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Improved Error Estimates for Numerical Solutions

of Symmetric Integral Equations

By E. Rakotch

Abstract. The most widely employed method for a numerical solution of a symmetric

integral equation with kernel K(x, t) in interval I = [a, b] is the replacement of the

original problem by the sequence of eigenproblems

*-(")«(")-u    v(n)        *-(")= -Cu   K(x     x- Ü        7=1 nK      y i     - ^inVi   •      K       - ^jnK{<xin'xjn>S>       '      ».•••.".

with Wjn > 0 and x-n S /, / = 1, ... , n.   The eigenvectors y¡     are further used to

obtain an approximation, with improved error estimates, of the numerical eigensolu-

tion for some N > n, with no necessity of computing u^ and y\    . • = 1, . • ■ , N

and of constructing another matrix.

1. Introduction.   Let K(x, t) be a Hermitian kernel defined in / x /, where / =

[a, b], i.e. K(t, x) = K(x, t), such that

Fix) =  [b |/v(x, f)|2 dt   is bounded in /.
J a

It is known that all the characteristic values p¡ of K(x, t) axe real and there exists an

orthonormal set {y,-(x)} of characteristic functions [2], i.e.

(i ) J* K(x, t)yfi) dt = /i,y<(*)>   fba yfc)yfiödx = 6D■

The first attempt to obtain a numerical solution for (1) with an error estimate

for the characteristic values was made by Wielandt [4], which replaced the original

problem by the sequence of eigenproblems

(2) K(n)y\n) = ^C«),      K(n) = {W/„/C(xf„, x/n)},       i = I, ... , n;

wjn > 0 and x„ E I, j = I, ... ,n, are, respectively, the weights and the nodes of an

integration rule S by which the approximation

fbafix)dx~±W¡nfixin)
1=1

is made.  The eigenvalues pkn, k = I, ... ,n, which are all real, are then taken by

Wielandt as approximations to the corresponding characteristic values of K(x, t), where

the correspondence is specified by the following assumptions:

Let V — {a,, ... , am] be a subset of the set R of all eigenvalues of a square

matrix A or of all characteristic values of a kernel F(x, t) defined in / x /, and let

W= {z2 |zG F};then,

(a)  if a,, ... , am are the m largest (smallest) real elements of R such that
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a. > cx2 > • • • > am (ax < a2 < • • • < aOT), then every a¡ # am with multiplicity

r, > 1 occurs r( times in V,

(b) if tVj, ... , am are the m real elements of 7? of the largest modulus such

that \ax\ > \a2\ > ' ' ' > \am| and there are r{ real elements of R of modulus lo^l,

then every a2 ¥= a2^ occurs r¡ times in W.

Wielandt obtained the error estimates and the convergence properties for the

eigenvalues with integration rules S such that

(3) t?„(x, f) = ¿ winK(x, xin)Kixin, t) - fbKix, z)K(z, t) dz
i=i Ja

converges to 0, as n —► °°, uniformly in / x /, and they were further improved

and extended to every integration rule satisfying (3)  [3], together with an error

estimate for the numerical solutions generated by the eigenvectors of (2), as

defined in  [3, Section 3].    The purpose of this paper is to obtain new numerical

solutions for (1) with improved error estimates for those ones corresponding to

simple characteristic values in terms of the error estimates, obtainable either by

[4]   or  [3], for the eigensolution of (2) with n replaced by some TV > n.    This

approach is due originally to Linz [1].

2. Error Estimation.  The following theorem is first applied for the new error

estimation [5, pp. 139-140] :

Theorem  1.  Let A be a Hermitian matrix of order m with eigenvalues \X,X2,

... ,\m and y = iyx, y2, ■■■ , ym) E Cm-the m-dimensional complex Euclidean

space—with

\y\ =

[  m 1*

Z>,i2     =
.1=1      J

then for every number p

min|ju - \.\ < \Ay - py\.
i

The smallest value of \Ay - py\ with |y| = 1 is attained for p = iAy, y), which

by Theorem 1 yields:

Theorem 2. Let A be a Hermitian matrix of order m with eigenvalues \x,\2,

... , Xm ; then for every y ECm such that \y\ = 1 and for every p

min|(,4y, y) - \\ < \Ay - py\.
i

Define now a new scalar product (u, v)m of u, v E Cm and a new norm |«|m by

m _

(4) (u,v)m s £ wlmutvt,      \u\m =V(«, u)m.
i=i

To obtain a numerical solution for a characteristic function, the eigenvectors y^ of

