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Correction in the Dominant Space:

A Numerical Technique for a Certain Class

of Stiff Initial Value Problems

By P. Alfeld and J. D. Lambert

Abstract.   Consider a stiff linear initial value problem y  = A(x)y + g(x), where the

eigenvalues of A(x) may be separated into two sets, one of which dominates the

other.   The dominant eigenvalues and corresponding right and left eigenvectors may

be computed by the power method.   A technique is proposed which consists of tak-

ing one forward step by a conventional multistep method and then making a correc-

tion entirely in the subspace spanned by the eigenvectors corresponding to the domi-

nant eigenvalues.   A number of alternative corrections are proposed and discussed.

It is shown that the technique is stable provided that the product of the steplength

and each of the subdominant eigenvalues lies within the region of absolute stability

of the multistep method.   The application of the technique to nonlinear problems is

discussed, and numerical results are reported.

1.   Introduction.   It is well known that the initial value problem

y'=f(x,y),     y(a) = v,    y,fGRm,

causes serious computational difficulties if it is stiff, that is, if the eigenvalues of the

Jacobian df/dy are widely distributed in the left half-plane.  The presence of eigenval-

ues with very large negative real part makes it necessary severely to restrict the step-

length if the numerical method employed has a finite region of absolute stability.   On

the other hand, if the method has a region of absolute stability which is infinite in the

left half-plane (e.g. .4-stability [3], ^(a)-stability [11], ^-stability [2], stiff stability

[7]), one inevitably finds that the method is implicit, and the resulting implicit differ-

ence equation must be solved at each step, not by simple iteration (which fails to con-

verge unless the steplength is again severely restricted), but by the expensive Newton

iteration.   In the case of a linear problem, there are corresponding computational prob-

lems with matrix inversion when stiffness is present.

In a preliminary paper [8], one of us proposed a technique for dealing with a

special form of stiff problem.  Consider the linear problem

y' = A(x)y + g(x),      y(a) = r?,

where the eigenvalues \^''(x) of A(x) satisfy, in some interval of x,

(i)  X^'(;c) real and negative,

(ii)   |X(1)(x)| »max2<i.<m|X(i'V)|.

The method proposed in [8], which is based on a geometrical argument, consists of
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taking one step from xn to xn+x by a conventional explicit one-step method, which

we call the basic method, and then adding a correction ^n1+iC(^l\xn+x), where c^l\x)

is the normalized eigenvector corresponding to \^\x).  The correction factor {-j^, is

a function of X(1)(xn + 1), so that it is necessary to compute X(1)(x) and c(1)(x) at

each point of the discretization; this can be economically done by the power method,

which is particularly efficient for a matrix with the structure outlined above.  The ef-

fect of this correction is that the restriction on the steplength imposed by stability re-

quirements is simply that which would pertain if the eigenvalue X^ were not present,

and will therefore not be severe.

In this paper we consider generalizations of this idea.   Firstly, we extend the

class of problems to the case where the eigenvalues of A(x) can be separated into two

sets, one of which dominates the other, and assume that we are able to compute the

dominant eigenvalues and corresponding right and left eigenvectors.  We then consider

a correction in the dominant space, that is, the subspace spanned by the dominant ei-

genvectors.  A number of alternative correction factors is discussed, and it transpires

that the choice corresponding to that made in [8] is not the best.   Finally, we extend

the class of basic methods from one-step to multistep; again, we find advantage in this,

explicit linear multistep methods emerging as the best choice.   The extension of the

technique to the fully nonlinear case is also discussed, and numerical results reported.

It should be noted that the technique is primarily intended for use in an interval in

which transients corresponding to the dominant eigenvalues no longer contribute to

the exact solution.

2.  Correction in the Dominant Space.   The techniques to be developed in this

paper are applicable to the nonlinear initial value problem

(2.1) y'=f(x,y),      y(a) = V,     y,fGRm,

but a more natural development of the ideas can be given in the context of the linear

variable coefficient problem

(2-2) y'= A(x)y + g(x),      y(a) = v,      y,gGRm,

where A(x) is an m x m matrix.   For the major part of this paper we shall adopt (2.2)

as the standard problem, but in Section 5 the applicability of the techniques to (2.1)

will be discussed.  It is assumed throughout that, for all x, A(x) has a complete set of

eigenvectors.  We assume the usual discretization {xn\ xn  = a + nh, n = 0, 1, . . . },

and denote by yn an approximation to y(xn), the exact solution of the initial value

problem.

Definition 1. Let X^ (= \^'\x)), i = 1, 2, . . . , m, be the eigenvalues of A(x).

Then the problem (2.2) and the matrix A(x) are said to be separably stiff in an inter-

val / of x if there exists a constant integer s, 1 < s < m, such that, for all x G I, V-1',

i = 1, 2, . . . , s, are real, distinct, and negative, and

min   |X(0|»      max     |X(,)|.
Ki<i i+KKm
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Remark.   We are considering problems whose stiffness arises from the existence

of a set (which we assume to be small) of troublesome eigenvalues \^'\ i = 1, 2, . .. , s,

which are real, negative, and well separated from the rest; note, however, that we do not

require all the eigenvalues to have negative real parts.

