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Error Estimates for a

Stiff Differential Equation Procedure

By R. Sacks-Davis

Abstract.  For numerical procedures which  solve stiff systems of ordinary differential

equations there are problems associated with estimating the local error.   In this paper

an analysis based on the linear model y   = Ay is carried out for a particular method

based on second derivative formulas.   It is shown that there exists an error estimate

based on a comparison between predicted and corrected values which is both reliable

and efficient.

1. Introduction.   There are a number of special problems associated with the

numerical solution of stiff ordinary differential equations.  Only formulas whose

stability regions cover large areas of the left half plane may be used.   In order to solve

the ensuing implicit set of equations a modified Newton-Raphson scheme is used rather

than the simple iterative method associated with the nonstiff problems.

For predictor-corrector methods there are difficulties associated with the usual

error estimate based on a comparison between the predicted and corrected values.

Fast transients can cause this error estimate to severely overestimate the true error.

This does not harm the reliability of the method so much as the efficiency since the

choices of stepsize are usually based on the estimate of the error.

In this paper the problems associated with error estimation are investigated from

the point of view of effectiveness theory using the linear model y = Ay.   For a special

class of methods, namely those based on second derivative formulas, it is shown that

there exists a simple error estimate based on a comparison between predicted and

corrected values which is both reliable and efficient even if A has eigenvalues with very

negative real parts.   A typical effectiveness theorem for this error estimate is proved

and some numerical results are given.

2. Second Derivative Methods.   We consider the following autonomous system of

ordinary differential equations

y'=f(y(t)l    y(0) = yo,     0<r<z>.

At previous steps r = tn_x,tn_2,... ,t0 = 0, we have approximationsyn_, to the true

solution y(tn_j) as well as approximations /„ _y. =f(y„_f) and/^_;. =f'(y„_j) to

f(y(t„_j)) and/'(v(/„_/)), respectively.  We are required to advance the solution from

tn _ j to tn with stepsize hn.  The basic equations were derived in [4].   Let
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9/(0 = nC "/„_,),       j>\,       q0(t)=\,
1=1

and

r'n

Si,j=   jt       it-tjqff)dt.
J   'n-l '

The g. ■ satisfy the recurrence relation

W *<,/ = ('„ -'„_/)%_,   + *I+1J-V

The predicted value yn 0 of the solution at t = tn may be calculated in terms of

past values at k previous points using the formula

yn.o =yn-\ +hfn-i

k-l

+ 2^   y£ij+'lng0j)\jnX;fnX;fn_2;...\jn_j_x\.
l=o

Similarly predicted values for the first and second derivatives of the solution may be

expressed in terms of previous values.  The required formulae are

fc-i

(2) fn,0=fn-l  +hn   Z    «j(t„)V„-l> fn-l>fn-2> ■ ■ • > fn-j-il
7 = 0

and

f'„ „=/:_,  +   Z     «MG.) + QfitnMfn-l-'fn-l'fn-V • ■ ■ >/„-/-lJ>-

The divided differences used in the above equations may be determined from the

known values fn_x,f'n_x, fn_2, fn_3, . . . ,/„_fc-  The accepted approximation^

to the solution at t = tn is found by solving the implicit equation

(3) y„ =yn,o+hJn,o(f(yn)-fn,o) + hnyn,o(f'<yny-fn,o)>

where

(4)       *•*■•• ■ ÏÂ)

and

(5) X,o =
Si,k-

«*-i(0

There is a useful alternative expression for yn.  Let P\t) be the Hermite poly-

nomial of least degree uniquely defined by
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Pitn_f) = /„_,-,      7=1,2, ...,*-1,

pytn) = fiyn),

P\tn)=f'(yn).

Then

(6) yn=yn-i + i" mdt

or

k-l

yn=yn-l+hnZ   ßn/n-j + h2nyn,ofn-
i=o

Similarly, for the predicted value yn 0 we have

(7) ^,0=^-1 + /"     P0(t)dt,
fn-l

where P0(t) is the Hermite polynomial of least degree interpolating the known points

P0(tn -/)=/„-/.      7=1,2,...,*,

nU„_1) = /„_1.

