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Chebyshev Polynomials in the

Numerical Solution of Differential  Equations

By A. G. Morris and T. S. Homer

Abstract.   Amongst satisfactory techniques for the numerical solution of differential

equations, the use of Chebyshev series is often avoided because of the tedious nature

of the calculations.   A systematic application of the Chebyshev method is given for

certain fourth order boundary value problems in which the derivatives have polyno-

mial coefficients.    Numerical results for various problems using the Chebyshev

method are superior to those obtained by alternative methods.

1. Introduction.   The solution of differential equations, including boundary

value problems, with the solution expressed as a series of Chebyshev polynomials, is

well known.  See, for example, Clenshaw [1], and Fox and Parker [2].  The present

paper is concerned with showing that some painstaking preliminary work can lead to

information which can then be readily applied to obtain extremely accurate results

using only a small number of terms in the Chebyshev series.

The problems to be considered are of the form

(1.1) £ Pi(x, X) 0 = 0,      0(±l) = 0(i)(±1) = O,

where {p¡(x, X)} is a set of polynomials, quadratic in x, and linear in an eigenvalue X.

In terms of notation to be used later

p4(x, X) = c0,

p3(x, X) - cx + c2x + c3x2,

(1.2) { P2(x, X) = c4 + c5x + c6x2,

px(x, X) = c7 + csx + c9x2,

p0(x,X) = cx0 +cxxx + cx2x2,

where c,-, i = 0, . . . , 12, are linear functions of X.

The general application of Chebyshev series to a simplified differential equation,

where all c,. = 0, except for i = 0, 4, 6 is illustrated in Section 2.   In Section 3, the

problem of Eq. (1.1) is considered, and Section 4 contains numerical results obtained

by using the Chebyshev method.

2. The Method of Solution.   Assume that the solution of (1.1) can be written

as a series of Chebyshev polynomials in the form
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0(x)=  ¿' akTk(x)
fc=0

= %a0 + axTx(x) + a2T2(x) + • • • ,

where Tk(x) is the Chebyshev polynomial of the first kind, of degree k, given by

Tk(x) = cos(k cos-1*);

and ak is independent of x, but dependent (implicitly) on X, and where £' indicates

that the summation involves lÁa0 rather than aQ.

Similarly, the derivatives àj^(x), i = 0, 1, 2, 3, 4, are written

(2.1) 0('>(x) = ¿' a<?rfc(x),
fe=0

where, by taking a.0^ = ak, this form includes the above expression for <p(x) (= (p^0'(x)).

Following [1] and [2], the standard recurrence relation

2xTk(x) = Tk+x(x)+T]k_xl(x)

can be generalized to give

(2-2) (2x)"Tk(x) = ¿ ( Jrlfc_„+2/|(x).

Then the fact that

Jw*.«^-!^] + constant,      k ¥= I,

= K ^(at) + constant,       it = 1,

leads to

(2.3) a« - ak% 2=2(k+l )aki~¡ >,      * > 0,

as a relation between the coefficients in the expansions of successive derivatives, after

integrating term by term in

f Z' a^Tk(x)dx = ¿' «J-^r^) + constant
•^   k=0 fc=0

and equating coefficients.

The general method of solution involves the substitution of the series (2.1) into

(1.1) and then the use of (2.2) and (2.3) to obtain a set of results of the form

k + m     j   12 i

(2.4) X I^A    ̂ 0,
l=k-m  { j=0 )

k = s, s + r, s + 2r,

after equating coefficients of Tk(x).

The idea can be illustrated with respect to the simple fourth order equation
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(2.5) co0<4>(*) + (c4 + c6x2)<t>W(x) = 0.

On equating coefficients of Tk(x), after substituting (2.1) into (2.5), and using

(2.2), the result

co^4) + cA2) + ^6 H?i+ H2) + •£?,] - o.   * > 0,

is obtained.

Rewriting this equation with k replaced firstly by k - 1, and then by k + 1, and

subtracting one of the resulting expressions from the other, gives

2c0ka[^ + 2c4ka^ + %c6 [2(k - 2)a[l\ + 4ka™ + 2(k + 2)a[l¡2) =0,      k > 1.

By repeating the procedure on the above relation, and also on two subsequent relations,

eventually a relation is obtained containing only the ak (= ak°^), i.e.,

c6(fe-5)(fc-4)

I6(k- 3)(k-2)(k- \)k
ak-4

+ c4        | c6(5k-\9)

Mk - \)k    S(k - 3)(fc - l)k(k + 1) ) K~2

(2.6) ( c4 c6(k2-22)
+  <c,

+

0    2(*-l)(* + l)    &(k-2)(k- l)(k + l)(k + 2) j   k

i c6(5fc+19) )

4k(k + 1)    S(k - l)k(k + l)(k + 3)

cAk + 4)(k + 5)
I-6-l-'1-Í-\ak + 4 = 0,      k>4.
\\6k(k+ l)(Jfc + 2)(Jfc + 3)j  *  4

(2.6) is in the same form as (2.4).