We denote by cn° (= c(i)(xn)) and dn° (= d(i)(xn)), i = 1, 2, . . . , m, the right

and left eigenvectors of A(xn).  These are normalized according to the following rules:

(i)   <<£>, df) := (4°)rd<0 = 1, / = 1, 2, . . . , m.

(ii)    ||c«|| := <c</\ C('V/2 = 1,/=1,2, ...,m.

(iii)    The first nonvanishing component of cff is positive.

O ->\     (iv)    If fcíP denotes the rth component of c)¡\ r=l,2,...,m,

and f'"'c^'' is the component of c)¡' with maximum modulus

(the first such component if the maximum is not unique), then

sgn{?(,l)c« ,} = sgn{*"><#>},      / = 1, 2, . . . , m; n = 0, 1, 2, . . .  .

The set of right and left eigenvectors of A(xn) is then uniquely defined.   Note that

(cn°, d^) = 6if, the Kronecker delta.

Definition 2.  Let X„   = X('V„), and let the "ght. and left eigenvectors cn^ and

dn^ of A(xn) be normalized by (2.3).   The dominant and subdominant eigensystems of

/4(x„) are defined to be {X<0, c<°, 4° I í - 1, 2, .... i} and {X*,0, c®, df \i = s

4- 1, s + 2, . . . , m}, respectively.   The subspaces spanned by {c^ | /' = 1, 2,. . . , s]

and {c^ | í = s + 1, s + 2, . . . , m} are defined to be the dominant and subdominant

spaces at xn, respectively.

Remark.   The technique requires the explicit computation of the dominant eigen-

system for each n.  This can be efficiently performed by some variant of the power

method; see, for example, Clint and Jennings [1].  Note that in the case x = 1, separa-

ble stiffness implies rapid convergence of the power method; moreover, provided that

the eigensystem of A(x) does not change too rapidly with x, the computed value for

c^1 * can be expected to be a good starting vector for the power method applied to

^(*« + i)-

Since {cfl^(x), z(x)), z(x) G Rm, is the component of z(x) in the c^'\x) direction,

we may write the exact solution y(x) of (2.2) in the form

4>(i)(x) = (d(i)(x), y(x)).

0(i)(x) = ((£%), y'(x)).

The technique we propose consists of using a conventional discrete variable

method, which we shall call the basic method, to advance the solution fromxn toxn+1,

and then applying a correction before proceeding to the next step.  We consider basic

methods which satisfy the following requirement:

Definition 3.  A discrete variable fc-step method is said to be rational if, when

(2'4) A*) = Z <PU)(x)cU\x),
1=1

We also write
m

(2.5) y'(x)=Z$(i)(x)c«\x),
i=i
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applied to the test problem y  = Ay, A is a constant matrix, it yields a linear fc-step

difference equation of the form

fc-i

yn+i = Z Pji^y^,
/=o

where P¡(), j — 0, 1, . . . , k - 1, are rational functions.

Remark.   Most conventional methods, such as Runge-Kutta (RK)-both explicit

and implicit—linear multistep (LM) and predictor-corrector (PC) (provided these are ap-

plied in a mode P(EC)lE and not P(EC)') are rational methods.  When the method is

explicit, the rational functions P( • ) are, in fact, polynomials.

The basic method will always be chosen to be a convergent rational method, and

its application to advance the solution from xn to xn +, will be denoted by

(2.6) yn+x=Byn.

This notation does not imply that the basic method is necessarily one-step; nor does it

imply that it is necessarily explicit, though in practice we shall always choose it to be

explicit, in order to avoid the difficulties over matrix inversion (iteration, in the non-

linear case) encountered with stiff systems.  The correction process is designed to over-

come the poor stability properties usually associated with explicit methods in a stiff

context.  The technique-correction in the dominant space (CDS)-then advances the

numerical solution of (2.2) from xn to xn+ x by the following scheme:

t2-7«) yn+l=By„,

(2.700) yn+i=yn+i + t^+i^Jiv
i=i

where the %^+ x, i = 1, 2, . . . , s, are scalar correction factors, which can be determined

in a number of alternative ways to be discussed in the next section.

Definition 4. The CDS scheme (2.7) is said to be dominantly stable if all solu-

tions of the resulting difference equation in {yn} when the method is applied to the

test equation y = Ay, A a constant separably stiff matrix, tend to zero as n tends to

infinity, for all steplengths h such that h\^ G Rfl, i = s + l, s + 2, . . . , m, where

RB is the region of absolute stability of the basic method, and V-'\ i = s + 1, s + 2,

. . . , m, are the subdominant eigenvalues of A.

Remark.   A dominantly stable CDS scheme is not unconditionally stable in the

sense of A -stability; however, the restrictions that stability imposes on the steplength

will be just those that would arise if the dominant eigenvalues were not present, that

is, if the problem were no longer stiff.  While the scheme calls for the computation of

the dominant eigensystem at each step, it should be noted that when the basic method

is explicit (which will always be the case in practice), (2.7) is a completely explicit

process.  Note also that in certain circumstances (e.g. s = 1), excessive (separable) stiff-

ness will actually increase the efficiency with which the dominant eigensystem can be

computed.