3.   Estimation of the Local Error.   In this section we will consider a number of

alteratives for estimating the local error.  The local error of a multistep method in

stepping from tn_x to tn is defined as

K =yn_x{tn)-yn,

where

^_iW=/0'n_1WX     yn^l(tn_x)=yn_l.

The usual error estimators compare the corrector polynomial P(t) to the poly-

nomial P+(t) which interpolates one extra point, i.e.

P+(tH.j) =f„.j,      7=1,2,...,*,

P+(t„)=fiyn),

P+'(tn)=f'0>n)-

The superscript + will be used to distinguish terms relating to the higher order

polynomial.   The error estimate EQ is then of the form

E   = f"    iP+it)-Pit))dt

=    i!"      {t-tn)2(t-tn_x)---(t-tn_k+x)\fn,fn,fn_l-...-fn_k]dt.
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Thus

(8> Eo=g2,k-i\fn;fn;fn_x;...;fn_k].

In [4] it was shown that the local truncation error, Tn, may be written in the form

y(k+2)(ï)

Pn ~ &2,k-
1   (* + 1)!

for some % G [t _, ; tn].  Thus it can be seen that the error estimate E0 is asymptoti-

cally equivalent to the local truncation error.

The error estimate £"0 cannot, however, be calculated from (8), since only

differences of the form \fn_x\fn_x\fn_2, ■ . ■ \fn_¡\ are available when the estimate

is required.  Instead EQ is calculated as a difference between predicted and corrected

values using the following lemma.

Lemma 1.

^0 =#2,*-l Un'*n'*n~l' ' • • 'Jn-ki

■feüL. )-^-(/-/ )(qM    jV„   /„.„)    qM    (/„    /„,0)j  •

This expression is analogous to the well-known Milne error estimate used in the Adams

methods.

Proof.

Eo =   f"     (P+(-t)-P(t))dt
J 'n — 1

= S " (p+(o - p0(0) dt-Ç"  im - p0it)) dt
n — 1 ' n — 1

= hn(ß+n,0 - ßn,0Xfn -fn,o) + W.O " ^n^'n ' f'n.o)

from (3), (6) and (7).

Now by (5)

h2y+ _h2     =Im_!ull
n7n'°       "7"-°      RM     qk_x(tn)

=   q   (t  )   [gl,k ~ (^n _ 'n-fr^l.k-lJ

82,k-l .        ...
= 1M    using0)-

Also, from (4)
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*A+,»-*A,o

<?*('„)   l°'k     qkitn)   gl*j      tlk-M   [f0'*"1      Ik-M*1'"-1}

Ik
it \   tSo,k     v/j      ^n-k^o.k-lJ

«M
'«'M {tn-tn_k)q'k_x(tn)

8l,k-l _ 1
+.

£l,fc'git-1 fr«)
**-i('„) *'•* "('«-'«-*)

Qk(tn) \_qk-i{tn)
#2,k- +

-77T",-n      'n-k«l,fc-l
?fc-l('n) J

s2,k-i i     i  r^k(^)

<7k(Ü _?*('») J 2,fc-l •

The lemma follows.

Note that from Lemma 1

(9) [/•„;/„;/„_.;. ..;/„_*] =
?*('.n)      |y»      O       qJn)   (fn      //i.o)

This equation may be used to update the divided differences f/„ _,;/„_, \fn_2\

■ ■ ■ yfn-j] f°r advancement to the next step.

If the equations to be solved contain fast transients, components of the vector

f„_k may differ greatly from the corresponding components of the vector fn causing

the error estimate E0 to overestimate the true error.   Consider the estimate

^1   = g2,k-l Vn'Jn' Jn-l 'fn-l 'fn-2' • •  • 'fn-k + li'

Because Ex only contains those past values of / used in the corrector formula it would

be expected that Ex  be a better estimate than EQ.   For second derivative methods

Ex may also be expressed in terms of predicted and corrected values.