It can now be more readily seen that each of the bracketed terms is an inner

product of the vector c = [c0, cx, . . . , cX2] and a vector wz whose components are

a function of k.  Table 1 exhibits a matrix W, in which each row is one of these vec-

tors w,, I = k — 6, . . . , k + 6.

In the outer summation of Eq. (2.4), the value of m can always be taken as 6,

but because of the number of zero elements in W, the value of m may often be ad-

justed to a smaller value.   For example, m = 4 in Eq. (2.6).   The outer summation

often proceeds in steps of 2, and allowance for the occurrence of steps of 2 can also

be made in a computer program using (2.4).

Similarly, the inner summation with respect to / can be modified to involve

steps of 2, because of the alternate zero elements in w/; and there are often further

simplifications because c- = 0 for some values of /.
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The number of results of the type (2.4) is equal to n, the order of the matrix

to be used in the eigenvalue problem.  The initial value of k is given by s = 4, 4 or 3,

respectively, depending on whether the problem involves a general, even or odd solu-

tion, as will be explained in Section 3.  Similarly, the increment in k is given by r =

1,2,2, respectively.

3.   Boundary Value Problem.  When substituted into (2.1), the boundary value

conditions, 0(±1) = 0(1)(±1) = 0, lead to

(3.1a) *4a0 +a2 +<i4 + ••• =0,

(3.1b) flj +a3 +a5 + • •• = 0,

(3.1c) ^(i)+aU)+fl(i) + ...=o,

(3.1d) a\l) + a^ + a^ + • • • = 0.

Use of (2.3) in (3.1c) and (3.Id) give the equivalent results

(3.1c)' I2 • «i + 32 • a3 + 52 • a5 + • • • = 0,

(3.1d)' 22 • a2 + 42 • a4 + 62 • a6 + • • • = 0.

These results finally lead to

(3-2a) K = - ¿  a2k,
fc=i

(3.2b) a2 = - ¿   k2a2k,
k=2

(3.2c) ax =1 ¿   (fc + 2)(fc-l)a2k+1,
Z  k=2

(3.2d) «3=-î- Z   *(*+D«2*+l>
Z  k=2

so that, in conjunction with the fact that a_k = ak, the equations of type (2.4) can

be modified to start with terms involving a4, as, . . . .

An even solution to (1.1) can be written

(3.3) «(*)= Z'a2kT2k(x)
fe=0

since

Tr(-x) = (-lYTr(x),

and the boundary conditions become (3.2a) and (3.2b) only.

An odd solution can be written
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(3.4) 0(x)=   Z   a2k+lT2k+í(X)
fc=0

with boundary conditions (3.2c) and (3.2d).

Of course, most problems will not have specialized solutions of even or odd type,

and then the general set of boundary conditions (3.2) must be used.

Now, the coefficients c¡ in (1.1) are linear functions of an eigenvalue X, so that

with c,- = a,- — Xß,- (say), and with the use of Table 1 and the boundary conditions

(3.2), the eigenvalue problem reduces to the generalized algebraic problem

[A - \B] a = 0,

where

![a4, as, a6, . . . , aN]    for the general problem,

[a4, a6, . . . , aN]    for the even problem,

[a3, as, . . . , aN]    for the odd problem,

and where N is sufficiently large for suitable accuracy, and is the cutoff point in the

Chebyshev expansion, after which the terms are assumed to be zero.

4.   Numerical Results. The algebraic problem was solved directly by considering

[D - X/] a = 0,

where D = B~lA.

The QR algorithm of Francis [3] was applied to a Hessenberg matrix similar to

D.  The form of the algorithm was as described by Parlett [6].  At present, the

methods of Moler and Stewart [5], and Kaufman [4] are being investigated as alterna-

tives for solving the generalized algebraic problem.

The preceding analysis was used on a number of fourth order differential equa-

tions, including a number of problems in fluid mechanics.  For certain simple exam-

ples, the following results were obtained.  All calculations were performed on the

UNIVAC 1106 (with 1.5 ¿/sec memory) installation at the University of Wollongong,

N.S.W., Australia.

(i)  0(4) + X0(2) = 0, 0(1) = 0(1)(1) = 0, Even Solution.   The exact eigen-

values of this equation for the even solution are X = m2ir2, m = 1,2, ... .

The smallest eigenvalue, for various values of m (size of matrix), is given below:

m X

4 9.8698208

5 9.8696003

6 9.8696045

7 9.8696044

The exact value to eight significant figures is 9.8696044.

For m = 7, a comparison is given for the first four eigenvalues.
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Eigenvalue number X Exact

1 9.8696044       9.8696044

2 39.478414       39.478417

3 88.832161       88.826439

4 157.27836       157.91367

For m = 12, the first seven figures are exact for eigenvalues 2, 3 and 4.   For m = 7,

the CPU time for all seven eigenvalues was 0.9 sees.