The following theorem makes it easy to establish the dominant stability of the
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various CDS schemes to be proposed later:

Theorem 1. A CDS scheme for which the basic method is a rational method is

dominantly stable if and only if{d^'\ yn) —> 0 as n —► °°, / = 1, 2, . . . , s.

Proof.   Applying a CDS scheme, with a fc-step rational basic method, to y = Ay,

A a constant separably stiff matrix, yields

~ k-i

y~n+i = Z Pj(hA)yn-j>      Pj( ' ) a rational function,

/=o

^n+l ~yn+l  + Z %n+lc     >
i'=l

where, since A is constant, c"' no longer depends on n.  Since A has a complete set of

eigenvectors, we may write

m

yt=Z ifW    t.° = «(0, yt),    t = o, l, 2.
1=1

Thus,

n+i = Z T^.c« = £ /»,(M)] £  TSV*! + Z eiC(°
'=1 /=0 (1=1 )       ,= i

m I k-l ) s

= Z I^W + l^A
'=1 (/=0 ) ,= i

since P.( • ) is a rational function.   It follows that

it— i
(2.8) T« . = £ PfQiK^y^i,      / = «+l,i+2.m.

;'=o

Consider the basic method applied to the test equation z' = Xz, X a complex sca-

lar constant, z G R1 ; it yields the difference equation
k-l

(2.9) z„+l  =  Z  Pj(hVzn-f
/=o

Now, for all z0, zn —»-Oasn —► °° if and only if h\ G RB, where RB is the region of

absolute stability of the basic method.  On comparing (2.8) with (2.9), it follows that,

for i = s + l, s + 2, . . . , m, y^\ x —► 0 as n —»"»if and only if h\^ G RB, i =

s + l,s + 2,. .., m.   Hence, y„ + x —> 0 as n —> °° if and only if h)S'' G RB,i = s + 1,

s + 2, . . . , m, and y%lx (= W(í), yn+x)) —* 0 as n —* °° i = 1,2, ... ,s; hence

the result.

3.   Choice of Correction Factors.   Recall the initial value problem

(3-1} y' = fix, y) •- A(x)y + g(x),      y(a) = ij,

and the general CDS scheme

(3.2) yn+1 =Byn,      yn + x =yn + x + ¿ tft.cftr
i=i
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In this section we discuss various alternative ways of choosing the scalar correction fac-

tors {•$..,/ = 1,2, ...,s.

I. Projection into the Subdominant Space.

With this choice, yn + x will have zero components in each of the directions of the

dominant eigenvectors; it follows from Theorem 1 that the resulting CDS scheme is

dominantly stable.   However, since y(x) will not, in general, have zero components in

the dominant directions, there will be a persistent error, Ex, where

(3-4)       Ex := £ (d<jlx,y(xn + x)-yn+x)c«lx   = £ *<<>(*„ ^cft,,
!'= 1 1= 1

from (2.4).  This persistent error is wholly in the dominant space, is independent of

the basic method and the steplength, and depends only on the initial value problem.

It will not, in general, be small, and for this reason this particular choice of correction

factors is not recommended.  It is included here because of its relevance to later choices

we shall propose.   Note that the local error in the subdominant space consists of the

subdominant components of the local error of the basic method.  (This will be true

for all choices of correction factors.)

II. Minimization of Gradient.   One interpretation of stiffness is that the function

/is ill conditioned with respect toy.  Thus, if yn = y(xn), one finds with a conven-

tional explicit method, that, while yn+x may be an acceptable approximation to

y{xn + x),f(xn+x,yn + x) is a very poor approximation to fix n + x, y(xn+x)).  In the

steady-state phase, integral curves which are neighbors to the solution curve coalesce

extremely rapidly, with the result that the gradient on neighboring curves is very much

larger than on the solution curve.   One is thus motivated to make a correction which

avoids regions of high gradient; we thus choose the correction factors ?„+,, i = 1,2,

. . . , s, to minimize \\f(xn + x, yn+l)\l  We write fn + x forf(xn+x, yn+x), and/^+1

for f(xn + x, J>n+X).  From (3.1) and (3.2) it follows that

(3.5) f       -7      + v  X(0   ?(/)   c(0
v       ' Jn+l  -Jn+l  ^  Z,   An+lín + lt/i-l-l'

1=1

whence

ll/„+lH2 = \\fn+lW2  +2   £   Xft^fc«!,/^.)
i=l

+ f   y  >(0   X(/)   f(/)   £(/)   <c(,)     cU)   >
^ 2-,    2-j   /vzi+lA/i+l5/t+l?zi+Pt/i+l' tn+l'-

i=l /=1

After some manipulation, one finds that the values %nl\x, i = 1,2, . . . , s, which

minimize ||/n + 1||2 are given by

(3.6) m = -f,
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where
r =  rxO)   fcU)      x(2)   fc(2) ,(s)    v(i)    iT
>       LA/i+l«/i+l> A/i+l 5/1+1' ' ■ ■ ' A/i+1^/1+1 i    '

F=r/rO)    7      > (c(2)    7      > <c(í)     7      )]T

and M is an s x s matrix with i, /'th element <c^'+ j, c„+ j>.  Thus, each of the s correc-

tion factors will depend on all of the dominant eigenvectors, a feature which we shall

call interdependence.   Note that, in the case s = 1, (3.6) reduces to

S/i + l vtn+l>'fi+l/'An+l'

which yields the scheme originally proposed by Lambert [8].

