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Roots of Two Transcendental Equations

Determining the Frequency Spectra of

Standing Spherical Electromagnetic Waves*

By Robert L. Pexton and Arno D. Steiger

Abstract.   Roots of the transcendental equations
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for the spherical Bessel functions of the first and second kínd,j¡(x) and y¡(x), and

for the modified spherical Bessel functions of the first kind, i,(x), have been com-

puted.   The ranges for the parameters \J\e I and a, the order / and the root index n

are:

v/ïTi = 1.0, 10.0, 100.0, 500.0;     a = 0.1(0.1)0.7;     7=1(1)15;     n = 1(1)30.

In a previous communication [ 1 ] roots of two transcendental equations involv-

ing spherical Bessel functions were presented.  These roots correspond to the eigen-

frequency spectra of the transverse electric and the transverse magnetic multipole

fields in the domain bounded by two perfectly conducting concentric spheres (r =
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aR and r = R, 0 < a < 1).  On the surface of a perfect conductor the tangential

components of the electric field and the normal component of the magnetic field van-

ish.   In the present work these boundary conditions are assumed to hold only on the

outer sphere.  The inner sphere is regarded as the boundary of a nontransparent plasma

core into which the electromagnetic fields penetrate as evanescent (spherical) waves.

The necessary and sufficient conditions to ensure continuity of the electromagnetic

field are that the tangential components of the electric and magnetic field vectors be

continuous across this boundary surface, which is assumed to be charge-free and cur-

rent-free.

From these boundary conditions then follow the characteristic equations [2]
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The spherical Bessel functions of the first and second kind,/,(z) and vz(z), are defined

in [3, p. 437].  The nth root, X,     of Eq. (1) is proportional to the nth character-

istic frequency of the transverse electric 2'-pole field.  The nth root, t]¡ n, of Eq. (2)

is proportional to the nth characteristic frequency of the transverse magnetic 2'-pole

field.  The dielectric constant e is in general a complex number.  If e is real and nega-

tive (e = - lel), the electromagnetic field enters the plasma core as an evanescent

wave without being absorbed (total internal reflection).  With this choice of e and the

relations [3, pp. 443, 469]

j,(iz) = e"1"2/^^ y2(z),      (-rr < arg z < Hit),

i,{x) =vê/'+%(x)'

where Il+Vl(x) is the modified Bessel function of the first kind, Eqs. (1) and (2) be-

come
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In the limit lel —► °° the equations (3) and (4) become, respectively, identical with

the equations (1) and (2') of reference [1].

The calculation of the roots of Eqs. (3) and (4) was performed as follows.   First,

the equations were each expressed in the form F(u) = 0.  Then, for a given order /, a

fixed parameter a, and a given value for the absolute magnitude of the dielectric con-

stant e,the function F(u) was evaluated at a sequence of points u-, for which u- - u,_x

= constant, until a sign change occurred.   In this last interval a root was computed by

using a modified Müller technique [4].  The spherical Bessel functions were computed

by means of Mechel's recurrence method [5].  The ratios of the modified spherical

Bessel functions were computed using Lentz's continued fraction technique [6].

The numerical values for the roots of Eqs. (3) and (4) which are listed in the

microfiche supplement of this issue are accurate to at least 10 significant figures.  The

ranges for the square root of the absolute magnitude of the dielectric constant e, the

parameter a, the order / and the root index n are

y/\e~\ = 1.0, 10.0, 100.0, 500.0;

a = 0.1(0.1)0.7;

/= 1(1)15;

n = 1(1)30.

These calculations were performed on a CDC 7600 computer.
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