Lemma 2. Let p;.(r) = (t~tn_x)q¡it), j > 1.  Then

El   ~ %2,k-l Vn'Jn'fn-l >Jn-l'Jn-2' • • • 'fn-k+l i

k-ls2

Pk-M (fn      f'n,0)       pkl(tn)    Vn      /„,o)J-

Proof.
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\jn>Jn'fn-l'Jn-l'Jn-2>- • ' 'Jn-k+lWn ~ *n-l>

Vn'fn' *n-l'fn-2' • • • > 'n-k+ 1 > ¡n- 1J (ln ~ {n-l)

\Jn, Jn,Jn- i > • • • »7„_fc+i J  — \Jn'Jn-l'Jn-l'Jn-2' • " -  'Jn-k+l i

= (^n ~~ tn-k'VJn'fn'Jn-l ' • • ■ 'Jn-ki

~~ (fn-l  ~ tn-k'Un-l > fn'fn-l ' • ■ ■ 'fn-ki

= (ln ~ tn-k)Vn> fn'fn-l' • ' ■ '/n-fcJ

~~ C/7-1 ~ * n-k>V n' * n-l' * n-l 'fn-2' • • ' ' Jn-ki-

The first divided difference in the last expression is given by (9).  Also, from (2) it is

easy to show that

\fn'fn-l'fn-l> fn-2' ■■•'fn-ki PkVn)      Jn      Jn.O'

We have then

E, =
S2,k-1        \(r/i      t„_k)

1    ('„-'„-i)     «M (fn     fn,o)     q (t )      "     ^n,0'\

('„_,-'„_*)
lPk(t")   -V" WI

'2-»-Mp*-i(0 ^   /;,'o)

PM        L " ^n) ('«-'—l)   j!

The lemma follows since the term in square brackets is equal to

(tn - tn_k)q'k_x(tn) + i      (i„_, - f„_k)

^fc-i(^) G,-'n-i)

= (tn - tn-k)

'1'k-l(tn)

1k-l(tn)
+

tn-tn-l\
(tn - '„_*)

Pk-l(tn)

Pk-l(tn)
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We will consider one final error estimate E2.   Let

^=/-Mn,o|-^,o(|)2

and consider

E2 = W~lEv

In view of Lemma 2, we have the following result.

Lemma 3.

¿2  =£2,k-l"n    \J n' J n' * n-l' * n-l' * n-2' ' ' ' 'Jn-k+li

=    g2*-'      W-i

Pk-l(tn)      *

Note that the factor W~l does not affect the asymptotic behavior (as h —► 0)

of the error estimate so that E2 is asymptotically equivalent to the local truncation

error.  The motivation for considering E2 will be Theorems 1 and 2 of the following

section where it will be shown that there is close agreement between E2 and the true

local error even for large values of the stepsize h.

E2 is readily calculated. In order to solve (3) for yn the LU decomposition of

Wn must be determined.  Consequently, the evaluation of E2 simply requires one

extra back substitution.

4.  Effectiveness Theory.   The concept of the effectiveness theorem, first

introduced by Hull [2], [3] describes the ability of a particular method to solve

certain problems.  The theory takes into account the way the method estimates

error and chooses stepsize as well as its basic formula.   Results for Adams and Runge-

Kutta methods have been proved by Hull and by Sedgwick [5].   For stiff linear

problems Enright [1] proved an effectiveness theorem for a class of methods which

used a one-step-two-half-step error estimate.  In this section results for second deriva-

tive methods using error estimates based on a comparison between predicted and

corrected values will be proved.

We begin by considering a class, C0, of linear problems.   Using the notation of

Hull [3], this class may be represented by the 5-tuple (A^, t0, v0, tp a(ry.  An

approximation to y(tf) is required where the exact solution y(t) satisfies

00) y'=A¿y,     y(t0)=y0.