(2) were assumed to satisfy lyj^l„ = 1 [3, Section 3].  Now, given an approximate

eigensolution ]lkn, yk"^ of (2), the numerical solution ykn(x) for a characteristic

function generated by yf¿"^ can be defined, as in [3, Section 3], by
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n

ykn(x) S ÏÏkn   Z Wjn ykfK(X' xjn)-
7=1

Further, take N > n and, using (4), obtain approximations y^V) for ykN^ and m^ for

pkN and a numerical solution yfc/y(x) f°r tne characteristic function as

nN) - HfV >f>.    where YJff> = yfc|I(;tw), / = 1, ... , TV,

ÏÏkN - (K™?**>. ?fV

TV

?**(*) = ÏÏfcTV Z   WjNy{kj)K{-X' X¡n)'
7=1

then for a simple characteristic value pk it can be shown that the error estimate for

]lkN is of better order of magnitude than that obtained for pkn by [3, Theorem 1 ],

provided that |y^l) -y[n)l„ and lMjt„ ~ Mk„l are sufficiently small.   Indeed,

(5) \pkN ~Vk\< \îikN - ßkN\ + \ßkN -ßk\,

and by [3, Theorem 1],

Kn * Mkl = 0(Ojv).   where am = max|T7m(x, f)|;

therefore, it remains to prove that

(6) ßkN - Hn = 0(o2n + \yin) -y^M + (pkn - pkn)2),

for which it will be shown below that

(7) \ykN)-ykNX = o(on +|y(«) -y(">i„ + \pkn -pkn\).

The error estimate for yfc/v-(x) will be deduced from

i^fcivW ~yk(x)\ < !?**(*) - VkN^kNykN(x)\+ ŒkùfakN - VkN)ykNÍx)\

(8) +\ykN(x)-yk(x)\.

To bound (pkN~ Hkn¡\, observe that for sufficiently large n and TV it follows by (6)

and [3, Theorem 2] that pkN is a well-separated eigenvalue of K^N^ such that

ftkN - Mfc/yl = min \ßkN - M,wl,

which by Theorem 2 implies

\PkN - *W < ekN = VK -VkN?k\ =  l^(7V)5T) "«wf V

where //l7 = K(xiN, xjN)s/wmwjN and ?fc,- = yj£V^, W' = 1, • • • , tV.

Further, to obtain a bound for |y^ ".V/t^Ur» let Jk^ nave tne expansion

nN)=ícjy¡»\ ck>o,
7=1

with {yj^} forming a set satisfying (see Definition (4) and [3, Section 3])
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then

\ykN)\ = Z k/ = i,
7=1

and by a procedure similar to that applied in [6, pp. 172-173]

ft"} -yiNX < 4^(1 + 6D.    ^ - /W < «W^o - okNYl,

(10)
where dkN = min |jufeJV - PjN\ and ô[iv) = ek2Ndk^    with efciV defined in (9),

provided that 5jj^ < 1.  To establish (7), observe that

ykV-yW = ̂ +dV+d?\
where

¿(i) = y(N) -ykn(xiN),   dp> =ykn(xw)-yk(xm),   dp) = yk(xiN) -ykN(xiN).

Now

[" TV -iy2
yki   = l°N®kn)]     ?*„(*<*)>   where a%(u) =     g wwM*w)|2     ,

ykn(xw) - ykn (xín) = HnHntekn ~ Vkn)Jkn(xiN)

+ Pkn   t wjn [fi? -yïnMixiN, */„)>
7=1

[n -"|l/2

i+tâ    £   wpnwqniïN(xpn,xqn)-v„(xpn,xqn)]yk"Jyknpn   ,
P.<7=1 J

(11) \\ykm\\2 = l - Pkm    JLWimWjm^miXim'Xjm)ykj)y<kV-
«.7 = 1

Hence

l<W*„) "IK \o%(Jkn) - a^(yfc„)| + \a%(ykn) - 11

<!^CyfcB->'ifc„)l + lo5r(yfcn)-il

= 0(\pkn-pkn\) + 0(|y(») -y(»)|B) + 0(aN) + 0(on),

d¡» = 0(|y<") -y^L, + l£fc„ ~ßkn\ + on),

and by [1, Theorem 3], [1, Eq. (10)] and (11),

42> = O(on),      43> = 0(0jv),

which establishes (7).

