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Improved Error Estimates for Numerical Solutions
of Symmetric Integral Equations

By E. Rakotch

Abstract. The most widely employed method for a numerical sclution of a symmetric
integral equation with kernel K(x, t) in interval I = [q, b] is the replacement of the
original problem by the sequence of eigenproblems
n) (n n n) _ .
K( )y'( ):“inyg )' K( ): {,vinK(xin,Xjn)}, i=1,...,n,
i
obtain an approximation, with improved error estimates, of the numerical eigensolu-

with Win > 0 and Xjn €I j=1,...,n. The eigenvectors y(") are further used to

tion for some N > n, with no necessity of computing KN and y,(N), i=1,..., N,

and of constructing another matrix.

1. Introduction. Let K(x, t) be a Hermitian kernel defined in I x I, where [ =
la, b], i.e. K(t, x) = K(x, t), such that

S 2 . .
F(x) = f _IKGx, DI dr s bounded in 1.

It is known that all the characteristic values y; of K(x, t) are real and there exists an
orthonormal set {y,(x)} of characteristic functions (2], i.e.

) [? ke oy de = wy), [y ds =5,

The first attempt to obtain a numerical solution for (1) with an error estimate
for the characteristic values was made by Wielandt [4], which replaced the original
problem by the sequence of eigenproblems

2) KMy™ =y ym, KM = W KGey X)) 0=1,.0.,m

Wip > 0 and Xin €1, j=1,...,n,are, respectively, the weights and the nodes of an
integration rule S by which the approximation

[P rerdx = 3w fo
i=1

is made. The eigenvalues My s k=1, ..., n, which are all real, are then taken by
Wielandt as approximations to the corresponding characteristic values of K(x, t), where
the correspondence is specified by the following assumptions:

Let V = {al, e, ozm} be a subset of the set R of all eigenvalues of a square
matrix 4 or of all characteristic values of a kernel F(x, t) defined in I x I, and let
W= {z?|z € V}; then,

(a) ifa,, ..., a, are the m largest (smallest) real elements of R such that

m
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=0, => 2, ( S <---<a,), then every o; # a,, with multiplicity
r; 2 1 occurs r; times in V,

(®) ifa,,...,a, are the m real elements of R of the largest modulus such
that |a;| > lay| =+« + > la,, | and there are r; real elements of R of modulus log;1,
then every a? # a2, occurs r; times in W.

Wielandt obtained the error estimates and the convergence properties for the
eigenvalues with integration rules S such that

?3) N, (x, 1) = i W, K(x, x;, )K(x;,, 1) — f bK(x, 2)K(z, t)dz
i=1 a

converges to 0, as n — oo, uniformly in I x I, and they were further improved
and extended to every integration rule satisfying (3) [3], together with an error
estimate for the numerical solutions generated by the eigenvectors of (2), as
defined in [3, Section 3]. The purpose of this paper is to obtain new numerical
solutions for (1) with improved error estimates for those ones corresponding to
simple characteristic values in terms of the error estimates, obtainable either by
[4] or [3], for the eigensolution of (2) with n replaced by some N > n. This
approach is due originally to Linz [1].

2. Error Estimation. The following theorem is first applied for the new error
estimation [5, pp. 139-140] :

THEOREM 1. Let A be a Hermitian matrix of order m with eigenvalues \,, \,,
s Nyandy = (¥, Yy, oo+ » V) € C,,,—the m-dimensional complex Euclidean

space—with
m %
|ylE[E ly,-l’] =1
i=1

then for every number u
minju = NI < Ay — wyl.
1

The smallest value of |4y — uy| with |y| = 1 is attained for u = (4y, »), which
by Theorem 1 yields:

THEOREM 2. Let A be a Hermitian matrix of order m with eigenvqlues A\, \,,
««+ s N,,; then for every y € C,, such that |y| = 1 and for every u

min|(4y, y) = NI < Ay — wyl.
13

Define now a new scalar product (#, v),, of u, v € C,, and a new norm |u|,, by

(4) (u’ v)m = Z Wimui'ji’ |ulm = V(u’ u)m'
i=1

To obtain a numerical solution for a characteristic function, the eigenvectors y(k”) of
(2) were assumed to satisfy | y}c”)ln =1 [3, Section 3]. Now, given an approximate
eigensolution 11, ,,, }'ﬁ”) of (2), the numerical solution ¥, (x) for a characteristic
function generated by ™) can be defined, as in [3, Section 3], by
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ykn(x) Mkn z yk] K(x 'xln)
=
Further, take N > n and, using (4), obtain approximations }'%N ) for ygv ) and Tik y for

My and a numerical solution ¥ y(x) for the characteristic function as
T =1YMRIYM, where Y =5, (x;0),i=1,..., N,

Ven®) = ten Z Nyk, K(x jN);

then for a simple characteristic value y, it can be shown that the error estimate for
Zlk  is of better order of magnitude than that obtained for u,,, by [3, Theorem 1],
provided that [3{") — y(™|_ and [{,, — p,| are sufficiently small. Indeed,

Q) en = i) < ey = e ! + e = Bgls
and by [3, Theorem 1],

gy — Ml = O(oy), where 0, = max|n,, (%, 1)l;

therefore, it remains to prove that

(6) By — My = O(a + [P =y + (W, - Hien)),
for which it will be shown below that
(7) I.’}\"(N)_'y(N)lN = 0(0 +] () —y(")l + I’Ijkn - ”'knl)’

The error estimate for 'jfk (%) will be deduced from
Vv () = 20 < Fpen () = Biepttien Vien Ol + ey (e = Fyen) Vi)

(®) + 1Y @) = Y ).