A0 is a diagonalizable matrix whose eigenvalues lie on the negative real axis.  The

acceptability criterion, a(r), will be defined as follows:   For some t0 < tx < • • • <

tM = tf it is required that \\yn - yn_ x(tn)\\ < k(H)t, 1 < n < M, where the condition

number k(H) = ||/r"_1 II ll#ll and H~lA0H = D for diagonal D.  The «»-norm will be

used throughout this section.

(f'n-f'n,o)-
p'k-M

Pk-M
if -f nÀ
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Results will be proved for three second derivative methods of the form

(H) yn=yn-i +hZtn-,y'n-j + h2y0y''-
7=0

Formulas of orders three, four and five will be considered in conjunction with the

error estimates Ex and E2 considered in the previous section.

The essence of effectiveness theory is the relation between the true error T

and the error estimate E. Consistent with the notation of Sedgwick [5], we may write

E = R(hA)yn_k+x + U(hA),      T = S(hA)yn_k+l + V(hA)

for functions R, S, U and V.   E and T represent the errors in stepping from tn_x to

tn and U and F depend linearly on the local errors between tn_k+x and tH_i.  Thus

(12) T = S(hA)R'1(hA)E + W(hA),

where W = V-SR~lU.

Equation (12) expresses the relation between the true error and the error

estimate.  This relationship is characterized by SR~l while W represents the errors

made in previous steps and may be bounded by a multiple of t.  From (12),

liril < \\SihA)R~1ihA)\\ \\E\\ + \\WihA)\\

so that

(13) liril <K(H)[WSihD)R-l(hD)\\ \\E\\ + \\W.hD)\\].

The elements of the diagonal matrix S(hD)R~l(hD) are of the form

S(h\¡)R~1(hXi) for an eigenvalue X, of A.   For stiff problems from the class C0 the

relation between T and E is illustrated in Figures 1, 2 and 3 where \S(z)R~ l(z)\ is

plotted against z.   For the error estimate Ex, \S(z)R~ l(z)\ becomes very small even

for moderately negative values of z showing that Ex can severely overestimate com-

ponents of the true error.  However, there is no such problem associated with the

error estimate E2.

The situation on the negative half line reflects the situation throughout the

negative half plane as shown by the following theorem about the error estimate E2.

Theorem 1.  Consider the linear problem

(14) y = \y,

where X = rxe'e, n/2 < \B | < n.   Let z = h\ = re'6 for some h > 0.  For the second

derivative methods (11) and the error estimate E2 the following results hold:

(order 3),

(order 4),

(order 5).

S(z)R-l(z)~Mz asr-+°°

St»A->(x)-*l¿       «r-*«

Siz)R-1iz)~^   lj±z     flS/"-^oo
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- 8.00 -20.00 -40.00 -60.00

z-»
'80.00 -100.00

Figure 1

Second derivative methods of order three

(1) \S(z)R~l(z)\ for error estimate Ex

(2) \S(z)R~l(z)\ for error estimate £",

(ii)  For each of the second derivative methods E2 may be expressed in the form

E2 =ri(z)yn-i +r2(z)yn-2 + • ■ • +rk-i(z)yn-k+i'

where the rÁz) are rational functions ofz.  For the second derivative methods of

orders 3 or more, each of the rational functions is bounded for all values ofr>0.

Proof,   (i)  The true error, T, is given by

T=yn_x(tn)-yn =e*yn_x -yn,

where z = h\.
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CO

-I-I-1-1
0.00 -20.00 -40.00 -60.00 -80.00 -100.00

Z ->

Figure 2

Second derivative methods of order four

(1) \S(z)R~l(z)\ for error estimate Ex

(2) \S(z)R"l(z)\ for error estimate E2

From (11) and (14)

>v,=po~1(z)[(i+01zK-i +ß2zyn-2 + --- + ßk-izyn-k+i]'

where

(15)

