b are smooth, can generally be obtained.  This is

illustrated in the appendix.  When, as is typically the case, M has no eigenvalues which

have a positive real part or are purely imaginary, shooting techniques can be applied to

(1.1).  These require the solution of the initial value problem for (1.1a).   Despite the

presence of a singularity at t = 0, the application of a standard multistep scheme in

Keller and Wolfe [5] to an equation similar to (1.1a) has led to satisfactory numerical

results.   It is therefore natural to ask if multistep schemes can generally be applied.

This question is considered here.

It is found that the root condition is no longer sufficient for stability and that

an additional condition involving the growth factors of the scheme and the eigenvalues

of M must be satisfied.  This condition always holds when the growth factors are real

and nonnegative.   Stability and consistency guarantee convergence in the usual way.

Predictor-corrector schemes are also considered, and we find that the stability now de-

pends on both the predictor and corrector.  However, all Adams predictor-corrector

combinations are still stable.
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2. Preliminaries.  In this section we briefly discuss the initial value problem

y'-jy = f(t,y),    o<t< i,yecx[o, i],

(2.1)
Á0) = T-

where y and /are n-vectors and M is a constant n x n matrix. We denote by R a pro-

jection onto the invariant subspace of M spanned by the eigenvectors corresponding to

the eigenvalue zero and set Q = I - R.   We assume that

A2.1. AT has no eigenvalues which are purely imaginary or have a positive real

part,

A2.2.  the initial vector satisfies 7 S ker M, i.e. Q7 = 0,

A2.3. f(t, y) is continuous with respect to t and uniformly Lipschitz continuous

with respect to y for 0 < t < 1 and all y.

A simple modification of the existence proof for the linear initial value problem

given in de Hoog and Weiss [2, Section 3] then yields

Theorem 2.1.  // A2.1, A2.2 and A2.3 are satisfied, (2.1) has a unique contin-

uously differentiable solution y(t). Furthermore, if fis p times continuously differen-

tiable,y<ECp + x[0, 1].

Although A2.3 is required for the existence of a solution on the entire interval

[0, 1], all subsequent results could also be obtained under the weaker assumption that

a solution exists, and / is Lipschitz continuous in a neighborhood of this solution.

However, as discussed in de Hoog and Weiss [2], A2.1 and A2.2 are necessary for

problem (2.1) to be well defined.

3. Linear Multistep Methods.   Linear multistep schemes for the problem

y' = f<t,y),     y(0) = y,      0<i<l,

have the form

k-\ k

(3-1)        yj+k = E   0W/+1. +  Z   ßMtf+wyf+v)'      / = 0, ...,/- fc,
v=0 v=0

where t, = flt, j — 0, . . . , / = 1/n, y, denotes the approximation to y(t) and y0,...,

yk_i are given.  In the present case,

ifit, y) = My¡t + fit, y);

and hence, ^(0, y) is not well defined.  However, since

y'(0) = (I-Mrxf(0,y(0)),

we take

ipi0,y) = iI-M)-xf(0,y).

Consistency and stability criteria for the case when no singularity is present are

expressed in terms of the polynomials
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fc—1 k

P(?) = f* - £ «„r    and    0(f) = £  /y"-
v=0 v=0

In particular the root condition, which states that no roots of p(f) have modulus

greater than one and that roots of modulus one (subsequently denoted Jj, . . . , f )

are simple, is both necessary and sufficient for stability.  The consistency conditions are

p(l) = 0,      p'(l) = a(l).

Although it turns out that the root condition is no longer sufficient for stability

in the present case, it is of course necessary.

4.   Stability and Convergence.   In this section we investigate the stability and

convergence of the linear multistep scheme (3.1) for the initial value problem (2.1).

Most of the essential questions concerning stability may be answered by considering

the scalar problem

(4-1) y'-jy = g(t).

The extension to the general situation will turn out to be rather straightforward.