Tobound [H — iy, observe that for sufficiently large n and NV it follows by (6)
and [3, Theorem 2] that u; , is a well-separated eigenvalue of K®) such that

I'ﬁkN - ﬂkNl = mlm ITikN _lJ-,'Nl,
which by Theorem 2 implies
ITIkN — Myl S S€En = m #szkl = |K(N)y(N) - I-‘ y§¢ )IN’

©) .
where H,-]- = K(x;p» xjN)\/w,N iN and Z, Zki —y§” )\/w,.N,l, j=1,...,N

Further, to obtain a bound for | y(N ) - y(N ) Iy let y(N ) have the expansion

N
M = > cy(N), ¢, >0,
j.—.
with { yl(N )} forming a set satisfying (see Definition (4) and [3, Section 3])

OGP v =8 P a=1 N,
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then
SON)| = S
ka |=Zl Icll =l5
’:

and by a procedure similar to that applied in [6, pp. 172—173]
T -y R <5 +60), Wy — menl < diydV 0 - 800)71,
(10) N
where d; ), = ;‘l;lll;l [ N — uiNl and 6§CN) = eksz;,% with €, defined in (9),
provided that 6§CN ) < 1. To establish (7), observe that
T =0 = df + ) +af?,

where

dt(l) = 'jflgxw “Ykn (xiN)’ dl(2) =Yrn (xiN) _yk(xiN), d,ga) E)’k(xuv) —ykN(x,.N).

Now

Fa = - #
[oN(y,m)] ykn(xiN)’ where 01*\‘/(")= [Z Nlu(x,N)l] >

~ — — ~_l ~ ~
Vien®in) = Vin (i) = “knl“kn (kn ~ Hgn) VienCein)

_nl Z W]n [yk']l) '—y(n)]K(x,N: in)’
=

ofv(}’k") = [l + “I:nzp qzl anWQn [nN(xpn' qn) nn(xpn: an)] y(n) (n)] s

(11) "ykm “2 =1 —I‘"km Z wlmwlmnm(xxm’ x]"!)y(n) (n).
i,j=1

Hence
0% (Fen) = 1 < 105 (Frn) = 05 (Vi) + 105 (Vi) — 11
<o} Fin = Vil + 105 (Vin) = 11

= Oy, =~ Hen)) + OGF =y, + O(oy) + O(oy,),
d = 07 = y{Ply + Wn ~ Ml + 0,),

and by [1, Theorem 3], [1, Eq. (10)] and (11),

d® =0(o,), d =0(y),

which establishes (7).

For the sake of error estimation of ¥, (x), apply the Cauchy-Schwarz inequality
to the first two terms at the right-hand of (8) to obtain
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r}\’,kN(x) - ’ﬁ]:]\lflikNykN(x)' + |H;1b(ﬂkN— ﬁkN)ykN(x)l
S en T - yMiy + Wen (e — men) VG N (),

where

N
Gy(x) = 3 winlKx, x;))2,
=1

with bounds for I}',(cN) -y,(cN)lN, [T n — Mgl and py 5 obtained from (10); the
bound for the last term of the right-hand of (8) is obtained by application of [3, Theo-
rem 3] or of the remark in [3, Section 4] with

N ~ — ~
P <IFP1+ B = D1 < B0+ w2 - 3y,

and [V - M| bounded by (10).

3. Numerical Results. To illustrate the superiority of the new numerical solution
and of the new error estimates, the first example presented in [3, Section 2] is taken
for comparison. The error estimates for the i, » presented in the following table are
those obtained, using the triangle inequality in (5), with the estimate (10) for [ , —
Mgyl The bounds for |uy n — u, | and the Min and the best error estimate for u,, are
obtained in [3, Section 5], using the fact that u, is the nearest characteristic value to
Mg, and py v, and

3tA,,(x)B,,(x) + F (), x<t,

N, 1) = ———
6m =% 504 (0B, () + Fpl), x>1,

where (the formula for F, in [3, Section 2, Example 1] is in error)
A,@)=m-1)z-[(m-1)], B,(2)=1-4,0),

F,@=1-z+4,()B,(2) <3z - M >
m—1

The numerical solution for ¥, (x) is the function defined by (8) generated by the
approximate eigenvector jf”}c") corresponding to the kth negative eigenvalue u,,,.

Actual maxi-
Best erro; Error Actual Error mal error for
estimate for estimate error estimate ~
~ ~ ~ Vin(l/m),
Case k1 g by [3] for iy for Wy for yn™®) [1=0,1,....m
n=101 1 9.074-10-5 9.126-10-7 | 1.25-10~7 0.001552 1.75-10—4
N=1000 | 2 4.342-10-4 5.046-10-6¢ [9.11-10—8 0.0745 9.167-10—4
m=3000 | 3 1.006-10-3 1.137-10-5 | 8.53-10-8 0.721 2.15:10-3
n =201 1 2.97-10-5 2.274.10-7 |3.14-10—8 0.0004524 | 5.177-10-5
N = 2001 2 1.09-10—4 1.26-10-6 2.3-10-8 0.0163 2.085-10—4
m=6000 | 3 2.52-10-4 29-10-¢ 2.167-10-8 0.165 5.652-10—4
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