Note also that, in the special case where A(x) is symmetric, the eigenvectors c„+ x

are orthogonal, and the matrix M in (3.6) becomes the identity matrix; the scheme is

then no longer interdependent.  Since, for general A(x), the right eigenvectors are or-

thogonal to the left eigenvectors, it is natural to ask if there exists a variant of this ap-

proach in which inner products of right eigenvectors are replaced by inner products of

right and left eigenvectors; it so happens that this arises naturally in the approach of

the next section.

III.  Gradient Projection Into the Subdominant Space.   Following the motivation

preceding Eq. (3.5), we can choose the correction factors not to minimize the norm of

the gradient, but to remove entirely the components of the gradient in the dominant

directions, since it is these components that are responsible for the ill-conditioning.

Thus, for / = 1, 2, . . . , s, we set

0 = <<#ii./»+i>

««£li.7«+t>+¿   *&i#li<4'+i.<#+i>.    by(3.5)
/=i

x"/i + 1 ' J n + 1 ' T An + 1 ?n + 1 ■

Hence, we choose the correction factors to be

(3.7) tn%, = -<dn% x, fn+x)l\n% x,      i=\,2,...,s.

The scheme is now noninterdependent.  Moreover, applying the test equation y = Ay,

A a constant separably stiff matrix, we obtain that

/ s    (dV)  7      )

= (dvJn+x)-(d«\fn+x)l\M

= 0,

since fn + x = Ayn+X.  Thus the scheme is, by Theorem 1, dominantly stable.

The choice (3.7) for the correction factors means that fn will have zero compo-

nents in the dominant directions; we cannot expect the same to be true, in general, for

f(xn, y(xn)) = y'(xn), and we must again expect a persistent error.  Applying the CDS
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scheme (3.2) with correction factors (3.7) to the initial value problem (3.1) gives
~ s        1

yn+l =yn+i-Z -7^-^+i^n+Jn+l +*»+i><i/)n+l-

where we have written An+X for A(xn + X) and gn+x for g(xn + x). Hence,

<4'+1.yn+i> " <dn%x, y„+.> - <dn%x, ,4„+ xyn+ iVXW . - <<#> t,¿r„ + .>/X& !

s"/i+l' Hn+1'l^n+í

= -<41 i>/(** + i) ~ ¿„ + iX*„ + i»/X<°+ j,    from (3.1),

= -^i){xn + x)l\(^+x+{d(n%x,y(xn + x)),   by (2.5).

Hence the persistent error Exxl is given by

(3.8) Em := £ «a,,x*n+1) - *,+,>«&. = £0 ^;+l)«a,.
1= 1 I-1 X«

n+l

On comparing (3.8) with (3.4), it is clear that although Ex will not, in general, be

small, due to the presence of the dominant eigenvalues in the denominator, Exlx will

indeed be small, provided that y(x) does not have an abnormally large gradient; and

this will normally be the case, at least in the steady state region.  Note that the per-

sistent error, being independent of the basic method and the discretization, will not

accumulate in the dominant space as the computation proceeds.

For problems for which the persistent error (3.8) is not acceptably small, a fur-

ther improvement can be carried out.  The aim is to approximate the persistent error

(3.8) without calling for evaluation of the ill-conditioned function /.  Suppose a solu-

tion for the problem (3.1) is required on the interval [x0, xN], and that the basic

method employed is a &-step method.  (The necessary additional starting valuesyx, y2,

■ ■ ■ »J'fc-i are assumed to have been computed by some implicit method with ade-

quate stability.)   Let r = [k/2].  The further improvement procedure then consists of

the following steps:

(i)  Calculate the sequence {yn \n = k, k + l,...,N-k + T] using the CDS

scheme (3.2) with correction factors given by (3.7).

(ii)   Let tt„(jc) be the vector of unique polynomials of degree k which interpo-

late componentwise the values y„_T, y„_T+x, . . . ,y„^T+k.  For n — k, k + 1, . . . ,

N, compute yn := -nn(xn).  The vector yn is taken as an approximation to y'(xn), and

(d%\ yn) as an approximation to $,{xn).  (See Eq. (2.5).)