Hence

(16)

p0(zj = i -ßoz~y0z2-

T= [ez-p^iz)i\ +ßxz)]yn_x

-pöi(z)ß2zyn-2-Pö1iz)ßk-izyn-k+

Now
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S (2)

gj

§J

to

»J

SJ

-0.00
-1
-20.00 -40.00

z —
-60.00 -80.00 -100.00

Figure 3

Second derivative methods of order five

(1) \S(z)R~ l(z)\ for error estimate Ex

(2) \S(z)R~ '(z)| for error estimate E2

E2 ~ &2,k-lPo    (zj\fn'Jn'Jn-l'Jn-l'Jn-2' • • • 'Jn-k + li-

The ^m g2k_x\fn, fn, fn_x; fn_x; fn2; . . . ;fn_k+x] is a linear combination of

the terms hfn, h2f'n, hfn_x, h2f'n_x, hfn_2, . . . , hfn_k+x.  So for constants ax,

a2, . . . , 0Lk + 2 we may write

E2=cxxzp-2(z)[(l +ßxz)yn_x +ß2zyn_2 + ■■■ +ßk_xzyn_k+x]

(17) + a2z2pñ2(z)[(\ +ßxz)yn_x + ß2zy„-2 + • ' * + ßk-iWm-k+J

+ a3zpñl(z)yn_x +a4z2PÖ1(z)yn-i

+ oc5zp-1(z)yn_2 + ■ • • + ock+2zp-1(z)yn_k + x.
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Riz) and S(z) are determined from E2 and T, respectively, by replacing the terms

yH-,  by yn-k+i('n-j) = ¿k-i-1)zyn-k+i-

As r —► °° e(-k~'~i^z —► 0,/ = 1, 2, ...,*- 2, hence the terms in yn_k+ x

dominate.   For the third order formula (* = 2)

-(1 +0,2)

SR
-i

(a, + a2z)p-1(2)(l + PV> + (Q3 + a4z)z

~ 1 /z    as r —* °°.

Similarly, for the higher order formulas (* > 2)

ßfc-iTo
SR-

a2ßk-l  -afc+2T0

Part (i) now follows by determining the constants ax, a2, . . . ,&k + 2-  Part (ii)

follows from (17) and the fact that for second derivative methods ß0 > 0 and 70 < 0,

so the polynomial p0(z) is of the form a0 + axz + a2z2 where a0 > 0, ax < 0, and

a2 > 0 and, therefore, has no zeros in the left half plane.

The undesirable behavior of the error estimate Ex is reflected by the following

theorem.

Theorem 2. Consider the linear problem (14) where X = rxêB, ît/2 <|ô|< tt. Let

z = hX = re'6 for some h > 0.   Then for the second derivative methods (11) and the

error estimate Ex the following results hold:

(i)
S(z)R- \z)~ l/z3    asr-+°° iorder 3),

Siz)R~liz) ~ 1/z2    as r —► °° iorder 4),

S(z)R~l(z) ~ 1/z2    as r —► °° (order 5).

(ii) For each of the second derivative methods Ex may be expressed in the

form

Ei =  ri(z)yn-i +r2iz)yn_2 + ■ ■ -+rk_xiz)yn_k + x,

where the r((z) are rational functions of z which become unbounded as r —► °°.

We conclude this section by proving a typical effectiveness theorem for a

second derivative method used in conjunction with the error estimate E2.

Theorem 3.  (i)  The fourth order second derivative method

. 29 ,   i       5 ,   / 1   .   / 1,2  "
y„ =yn-i +Mhyn +7^-1 -^g^/,-2 -g* yn

is effective for the class of problems CQ provided a step is accepted only if

(18) \\E2 || < r/2

and if the stepsizes are chosen as given below.
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(ii)   The stepsize need only by restricted for a finite time tN.

Proof.   The theorem is proved by induction.  Suppose that at previous steps it

holds that

(19) ltV,,_/-^ll_/_1(/ll_/)ll<«(H)T,     7=1,2,....

For the fourth order second derivative method the relationship between the true error

and the error estimate is characterized by (13) and Figure 2.   For the error estimate

E2 it holds that

\\SihD)R~1ihD)\\< 3/2.

Thus from (13) and (18) it holds that ||r|| < «(//> if

(20) ||W(W>)||< t/4.