Therefore, we begin by studying the difference equation

k-l

(i - xpy(/ + k))vi+k = E K + Wii + ")>>/+,, + te/+*.
(4.2) »=o

/ = 0, ...,I~k,

where the g.+k, j = 0, . . . ,1 - k and u0, . . . , vk_x are given and u0/0 stands for

some given value v'0.  (With the particular choice of g-+k = 'E*=0ßvg(tj+V), (4.2) is

precisely the scheme (3.1) applied to (4.1).)   As it is clear that in (4.2) v'0 is propagated

in the same way as the u0, . . . , vk_x, there is no need to distinguish explicitly be-

tween u0 and v'0.  This will result in a slightly simpler notation.

Clearly, (4.2) has a unique solution provided

<4'3) M3k#/\      / = *,...,/.

Writing (4.2) as a one step scheme and noting that

,-i      -   -     ^

v(/+i):
O-Xpyo'+fc))-1 = i + jT1 + o

we obtain

(4-4) zi+1 = SJ+lZj + hrf,     / = 0,...,/-jfc,

where

*t = (t>/+*_,, . . . , vjf ,      r¡ = ((1 - X^fc/(; + k)Yxgl+k, 0, . . . , Of,

Si = S+fT+JUj'
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S =

ak-l      (*k~2

1 0

1

• '     «1     <*0

1      0

ftt-i + ßkak-i

0

ßo + ßk*o

0

and

||I7.li < const,      /= 1,. .. ,/-* + !.

(Here || • || denotes the usual maximum norm.)

The solution of (4.4) is

(4.5) Z/=nVo+"E      ri    Sfv>     j=\,...,I-k + \,
l=\ v=0   l=v + 2

where

ri s;=v,-i •••5,..

To obtain estimates for (4.5), we require the following two lemmas.

Lemma 4.1. Let A¡, B{,l=\,2,...,be square matrices satisfying

0<cxiili)a< UA>
l=i

< Cx(iijf,      1 < i </, cx, Cx = const,

and

l|B,||<C2,      /= 1,2, ... ,C2 = const,

where a is a real number. Then there exist constants c3, C3 and i0 such that

(4-6) 0<c3(ilfT< "" ' '    '    *

Proof.   On defining

n U/ + iMlhc3(i'//)a' ,o<f<^
/=!     \ ' /   II
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Yii=U\i+tBt)' i=Ui+

we obtain the recurrence relation

1,

',,/+l      Aj+lYij -   ,.+ ^2Bj+lYij'        i       ». Í + 1.

Hence,
fc?        /

/ = i + 1,1 + 2, . . .  .
Without loss of generality we may assume that Cx > 1.  We now use induction on / to

show that

liri/ii<2C1(i//)a,    / = /, / + i.

whenever i > ix > 3MC2(l + 2CX).  This is easily verified for / = i, and if we assume

that

(4.8)

then (4.7) yields

|r,.m||<2C1(/7m)a,      m = i, ...,/- 1,

,ye„ < c,o„r + c, l^)>, + 2c;c2 g (^)*^1?^

Hence,

||rf/.|| <{HffCl(l + 2[alC2li2 + 2 ■ 3ialCxC2li)

and since i > f,, we obtain (4.8) for m = /.   This establishes the upper bound in (4.6).

The lower bound is derived in a similar way.    □

Lemma 4.2. Let the root condition be satisfied.   Then there exist positive con-

stants c4, C4 and i2 such that

c4ai/r <
l=i

where

(4.9) a = - max    Re

<c4(H/f,    i2<i<j,

Aa(fM)

l<M<r HßP'Usu))

Proof.   Clearly, for large / the eigenvalues of S¡ are close to the eigenvalues of S

(the roots of p(f))-  In particular, since the root condition is satisfied, it follows from

Henrici [4, p. 237] that the eigenvalues of S¡ corresponding to fj, . . . , f  (the eigen-

values of modulus one) satisfy

(4.10)       fM| = fM(i + XtJI) + 0(\ll2),      p =1.r;l =1,2.