(iii)  Compute the improved solution {Yn\n = k, k + I, . . . ,N] defined by

Y   ■= v   + y — <6?(,)    v >c(l)

r=l   *>„'

Note that further improvement is an entirely a posteriori process, and so does

not affect the dominant stability of the scheme.  Note also that if one is interested in

obtaining an accurate solution only in some subinterval of [x0, xN] (for example,

only in the steady-state region), then it is enough to compute the improved solution

only in that subinterval.
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It can be shown that, after further improvement, the component of the residual

persistent error in the cn'^ direction is proportional to (XJ^)~2 ; for reasonably stiff

problems this can certainly be ignored.

As an alternative, it is of course possible to apply the improvement technique at

each step. Moreover, other forms of improvement are possible, but the one described

above has been chosen, for the numerical examples, because it is the best conditioned.

IV. Reduction to Scalar Problem.   The choice (3.3) of correction factors in I

led to the persistent error given by (3.4).  The persistent error could be avoided if it

were possible to make the choice

(3-9) !<?+, = -<4'+i>?„+1> + 0(O(*„+i).      /= 1, 2, .... a.

However, we do not know fr'\xn+x), the component of y(xn+x) in the c)¡'+x direc-

tion.   An approximation to it can be obtained as follows.   Recall that <p^'\x) :=

(d<-'\x), y(x)). Consider the function

(310) ^+x(x):=(d(nilx,y(x)).

Then clearly ¡Pnr+X(xn+X) - 0(')(*„+i).  The function ^n\x(x) satisfies the initial

value problem

(3.11) *<*(*) = (d(nilx,f(x,y(x))>,      ^+x(xn) = (df+1,y(xHy>.

We consider a neighboring initial value problem, whose solution, k^'| x(x), is an approxi-

mation to \jjy+x(x). We do this by replacing y(x) in the first of (3.11) by

^+("(«°+iW-<4ili»^»4°+i.
since k^+x(x) approximates in the interval [xn, xn+x] the component of y in the

c£+ j direction.  We also replace y(xn) in the second of (3.11) by yn to obtain the ini-

tial value problem

K<&x(x) = <J« ., f(x, yn + (k« x(x) - <d» x, yn))cf+ x )>,
(3.12)

Kn\x(xn) = {d^+X,yn).

A straightforward expansion shows that, if we assume that yn = y(xn), then

Kn%i(x»+l)-<t>0)(*n+l) = O(h3)-

It follows that in solving the problem (3.12) numerically it is adequate to use a method

with local truncation error 0(h3).  It transpires that dominant stability of the eventual

CDS scheme can be achieved provided that an A -stable method is used to solve (3.12);

we therefore use the Trapezoidal Rule.  Note that in order to evaluate all s correction

factors, s initial value problems of the form (3.12) have to be solved; but these s prob-

lems are uncoupled, and the implicitness of the Trapezoidal Rule does not involve us

in any matrix inversions.  Note also that we use the Trapezoidal Rule with step h for

only one step, and accept the resulting approximation to Kn+X(xn + X), which we shall

denote by k^\ x , as an approximation for <j¿'\xn+ x) in (3.9).  Solving (3.12) by the
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Trapezoidal Rule gives

4'li -<4'li.^>= | ^n%x,An+x{yn + («&, -<d^+1,yn))c^+1} +gn+x)

+ \<df+1,Anyn+gn).

Now, >>„ - W„+I, y„)c„+x is a vector with zero component in the c^\x direction.

The same must be true for the vector An+X(yn - (d(ni\x, y„>c^\x), and it follows that

the inner product of this latter vector with d$+x is zero.  Hence,

„(0    -(d(0     v )- — fX(i)   k(/)     + <íí(/)      e      > + <tf(,),      f(x    v 1»
Kzi + 1      Kan + \'yn'~    2   •■   "+1   "+1 n+l'*" + 1 "+1      ^  "      "

or

(3.13) K«, = W^j, ;;„ + fcA(/„ + gB+1»/(l - K*X.&i).      i = 1, 2, . . . , s,

where fn = Anyn + gn.  The correction factors are now given by

(3.14) fc(0-m(')     y      ) + k(/) i = 1 2 x

where the k„+1 are given by (3.13).

In order to establish the dominant stability of the resulting CDS scheme, it is

necessary, from Theorem 1, to show that {d^, yn) —> 0 as n —> °°, i = 1,2,... ,s,

in the case when / = Ay.   In this case, (3.13) reduces to

Kn+i (= k(°) = (d<-°, (I + 1ÁhA)yn)/(l - M)S°)

=i±mÇyn .s
1 - }4AX(,)

From (2.7) and (3.14), the CDS scheme reduces to

whence

<d(i\yn + 1) = «« = 1±^ <d«\yn),      i = 1, 2, . . . , s.

It follows that, for all positive h, <<r'\ yn) —» 0 as « —> °°, i = 1,2, . . . , s.