When the eigenvectors are found as well, as the eigenvalues, then the actual

series representing the eigenfunction can be found.   Further, the compact evaluation

scheme for Chebyshev polynomials, viz.,

bn + 2 =bn + l =0>

(4.1) Ur = 2xbr+x-br+2+ar,

[4,(x) = H(b0~b2),

can be used to evaluate the eigenfunction <j>(x) for required values of x.

In the present example, the eigenfunction <p(x) is given by

*<*)?   Z'a2kT2k(X)>
fc = 0

where the coefficients are given for the eigenvalues X = 9.8696044 and X = 39.478414

in Table 2.  In Table 3 the tabulated values of 0(x) are given for x = 0(0.1)1.0.  The

eigenfunctions are known to be %(1 + cos ux) and lA(\ - cos 2irx), giving values in

exact agreement with those in Table 3.

(ii)  0(4) + X0(2) = 0, 0(1) = 0(1)(1) = 0, Odd Solution.   The exact eigen-

values are given by X = a2, where a = tan a, and the present method gives the first

two eigenvalues as 20.190729 and 59.679516, exact to the given number of figures,

using a matrix of order 10.  The associated eigenfunctions are given in Table 4.  They

have been normalized so that a. = 1.

(iii)  0^ — X0 = 0, 0(1) = 0^(1) = 0, Even Solution.   The exact eigenvalues

of this equation for the even solution are X = a4 where tan a = - tanh a.

The smallest eigenvalue, for various values of m (size of matrix), is given below:

m X

4 31.285316

5 31.285243

The exact eigenvalue to eight significant figures is 31.285243.

For m = 12, the first seven figures are exact for the first four eigenvalues.

For m = 5, the CPU time for the calculation of all eigenvalues was 0.5 sees.

(iv)  0(4) - X0 = 0, 0(1) = 0(1)(1) = 0, Odd Solution.   The exact eigenvalues

are given by X = a4 where tan a = tanh a, and the present method gave the first two

eigenvalues as 237.72106 and 2496.4874, exact to the given number of figures using

a matrix of order 10.
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Table 2

Coefficients in the expansion 0(x) = ~L'k-0 o2kT2k(y)

for the problem in Section 4(i)

9.8696044 X = 39.47842

J4«,

'10

'12

'14

'16

0.34787891

-0.48543393

0.15142457

-0.01454597

0.00069612

-0.00002010

0.00000039

0.38986155

-0.28788036

-0.31568048

0.27768840

-0.07329532

0.01013846

-0.00088337

0.00005342

-0.00000238

0.00000008

Table 3

Values of (p(x) for 0 < x < 1,

for the problem in Section 4(i)

X = 9.8696044 X = 39.47842

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.000000

0.975528

0.904508

0.793893

0.654508

0.500000

0.345492

0.206107

0.095492

0.024472

0.000000

0.000000

0.095492

0.345492

0.654509

0.904509

1.000000

0.904509

0.654509

0.345492

0.095492

0.000000
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Table 4

Coefficients in the expansion <p(x) = I,k=0 a2k+iT2k+\^x)

for the problem in Section 4(ii)

X = 20.190729 X = 59.67952

«j                      1.00000000 1.00000000

a3                    -1.64282456 -0.90727902

as                       0.74907228 -0.78563334

a7                    -0.11505988 0.97653959

a9                      0.00926122 -0.33922204

an                  -0.00046468 0.06233792

aI3                    0.00001601 -0.00730968

a15                 -0.00000040 0.00060179

a17 -0.00003692

a19 0.00000176

a,, 0.00000007

5.  Conclusion.

(i)   Comparison With Finite Difference Techniques.   Results using the Chebyshev

method were compared with those obtained using finite difference methods described

by Osborne [6].   In all cases, the present method proved far superior.

For example, in the problem described above in Section 4(iii), the finite differ-

ence method gave approximations of 31.286328, 31.285565 and 31.285339 for

matrices of order 12, 18 and 27 respectively, compared with the exact value of

31.285243 which was obtained by the Chebyshev method using a matrix of order 5.

The order of the matrices was chosen (12 = 2/3 • 18, 18 = 2/3 • 27) so that

it would be useful if it was decided that hp-extrapolation was appropriate, and in

fact the choice of p = 4 seemed correct.  The improved results with this choice were

31.28538 and 31.28529.

(ii)  General.   The only major disadvantage of the Chebyshev technique in a

practical situation is the tedious work in calculating the matrix W.  Once W has been

found, the solution of the remainder of the problem is very routine, and the results

obtained are excellent.

A further advantage (distinct from accuracy) of the Chebyshev method over the

finite difference technique is that the eigenvector calculation is only done once for all

values of x, when the eigenfunctions are sought.  The value of x is not introduced

until calculations using system (4.1) are performed.   For the finite difference method,
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the matrices A and B, when calculated, depend on the values at the equidistant sample

points; and if eigenfunction values are desired for other values of x, an interpolation is

required.

The Chebyshev technique can easily be extended to complex valued boundary

value problems of the same class, except that a modified QR algorithm may be required

for solving the algebraic problem.
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