where rM = o(f )/(f p'(f )) are the growth factors of the scheme.   Let S = EDE~~X
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where D is the Jordan form of S, with

L °    ö2,oJ Lo     ?J

A standard perturbation argument now yields

s,= (e+jF+Jg)d1(e+^f + ̂ g1)~í

for sufficiently large /, say / > l0 > 1, where F is an n x n matrix,

681

0|-

. 0    D2i.
*>u =

tu

0

0

fwJ

(4.11) 11^2,0 _j02/H <const(l/0

and ||C7,|| < const.  Clearly,

(4.12)   Si=(E+-^Fyi(E+LFy\±Bi=:A¡+±B¡,

where \\BjW < const.  Since

it follows that

l=i
UD2l
l=i

u^
l=i

< Csmax n*>u/ = !
n d21
l=i

where c5, C5 are positive constants.   Now the Dxl are diagonal matrices and so

UDu
l=i

I

=    max    fi I^m/1-

Hence, from (4.10) and (4.9),

0 < c6 fi (1 - a/0 <
l=i

UDu
l=i

<C6 fl(l-a/0,      c6,C6 = const,
1=1

when /' is sufficiently large (say i > i3 > l0).  Also,

/ r(j+i-tt)ixo
no-a/i)= rci-^rc+i)-

and the asymptotic results for the Gamma function (see, for instance, Luke [6, p. 33])

therefore yield
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(4.13) Cniilif < nßn
l=i

< C7(,7/f,      ! > i,4'

where c7, C7 are positive constants and i4 is sufficiently large.  As the eigenvalues of

D2 0 are smaller than one in modulus, there exists an induced norm, subsequently de-

noted by HI • HI, such that lllöj.oW = a < x-  lt therefore follows from (4.11) that

for large /, say l> lx,

W2l\\\<a<\,

which yields

UD 21
l-i

< const(a) /+!-<
i>lx.

Since this term decreases exponentially, it is clear from (4.13) that for sufficiently

large /,

X-i

< UAi
l=i

<cc
l=i

The result now follows from (4.13), (4.12) and Lemma 4.1.    □

From (4.5) and Lemma 4.2 we see that when a < 0, the contribution from the

starting values will grow algebraically with /; and thus, such a scheme is not stable.  To

illustrate this, we apply the midpoint scheme (A: = 2, ax = ßQ = ß2 = 0, a0 = 1, ßx

= 2; f j = tx = 1, f2 = t2 = -1) to the problem y' - Xy/t = 0.  It is easily verified

that the resulting difference equation

2X

has the solution

y¡+2 -y¡ = j+-fjy+i.    yo = °.    y\= s>

y,=r\-\)l+xb,    /=i,2,...,

if X = -l or-2.

While it is possible to develop a complete theory which also covers the case when

a < 0, the obvious shortcomings of such schemes make them of academic interest only.

We therefore assume in the sequel that a > 0.

We now return to (4.2) and consider the case when

(4-14) Sj+k=cf+k+df+kltj+k.

The second term will be required when analyzing the propagation of the starting vec-

tors in systems and the error in predictor-corrector algorithms.

Lemma 4.3. Let a > 0 and assume that (4.3) and the root condition are satisfied.

Then the solution of (4.2) with gj+k given by (4.14) satisfies

\vA < consti/_a     max     \vv\ + u max   |c.| + (ln(/+ Xff max   \d,\\,
{       0<v<k-l 'k<l<j k<l<j        )

j = k,...,I,

where rj = 1 when a = 0 and r? = 0 otherwise.
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Proof.   From (4.5) and Lemma 4.2,

\Zj\\ < const (IIz,oiir*+« £Vuii + zY-^Y t|
1=0 1=0 \    '     '     '

1   ll'2/llí'

. ,/-* + 1,

where

and

r,/ = ((l-X/y(/ + *)r1c1+fc,0,...,0)7'

^i = (o-^*/(/ + *)r1rfl+fc,o,...,o)r.