Other forms of reduction to scalar are possible.  Thus since

0(O(x) = (d(i\x), y(x)),

we could consider in place of the initial value problem (3.11) the problem

éa)'(x) = «MX*). y(x)) + «<?(*), f(x, y(x))),

4>(i\xn) = (d^,y(xn)),

and proceed as before, using numerical differentiation to estimate the derivatives of

d^'\x).  In practice, the resulting CDS scheme is less accurate than the one determined

by (3.14).
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4. Choice of Basic Method. Numerical experimentation has shown that the com-

putational results given by a CDS scheme can be adversely affected by an ill-considered

choice of basic method.  Consider the test problem y = Ay.  Since the basic method

is always chosen to be a rational method, the CDS scheme may be written

(4.1)       jwi = Z P,(^)yn-p   yn+r=yn+l + Z tífl. «">.
;'=o ,= i

where k is the stepnumber of the basic method and, in the case of an explicit basic

method, the functions PA • ) are polynomials.

Consider, for example, the choice III for the correction factors.  By (3.7), we

have

= - ¿ PjQik^y^,ynj,     i=\,2,...,s.

Recalling that, for i = 1,2, ... ,s, |X*^| can be expected to be large, it is clear that

if the polynomials PA ■ ) have high degree, then extremely large correction factors can

be expected.  This can cause amplification of round-off error in the second stage of

(4.1), and can even result in overflow.   For an explicit R-stage RK method, k = 1 and

PQ( ■ ) has degree R.  For a PC method in mode P(EC)'e, P¡( ■ ) has degree / + 1,

whereas for an explicit LM method, PA ■ ) has degree one.  We thus conclude that, in

the general case, the best choice we can make for the basic method is an explicit LM

method.  Similar arguments in favor of LM methods can be made for CDS schemes

employing the other correction factors discussed in Section 3, and numerical experi-

mentation fully corroborates our conclusion.

There may, of course, exist separably stiff problems with special structure for

which we can do better.   An example would be where the subdominant eigenvalues all

have very small negative real parts and imaginary parts which are not small, and g(x) is

a slowly varying function.   For such a problem, after the transient stage corresponding

to the dominant eigenvalues is negligible, the solution will be a slowly damped oscilla-

tion.   It may then be appropriate to choose as basic method one of the special methods

of Gautschi [6], based on trigonometric interpolation.

5. Extension to Nonlinear Problems.  We now turn to the nonlinear problem

(2.1),

y'=f(x,y),     y(a) = V,     y,fGRm.

A natural extension of the CDS techniques so far described consists of replacing the

eigensystem of A(x) in (2.2) by the eigensystem of the Jacobian df(x, y)ldy of (2.1),

namely

{X(/)(x, y), c«Xx, y), é'\x, y)\i=l,2,...,s,s+\,...,m}.

Previously, we made extensive use of the eigensystem of A(x) evaluated at xn+ x.  If
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we replace this by the eigensystem of df/dy evaluated at (xn+x, yn+x), then we clearly

introduce complicated implicitness in yn+1, calling for involved iteration schemes.

Numerical experimentation with such schemes has, however, indicated that it is ade-

quate to use the eigensystem evaluated at (xn+x, yn+x)-  We introduce the following

notation:

X„<> := \V(xn,yn),     c<<> :- ¿%xn,yn),     7« := d^(xn, yn),

i= 1,2, . . . ,m.

The equation (2.7) describing the general CDS scheme is now replaced by

~ s      ■    ~

Jn+l  =5->V        yn+l  =yn+l  + Z tn+lCn+l-
i=l

Adaptations to the nonlinear case of the various correction factors considered in Sec-

tion 3 are given below.

I. Projection Into the Subdominant Space.   Formula (3.3) for the correction fac-

tor is unchanged, except that in (3.3) d$+x is replaced by d(nl\x.

II. Minimization of Gradient.   It is no longer possible to solve the minimization

problem analytically, but any appropriate numerical algorithm can be applied to find

the correction factors Q\x, 1 = 1,2.s, which minimize

ll/n + f[xn + l>yn+l  + Z   £n+lCn+l
¿=1

In view of the remarks made in Section 3, we do not pursue this approach further.

III.  Gradient Projection Into the Subdominant Space.   We now have to solve for

the correction factors Q\x, i = 1, 2, . . . , s, the equations

(5.1)      0 = an+p/„+l> = fei'/('^ + l^n+l + £   *&.*&!

«"= 1,2,... ,s.

This is achieved by the following iteration

rfc(<)   rio] _ ¡.(i)
LS/1+ 1J S/1   '

[#+,][,+ 1,  =  L#+l]m

(5-2) ,

_L_ (7(0     fix        v        + V rt«   lUltfW    l\TO)     \   n + l'-' F/i+l'^n+1  + L.  K/i+lJ       cn + lJ)>

i= 1,2, . . . ,s, t = 0, 1,2, . . .  .

A straightforward calculation shows that in the linear case,/(x, y) = A(x)y + g(x), this

iteration converges in one step to give the correction factor defined by (3.7).  The con-

vergence of (5.2) is controlled, not by the stiffness of the system, but by the rate of

change of the eigensystem.  If (5.1) has a unique solution convergence is achieved for
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a steplength which is sufficiently small in relation to this rate of change (and this

would be a normal requirement even for a nonstiff system).  In practice, convergence

is attained in about three iterations, without any undue restriction on steplength.  The

further improvement technique described in Section 3 can be applied without modifica-

tion.