For the sake of error estimation of )>kN(x), apply the Cauchy-Schwarz inequality

to the first two terms at the right-hand of (8) to obtain
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ÏÏkAx) - Î^WV-J'Wv-tol + ÏÏkN&kN- VkN)ykN(x)\

< fck-NW(kN) -y(kN)\N + KuCükN - Mk7v)l]V6Vx),

gn(x) = Z yviN\K(x,xiN)\2,
7=1

with bounds for ly^ ~ ykN^N> \PkN ~ ^fc/J m^ ^kN obtained from (10); the

bound for the last term of the right-hand of (8) is obtained by application of [3,Theo-

rem 3] or of the remark in [3, Section 4] with

\ykf\ < \yif\ + tiff -yif\ < \yíV I + *&&? > -ykNX

and lyf0 ~ykN)\N bounded by (10).

3. Numerical Results.   To illustrate the superiority of the new numerical solution

and of the new error estimates, the first example presented in [3, Section 2] is taken

for comparison.  The error estimates for the ]lkN presented in the following table are

those obtained, using the triangle inequality in (5), with the estimate (10) for XJlkN -

pkN\.  The bounds for \pkN - pk\ and the p-N and the best error estimate for pkn are

obtained in [3, Section 5], using the fact that pk is the nearest characteristic value to

Vkn and PkN, and

3tAm(x)Bm(x) + Fm(t),      x<t,

rim(x, t) =
1

6(m - l)2
( 3xAm(t)Bm(t) + Fm(x),      x>t,

where (the formula for Fn in [3, Section 2, Example 1] is in error)

Am(z) = (m - l)z-[(m - l)z], Bm(z) = l -Am(z),

Fm(z)=-l-z+Am(z)Bm(z)Uz

m

2¿m00-i
777 - 1

The numerical solution for ykN(x) is the function defined by (8) generated by the

approximate eigenvector y"k") corresponding to the kth negative eigenvalue pkn.

Case

Best error

estimate for

M*n by [3]

Error

estimate

for ßkN

Actual

error

for ßkN

Error

estimate

for ykN(x)

Actual maxi-

mal error for

ÎVvOM
/=0, 1.m

n= 101

tV = 1000

m = 3000

9.074-10-5

4.342-10-4

1.006-10-3

9.126-10-7

5.046-10-6

1.137-10-5

1.25-10-7

9.11-10-8

8.53-10-8

0.001552

0.0745

0.721

1.75-10"4

9.167-10"4

2.15-10-3

« = 201

7V= 2001

m = 6000

2.27-10-5

1.09-10~4

2.52-10-4

2.274-10-7

1.26-10-6

2.9-10-6

3.14-10-8

2.3-10-8

2.167-10-f

0.0004524

0.0163

0.165

5.177-10-5

2.085-10"4

5.652-10-4



404 E. RAKOTCH

Department of Mathematics

Technion, Israel Institute of Technology

Haifa, Israel

1. P. LINZ, "On the numerical computation of eigenvalues and eigenvectors of symmetric

integral equations," Math. Comp., v. 24, 1970, pp. 905-910.     MR 43 #1461.

2. S. G. MIHLIN, Lectures on Linear Integral Equations, Fizmatgiz, Moscow, 1959; English

transi., Russian Monographs and Texts on Advanced Math, and Phys., vol. 2, Gordon and Breach,

New York; Hindustan, Delhi, 1960.     MR 23 #A490; 24 #A3483.

3. E. RAKOTCH, "Numerical solution for eigenvalues and eigenfunctions of a Hermitian

kernel and an error estimate," TVfaffc. Comp., v. 29, 1975, pp. 794-805.     MR 51 #9556.

4. H. WIELANDT, Error Bounds for Eigenvalues of Symmetric Integral Equations, Proc.

Sympos. Appl. Math., Vol. 6, Amer. Math. Soc, Providence, R. I..1956, pp. 261-282.     MR 19, 179.

5. J. H. WILKINSON, Rounding Errors in Algebraic Processes, Prentice-Hall, Englewood

Cliffs, N. J., 1963.     MR 28 #4661.

6. J. H. WILKINSON, 77ie Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965.

MR 32 #1894.