The result follows.    □

The problem

where y is an n-vector and

(4.15)
J =

y - -y = git),

x  i
x   i

leads to the study of the difference equation

fc-l k

(4 16) W/+fc-L   Wi+v - £   ßvJVj+vl<J + ")
v   '     ' v=0 v=0

which will now be examined.   For notational convenience we introduce the matrix

"o
1 0

1

1

which is the projection onto the subspace spanned by the usual generalized eigenvectors

of J.  We use the notation

V=     max     Htgi,       Vx =     max     ||A ||,
0<c<fc-i OKv<ik-i

C, =  max    ||c,||, Ö, =   max  IIWJI.
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Lemma 4.4. Let (4.3) antf the root condition be satisfied   Then (4.16) has a

unique solution for all starting vectors vv, v = 0, . . . , k - 1.  Furthermore, if

(i)  X = 0,

ItyN < const { V + tjCj + (ln(/ + l))""1 (K, + £.)},      j = k,...,I;

(ii) a = 0, Re X < 0,

Ityll < const { V + tjCj + (ln(/ + l))""1 Vx + (ln(y + 1 ))"/),.},      / = *,...,/;

(iii)  a > 0, Re X < 0,

llcjyll < const { V + tjCj +Dj},      j = k,..., I.

Proof.   If n = 1, we have the scalar equation considered in Lemma 4.3.  We now

proceed inductively.  Suppose the result holds for n = 1, . . . , p - 1, and consider the

case when n = p.  If we use the notation u- = (VjX, . . . , v-)T, it is clear that v, :=

(v,2, ■ ■ ■ , v,p)T satisfies an equation of the form (4.16) with n = p ~ 1.   Furthermore,

ii.j is given by

fc-l *;

vj+k,i - E   V/+1M _X Z  ß»Vi+u,il(J + v)
v=0 v=0

= hcj+k,i +   H+fc,i +di+kt2 + Ç  ßvvi+Vt2(j + k)liJ + p){/u+k),

j = 0,...,I-k.

Using the estimate for ||iT|| to obtain a bound for the right-hand side of this equation

and applying Lemma 4.3 yields the result for n = p.    □

The estimates in Lemma 4.4 can be shown to be sharp in the sense that all the

logarithmic terms shown do occur.  Note that when Re X < 0 and a = 0, the initial

vectors grow logarithmically while this is not the case when a > 0.   Since schemes

with a > 0 can be realized, we subsequently restrict ourselves to this case.

We now consider the difference equation

fc-l k

(A 17) V'+k ~ £   avVi+v ~ £   ß^j+vlÜ + ") = h(cj+k + Mdj+kltj+k),
V-11' v=0 v=0

Let E = [ex,.

EDE~X, where

/ = 0, ...,/- *.

en ] be a basis in which M reduces to Jordan form, i.e. M =

D =

and the 7;, / = 1,..., x, have the same structure as (4.15). We denote by X the related

projection onto the span of the generalized eigenvectors corresponding to the eigenvalue
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-,)m  x     max     llAiU
[0<v*ík-l 0<v<k-l

zero (not including the eigenvectors themselves) and set Y = I - X.

Multiplying (4.17) by E~~x yields

fc-l k

uj+k - Z   %uj+v - j£  ßvDuj+vj(j+ v) = h(E-xcj+k + DE-xdj+klti+k),

/ = 0,...,/- k,

where u- = E~xv-.  But this equation now consists of x separate equations of the form

(4.16), and we can therefore apply Lemma 4.4 to obtain

Lemma 4.5. Let (4.3) be satisfied for all eigenvalues X of M.   Then (4.17) has a

unique solution for all starting vectors vQ, . . . , vk_x.   Furthermore, if the root condi-

tion is satisfied and a defined by (4.9) is positive for all nonzero eigenvalues of M, then

l|i>.-|| < const/    max     \\YvJ + (ln(;+ 1))"
\0<v<k-l

<4-18) +t,  max   ||c,||+   max  ||W,|| + 0n(/+ l))"1"1   max   \\XdA,
k<Kj k<Kj k<Kj )

i = k,. . . ,1,

where m is the dimension of the largest Jordan box in D associated with a zero eigen-

value.