It is possible to construct examples for which the system of equations (5.1) has

no solution, or has multiple solutions.   For this reason, although successful results can

be obtained for some nonlinear problems, this choice of correction factor cannot be

recommended for the general nonlinear separably stiff problem.

IV. Reduction to Scalar Problem.   The analysis of Section 3-IV, up to Eq. (3.12),

holds for the nonlinear case, but now it is no longer possible to write explicit expres-

sions for the correction factors which correspond to solving the initial value problem

(3.12) by one step of the Trapezoidal Rule.  We shorten the notation by writing

<3™ ,, fix, yn+(z- (dn% x, yjfcft, )> =: F(x, z),      z G R1

The initial value problem corresponding to (3.12) is then

(5-3) rift'jl» = Fix, <c<í+1(x)),      Kn%x(xn) = ß«lt,yn).

Applying one step of the Trapezoidal Rule to this problem and, as in Section 3-IV, in-

dicating the approximation to «■n'+x(xn + x) so obtained by K„+1, yields the nonlinear

equation

«Ai - uf+vyJ - i4*[^8+1.«.w+i) + n*„, <4'li»^»]
(5.4)

=:*t>ft,.) = 0.
Finally, (5.3) is solved by the following iteration:

tô.],0,-«î?.

(5'5)  tálii1"11 = tálii1'1 -*([4'+i]|f,)/o-%**&,),

/= 1,2, ... ,s,t = 0, 1,2, . . .  .

Again, it is straightforward to show that in the linear case, fix, y) = A(x)y +g(x),the

iteration (5.5) converges in one step to give formula (3.13).  The convergence of (5.5),

like that of (5.2), is essentially dependent on the rate of change of the eigensystem,

and not on the stiffness.  Note however that whereas (5.2) constitutes a simultaneous

iteration in all s unknowns ï,{n%x, i = 1, 2, . . . , s, the iteration (5.5) can be performed

separately on each of the s unknowns ^n'\x, i = 1, 2, . . . , s.  Once convergence of

(5.5) has been achieved, the correction factors are given by

?/!+! W»+l'"»H'+línTl' l-l,¿,...,S.

(Cf. Eq. (3.14).)
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6.  Numerical Examples.   Two separably stiff examples are considered, one linear

and one nonlinear; in each case m = 3, s = 1. The CDS schemes employed are labelled

II, III, III*, IV, corresponding to the following choices for the correction factors:

II. Minimization of gradient.

III. Gradient projection.

III*.  Gradient projection with further improvement.

IV. Reduction to scalar.

The basic method is chosen to be the fourth-order (explicit) Adams-Bashforth method,

with steplength 0.1.  The following measures of the dominant and subdominant errors

are computed:

ED:=        max \(dnl\ y(xn) -yn)\,
n = k,k+l,...,N

Es :=        max ||X*„) -yn~ (d„l\ y(xn) - yn)¿»\\„.
n = k,k+\ ,...,N

These errors are quoted for N = 21.

Example 1 (Linear).

y ' = A(x)(z - z(x)) + z '(x),      y(0) = z(0).

(Note that the general linear problem (2.2) can always be put in this form.)

' av(x) -ß ß-a      (ß- a)/v(x)

(y-ß)v(x)      ßv(x)-y        ß-y

(a-y)v2(x)   (y - a)v(x)    7i>(x) - a

where a = -10,000, ß = -%, y = -1/3, v(x) = 45x/23 - 5. The exact solution isy(x)

= z(x) = e*'10 [-2, 6, 10] T.   (Recall that the CDS schemes are intended for use in

the steady-state region only; thus we have chosen initial conditions which avoid tran-

sients.)

The eigensystem of A(x) is:

x(i)=a;   c<>> = a(jc)[l, 0, v(x)]T;     d(l) = b(x)[v(x), -1, -l/v(x)] T,

x(2) = j3;    c(2) = a(x)[i,v(x)y o]r;     d(2) = b(x)[-\, 1, 1/u(jc)]t,

A(3)=T.   c(3)=ff(JC)[0)l,-u(x)]r;   d^ = b(x)[v(x),-l,-l]T,

where

a(x) = l /V(l + v2(x)),      b(x) = Vl + v2(x)l(v(x) - 1 ).

(In the numerical test, the dominant eigensystem was not computed from the above

information, but is obtained at each step by the power method.)

The errors ED and Es for this example are as follows:

A(x) =
1

v(x) - 1
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CDS scheme ED Es

II 1.1510- 4 2.60iO-2

III 6.1210-5 8.5810-3

III* 2.3510-6 8.5810-3

IV 7.5510 - 10 6.8610-8

Note that further improvement (III*) substantially improves the dominant error, and

leaves the subdominant error unchanged.  The superiority of method IV (reduction to

scáar) is clear.

Example 2 (Nonlinear).

y ' = u(x, y) - u(x, z(x)) + z '(x),      y(0) = z(0),

where y = \yx,y2,y3]T,

[1 1 1 ~\ T
11 y\ + w(x)y2 - w(x)y3,-ßy3 + w(x)y3,-ay3 |   -

a = - 10,000,   ß = -]i,   l=Zj,    w(x) = -160(x - 1.25).