In order to study WQiA), recall that W = V-SR~lU. VihA) and UihA) can

be determined from (16) and (17) respectively by replacing the terms vn_- by yn_¡

~ yn-k + i(ln -/) and z by h A. Thus it can be shown that for * = 3, WQiA) is of the

form

gihA)(yn_x -yn_2(tn_x)),

where

giz)= [ez-p-liz)i\+ßxz)\

-S(z)R-1(z)[axzp~2(z)(\ +ßxz) + a2z2p-2(z)(\ + ßxz)

+ a3zp-1(z) + a4z2pñ1(z)].

Thus (20) holds if

(21) l^tyl llv„_, -yn_2itn_x)\\<T/4

for each component /.   But the function g{z) —► 0 as z —► 0 and is bounded through-

out.the negative half plane.   By the inductive hypothesis (19), inequality (21) is

true provided that the stepsize is restricted so that

1^*^)1 <k-1(*¥)/4

for each component /.

This completes the first part of the theorem.  To see how the restriction (20)

on the stepsize behaves as we proceed along the integration interval, observe that

since {yn} —► 0 as n —► °°,

lb„_! -y„_2(^_1)ll-^0   as«->°°.

Hence, if \giz)\ <M, then there exists an integer A, (A/, r) such that HH^TiD)!! < r/4

for all n > Nx.



952 R. SACKS-DAVIS

Table 1

Numerical results

MAXIMUM
STEPSIZE

FUNCTION
CALLS

JACOBIAN
CALLS

LU
DECOMP.

GLOBAL ERROR
AT t = 100.

Error

Estimate

i»2

i=3

i=l)

1-5

32

175

1621

16001

.lkxio

.13X101

.13x10°

.13*10"

66

353

32>lll

32005

66

353

321!1!

32005

266

3237

31998

.114x10

.89x10

Error

Estimate

So

1=2

1=3

i=l.

i =5

13

15

13

lk

.60x10

.l»8xl02

.82x10

27

31

26

28

27

31

?6

28

17

21

18

19

.59x10

.82x10"

.13x10

.13x10

-9

At this stage the only restriction on the stepsize comes from (18).   However,

E2 = rx(hA)yn_x + r2ihA)yn_2

= H-lrxihD)Hyn_x + H-lr2(hD)Hyn_2,

and by Theorem l(ii) each term rlhD) is bounded by R, say. Hence, there exists an

integer N2iR, r, k(//)) such that \\E2 \\ < r/2 for all n >N2. Let N = max^, N2).

For n > N there is no restriction on the stepsize and hence the theorem.

Note that the stepsize strategy will have to take both the function giz) and the

size of the components^ into consideration.   By Theorem 2(ii) there is no analogous

result to Theorem 3 for the error estimate Ex.

Similar theorems can be proved for the class of problems (Aay, tQ, y0, tf, a(r)>

where the eigenvalues of Aa lie in the stability regions, Sa, of the second derivative

methods.   By Theorem l(i) there is a close agreement between the true error and the

error estimate in large areas of Sa, and by Theorem 1 (ii) for formulae of order three

or more the stepsize is only restricted at the beginning of the interval.

5.  Numerical Results.   In order to illustrate the problems associated with error

estimates based on a comparison between predicted and corrected values, Ex and E2

were incorporated into the fourth order variable-step second derivative method.

Consistent with Section 4, an error per step criterion

11 Error Estimate || < tolerance/2

was used to determine whether the current solution was acceptable. A conservative

choice of stepsize for the following step, 0.9 x [tolerance/(4. error estimate)] lts x

h     x was used.
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The methods were used to test the following problems:

'-10-''

y
- in'10'

range [0,100], initial stepsize 10"', tolerance 10-2, i" = 2(1)5.

The results were obtained on the CYBER 73 (University of Melbourne) which

has a 60-bit word.  As can be seen from Table 1, the stepsize is prohibitively

restricted by Ex and the value of |max(ftX¿)| is restricted to approximately .13 x 104

for each of the four problems.  However, no such problem exists for the error

estimate E2 and \max(hX¡)\ increases rapidly.
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