For differential equations without a singularity (M = 0), the properties of the

difference equation
fc-i

vi+k - Z   ««,»/+„ = hgj+k
v=0

completely determine the stability of the entire scheme.  We have seen that this is no

longer true in the present case.  Now it is (4.17) which characterizes the behavior of

the difference equation

k-l k

Vj + k -  E     Wf+v -  £   ßvMVj + JU + v)
v=0 v=0

(4.19) k

= « L  ßvZj+vvi+v + hCj+k + Mdj+kIV + *),     / = 0, ...,/- *.
v=0

Theorem 4.1. Let the hypotheses of Lemma 4.5 be satisfied and

NZyll < const,      / = 0, . . . , /.

Then there exists a constant n0 > 0 such that (4.19) has a unique solution for all

starting vectors vv,v = 0,...,k-l, whenever h < n0.  Furthermore, this solution

satisfies the estimate (4.18).

Proof.   Consider the right-hand side of (4.19) as the inhomogeneous term in

(4.17), and apply Lemma 4.5.  When t- is sufficiently small, the Banach Lemma yields

the result.   The standard translation argument is then used to obtain the estimate on

the whole interval.    □

We are now ready to discuss the convergence of linear multistep schemes.  A
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scheme is called consistent of order q if q is the largest integer such that

k-i k

witj+k) - £   <Wit,+v) - h £ ßvw\tj+v) = 0(h<> + x),     / = 0,...,/- k,
v=0 v=0

for all sufficiently smooth functions wit).

Theorem 4.2. Assume that

(i) (4.3) /s satisfied for all eigenvalues X of M,

(ii)  the root condition is satisfied,

(iii)  a idefined by (4.9)) is positive for all nonzero eigenvalues of M,

(iv)  the starting vectors satisfy,

yv = yitv) + oihs),    v = o,...,k-\,

(v)  the scheme is consistent of order q,

(vi) / is q times continuously differentiable.

Then, there exists a constant h0 > 0 such that the scheme (3.1) applied to (2.1) has a

unique solution for all h < h0, which satisfies

Wyty-yjW < const {A*(ln(/+1))" +h«},     j = k,...,I,

where r\ = m - 1 if m > 1 and 0 otherwise.

Proof.   Existence and uniqueness of a solution follow from a contraction map-

ping argument similar to that used in Theorem 4.1.

From Theorem 2.1, _y(r) is q + 1 times continuously differentiable.  The local

truncation error is therefore OQiq + x ).  (Note that the definition of consistency does

not depend on the particular differential equation to be solved.)  Since /is globally

Lipschitz continuous, the stability demonstrated in Theorem 4.1 (where we take dj+k

= 0) now yields the result in the usual fashion.    □

5.   Predictor-Corrector Algorithms.   For implicit methods (ßk ¥= 0) a nonlinear

system of equations for the unknown y,+ k must be solved at each step.   A convenient

way to do this is to predict a vector using an explicit scheme,

i5A>> y)Vk = L   {(a? + ßiMIO + v))yf+v + hß*f(tj+v, y.+v)} ;
v=0

and then apply an iteration procedure to solve

a — i tí

(5-2)      yi+k - L <*vyi+v = E ßv(ßfyi+J0 + v) + bfitj+v,yj+v)),

with the predicted yQ\ as the starting iterate.  The schemes (5.1) and (5.2) are called

the predictor and corrector, respectively.

An obvious iteration scheme is

iI-ßkMI(j+k))y<jl+kl) =  L   {K+ß„M/U+v))yj+v+hßvfiti+v,yj+v)}

(5-3)

+ Wkf(t,+k,y$\),    k = o, i,....

It is clear that for this procedure a predictor-corrector theory can be developed which
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in all aspects parallels that for differential equations without a singularity.  This scheme,

however, has the disadvantage that each iteration requires the solution of a linear sys-

tem of equations.