The exact solution is y(x) = z(x) = ex^ ° [1, 1, 1 ]T¡3. The eigenvalues of the Jacobian

are:

^) = ay\,   X<2> = p>2,    \^ = yy\.

The expressions for the eigenvectors of the Jacobian are too complicated to be worth

quoting, but an indication of the rate of change of the dominant eigenvector is given

by the following numerical values:

x 0 0.4 0.9 1.4 1.0 2.3

0.204 0.124 0.044 -0.016 -0.060 -0.086

c(1) -0.173 -0.111 -0.042 0.016 0.064 0.095

_0.963        0.986 0.998        1.000        0.996        0.992

(Once again, in the numerical test the power method was used to find the dominant

eigensystem at each step.)

The errors ED and Es for this example are as follows:

CDS scheme ED Es

II 2.9610-5 1.3210-2

III 2.9910-5 1.3010-2

III* 1.3410-6 1.3010-2

IV 4.5010-10 1.0410-7

Once again, the superiority of reduction to scalar is clear.
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7.  Conclusions.  The CDS schemes proposed in this paper have some features

which appear to be novel in the context of stiffness.  Provided one is prepared to com-

pute the dominant eigensystem at each step of the computation, then the remainder

of the process is, for a linear separably stiff problem, completely explicit, and no ma-

trix inversions are required.   For a nonlinear separably stiff problem, there is some im-

plicitness (in a space of dimension s, not m), but this presents none of the computa-

tional difficulties usually associated with implicit methods for stiff problems; in partic-

ular, no Newton iterations are required.  The computational effort in finding the domi-

nant eigensystem can (for example, the case x = 1) diminish as the stiffness increases.

Moreover, the dominant components of the local error also, in general, diminish as the

stiffness increases, since, for all the correction factors recommended, these components

contain terms which are inversely proportional to the dominant eigenvalues.

Three alternative methods of defining correction factors have been proposed, and

these have been referred to as minimization of gradient (MG), gradient projection into

the subdominant space (GP), and reduction to scalar problem (RS).  The MG and GP

schemes are closely related, and indeed coincide for the linear problem y = A(x) +

g(x), when A(x) is symmetric; they also coincide asymptotically as X^ —► -°°.   In the

numerical examples quoted, and in other experiments, MG and GP have produced very

comparable accuracy.  The advantage of MG is that it does not require computation of

the left eigenvectors, while the advantage of GP is that the structure of the dominant

error is much simpler, and enables us to devise a further improvement process which

considerably reduces the dominant error; such a process cannot be applied to MG.  The

disadvantage of both MG and GP is that they produce persistent errors which are inde-

pendent of the steplength and the basic method, and do not accumulate in the domi-

nant space.  These errors do, however, pollute the subdominant error, to a certain ex-

tent, due to a phenomenon we call interprojection, which arises whenever the eigensys-

tem is not constant.  Since the basic method uses back values y„^¡, the errors in the

local dominant directions cjjv i = 1, 2, . . . , s, will be partially projected into the

new subdominant directions c)¡'+x, i = s + l,s + 2,. . . , m.  To control this effect it

is necessary to choose the steplength to be suitably small in relation to the rate of

change of the eigensystem.  The last method, RS, although conceptually less simple

and computationally somewhat more expensive than MG or GP, has turned out, in the

numerical examples quoted and in other experiments, easily to be the most accurate

and robust scheme.   It does not suffer from any persistent error, and in the case of a

nonlinear problem with s > 1, the iterations involved remain scalar (cf. Eqs. (5.4) and

(5.2)); its only disadvantage would appear to be that its accuracy is limited by that of

the approximating initial value problem (3.12) or (5.3).  We thus recommend RS as

the best CDS scheme.

There are, however, two situations in which MG and GP can play a useful role.

If a nonlinear problem is being solved by RS and trouble is experienced in attaining

convergence of the iteration (5.4), then a better initial approximation can be obtained

by using MG or GP, rather than by reducing the steplength.   This device has been used

successfully in numerical experiments.  The second situation concerns the case s > 1.
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In order to minimize the gradient or to project it into the subdominant space it is

clearly not necessary to have any particular basis of the dominant space; any basis

would do.   Stewart [10] proposes a method for computing an orthonormal basis for

the invariant dominant subspace of a given matrix which appears to be more efficient

than methods which compute the dominant eigenvectors directly.

Finally, we note an interesting relationship that exists between a CDS scheme

based on GP and the technique, known as SAPS, developed by Dahlquist ([4], [5],

[9]).  That technique also requires separable stiffness, and considers the differential-

algebraic system

/,(". v) = 0,

uGRq,vGRp.
dv      t t      \

It transpires that, after some manipulation, it is possible to write the CDS-GP scheme

in the above form, both for the linear and the nonlinear case.  However, SAPS pro-

ceeds by a mixture of analytical and numerical techniques, while CDS-GP is purely

numerical.
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