If we ignore the presence of the singularity and proceed as in the regular case,

we obtain the usual predictor-corrector algorithms.  This is now examined in detail

when correcting only once.  The resulting scheme is

fc-i fc-i

yi+k - £   0W/+„ = £   M(ßjtj + ») + ßk<lU + k))yj+v
v=0 v=0

+ ßkM ¿   ß*Myi+J(f + k)U + D)

(5.4) "=0
k^\

+
»Y.   ißv+ßkß*vMI(i+k))f(ti+v,yl+v)

v=0

+ hßkf(tj+k,y)%),      j=0,...,I-k.

From Lemma 4.1 it follows that Theorem 4.1 remains valid when a term of the form

k— 1

(5>5) £ Gvyl+vlii + k)ii + v)
v=0

with \\GV\\ < const, v = 0, . . . , k - 1, is added to the left-hand side of (4.19).  Hence,

the stability condition for (5.4) is

*-$$«•■   -'.

for all nonzero eigenvalues X of M, where

att) = o(f)-p>*G-).

The following convergence result can be established.

Theorem 5.1.  Assume that

(i)  p(f) satisfies the root condition,

(ii)  (5.6) holds,

(iii)  the starting vectors satisfy

Wyv - yitv)\\ < const hs,      v = 0.* - 1,

(iv)  the schemes (5.1) and (5.2) are consistent of order p and q respectively,

with p <q,

(v) f(t, y) is u times continuously differentiable, where u = min{p + l,q}.

Then the solution of (5.4) satisfies

ILV/ - y(tj)\\ < const {(hs +hp + x Xln(; + 1 ))" + hq },      j = k,...,I,

where r¡ = m-\ifm>l and 0 otherwise.

Proof.   The residual obtained when substituting the exact solution into (5.4) has

the form
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hn+k = b(r\ i+k + — #■ }i+k       yi,i+k      f— r2J+kj,

where

'•i,'+fc = 0(«P + 1+«£'),      r2J+k=Oihp + x).

Theorem 4.1 (modified by the inclusion of a term of the form (5.5)) now yields the

result,    a

A theory for correcting more than once can of course be established but, due to

the singularity, further corrector iterations do not generally lead to improved conver-

gence.

6. Remarks.   It turns out that for most problems encountered in practice the

eigenvalues of M are simple.  This means that the logarithmic terms in the error esti-

mates do not occur.  In addition, the eigenvalues are usually real (typically 0 and -1

or 0 and -2 for problems obtained from partial differential equations when angular or

spherical symmetry is present); and hence, the stability criterion

(6.1) Re (Xa(fM)/(rMp'(fM))} < 0,      p = 1, . . . , r, Re X < 0,

is satisfied if the growth factors

Tn = <*f M)/(?MP'(?M)).      M = 1, • • ■ , r,

have positive real parts.  However, (6.1) always holds when the growth factors are real

and positive.   In particular, this is true for all schemes which have only one root of

modulus one (r = 1), and are consistent, i.e. tx = a(l)/p'(l) = 1.

It is clear that the solvability condition, i.e. the requirement that (4.3) holds for

all eigenvalues X of M, is always satisfied when ßk > 0.

For predictor-corrector pairs stability depends on both the predictor and cor-

rector.   Of course, if p(f) has only the principal root, the combination is always stable.

However, it is a curious fact that a stable predictor and corrector may lead to an un-

stable combination and vice versa.

One way to calculate starting values is via the implicit Runge-Kutta schemes con-

sidered in de Hoog and Weiss [3]. The resulting nonlinear equations may be solved by

Newton's method or an iteration analogous to (5.3). Explicit Runge-Kutta schemes do

not provide high order approximations in the general case although they can often be

successfully applied to problems of practical interest. This will be reported in a subse-

quent paper. Of course, when f(t, y) has a simple form, a truncated Taylor series ex-

pansion may also provide an effective starting procedure.

7. Numerical Results.   In this section, we illustrate our theory by applying a

predictor-corrector scheme to the problem

Ç;HC-°)G)+tt}o<,<1-'•m-^-a
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The solution is

yxit) = 1/Vl + t2/3,      y2it) = y'x(t).

As predictor and corrector, we choose the fourth order Adams-Bashforth and

Adams-Moulton method, respectively (cf. Henrici [4, p. 194 and p. 199]).

The starting vectors for t¡ = jh, j = 1, 2, 3, were obtained by an implicit Runge-

Kutta (or collocation) scheme.  To describe this procedure, the notation of de Hoog

and Weiss [3] will now be used.  We choose m = 3 and ux, u2, u3 as the Radau points.

The resulting nonlinear equations (see de Hoog and Weiss [3, Eq. (3.2)]) were solved

by an iteration analogous to (5.3), with y¡ Q as the initial iterate for yjk, k= 1,2,3.

Five iterations were used for each /.  From Theorem 5.3 in de Hoog and Weiss [3], the

starting vectors, i.e. yj3, / = 0, 1,2, are at least fourth order accurate.

Numerical results for different values of t and n are given in Tables 1 and 2 and

confirm the fourth order convergence predicted by Theorem 5.1.

The computations were done in double precision arithmetic on the UNI VAC 1110

of the University of Wisconsin-Madison.

Table 1

yiiO-yutih

n = 0.1 n = 0.05 n = 0.025 n = 0.0125

f = 0.2 -1.4852 E-8 -7.2106 E-9 9.5452 E-10 1.0861 E-10

0.4 -3.0586 E-7 6.1558 E-8 6.2040 E-9 4.2439 E-10

0.6 1.3630 E-6 1.7350 E-7 1.1713 E-8 7.1299 E-10

0.8 3.5068 E-6 2.4856 E-7 1.4131 E-8 8.0114 E-10

1.0 4.7504 E-6 2.5205 E-7 1.2568 E-8 6.6377 E-10

Table 2

y%(t)-y2,tlh

ñ = 0.1 n = 0.05        n = 0.025        n = 0.0125

r = 0.2 1.9629 E-8 2.2337 E-7 1.4183 E-8 6.0377 E-10

0.4 5.7639 E-6 3.2171 E-7 1.0908 E-8 3.7556 E-10

0.6 5.3537 E-6 1.0288 E-7 -1.7377 E-9 -3.1119 E-10

0.8 4.0519 E-7 1.8407 E-7 -1.5768 E-8 -1.0471 E-9

1.0 -4.7107 E-6 -3.9426 E-7 -2.4754 E-8 -1.4855 E-9

Appendix.  Keller and Wolfe [5] consider the equations

La(t) = p [a(fM0 + Pt21,      ¿7(0 = P [t2 - a2(r)]
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subject to

a(0) = 0,      t(0) = 0,      a(l) =1,      ^(1) = ^(1),

where L is the differential operator

d r 1    d .      1

L-í*b*(í,)J1
and p, />, i> are constants. This problem arises in the study of the buckling mechanism of

the cap portion of a spherical shell.  We illustrate here how these equations may be

transformed to a system of the form (1.1).

Let yxit) = a(t)lt, y2(i) = a it), y3it) = y(t)/t and y4(f) = -y'(f).  Then we ob-

tain

">il '      r-i    i    o   oir^i o
>V      _ 1       1-1       0      0        y2 tp(yxy3 + P)

y3     ' t    o    o  -i    i     y2    + o

y*\        [o    o    i   "Ul-^J     Lw-J'î).
which has the required form.   Note that the condition QyiO) = 0 required in A2.2 is

yiio) = y2iO),    y3(0)=yA(P),

which is consistent with

a(0) = 0,      Urn -^ = a'(0),      7(0) = 0,       lim -2ÍO- = T'(0).
f->0     t f->0      t

Similar transformations can be applied to other problems; such as the shell equa-

tions derived in Bauer, Reiss and Keller [1] and the Ginzburg-Landau equations dis-

cussed in Meissner and Tholfsen [7].
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