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Error Analysis for Spline Collocation Methods

With Application to Knot Selection

By J. Christiansen and R. D. Russell*

Abstract.   Some collocation schemes used to solve mth order ordinary differential

equations are known to display superconvergence at the mesh points.   Here we

show that some such schemes have additional superconvergence points for the ap-

proximate solution and all of its derivatives.   Using such points, we argue that a

mesh selection scheme introduced by Dodson can be expected to perform well

under general circumstances.   A numerical example is given to demonstrate the

new superconvergence results.

I. Introduction.   The authors recently considered [4] the problem of adaptive

mesh selection when solving boundary value problems by spline collocation.  One of

the most straightforward and efficient schemes is one presented by de Boor [1].  It

was proposed for the collocation methods which display superconvergence at the mesh

points (see de Boor and Swartz [2] ) so that mesh selection based on local behavior

is valid.  When using splines of degree k - 1, the scheme involves approximating the

kth derivative of the exact solution from values of the (fc - l)st derivative of a spline

approximation.   There does not seem to have been any proof that such an approxima-

tion can converge.   A new result from [4] can be used to show that a convergent ap-

proximation to the kth derivative is obtainable in this way and that the scheme yields

mesh distributions which equalize or equidistribute [5] the dominant terms in the

error, provided one starts sufficiently close to the solution.

II. The Structure of the Error.   The collocation method is used to approximate

the solution w(x) to the problem

m-i

(2.1) Luix) = u(m)(x) + £ a/xW) = fix)      (a < x < b),
/'=o

m-l

(2.2) Z (a,/M(/)(a) + p>(/)(2>)) = y¡      (K i < m).
f=o

In particular, suppose the mesh tt: a = xx <x2 < ■ • ■ <xAr+1 = b is given with h =

max(fy) = max(x/+ j - x,) and

(2.3) —4rr  <K,
rmnihA

where AT is a fixed constant independent of n.  Then a piecewise polynomial u(x) of
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degree < k on each [x¡, xI+1] and in C(m l)[a, b] is determined by requiring it to

satisfy (2.2) and (2.1) at ik - m) points in each [x¡, xi+ x] (1 < / <N). These (col-

location) points in [x¡, xi+ x ] are chosen as

x,. +x.+ 1 h¡
2 +P,J       (K/<k-m),

where {p.: 1 </ < k - m) consists of either the Gauss or Lobatto points in [-1, 1].

Although we consider only the linear problem (2.1), (2.2), the results generalize readi-

ly to the nonlinear case by making use of results in [2] (see especially Eq. (3.26)).

The form of the collocation error is given by

Theorem 2.1. Suppose that a¡ix) G C2(k~m)[a, b] ; (2.1), (2.2) has a unique

solution «(x) G c(2k+ ' ^[a, b] ; and that (2.1), (2.2) has a Green's function G(x, t)

satisfying

dx>   dt'
<C      (0 < j <m - 1,0 <Kk-m),

where G(x, •) is an element of C(m) [a, x]  x C(m) [x, b].  Then if

!2ik - m) for the Gauss points,

2(fc - m - 1)   for the Lobatto points

and d> k, the error for x G (x/; x/+ j ) satisfies

ew(x) s M(/)(x) - -/%)

= u^iXi)(^y~'^^ix-xi+1Á)\ + Oihk~'+1)      (0 </< k),

where x/+1/2 = x¡ + h¡12 and the polynomial

1 C t k~m

(2.4)

(2.5)

that

m c)m-lT\it-Pj)dt.
7=1

ik-m)\im- \)\

Proof.   Using the hypotheses of the theorem, it was shown in [2, Theorem 4.1]

ll«(/) - u(/)IL = Oihk~')      (0 </ < m)

and also that

(2.6) u^ixt) - v^iXi) = Oihd)      (1 < i < N + 1 ; 0 < / < m - 1).

Extending this analysis somewhat in the appendix of [4], the authors showed that

k

(2.7) eix) = uix) - vix) = "(fc)(^)(y ) p(^ (x - xi+ J) + Oihk+1)

on [Xp xi+ j ] where P(?) is defined in (2.5).   Thus, the polynomial

Hx) = vix) + u(kHx¡)(^yp(l-ix-x¡+y2))

is an Oihk+1) approximation to «(x) on [x¡, xj+x].  Since w(x) G C(-2k+1)[a, b], a
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straightforward argument using Markov's inequality (e.g., see the proof in [2, Lemma

4.1 ]) obtains uu\x) - vu\x) = OQik + l~>) (0 </< k).    D

Analysis of the low order factors from the Oihk+l) term in (2.7) produces the

superconvergence results (2.6) at the breakpoints.   In addition, we see from (2.4) that

any real roots of/*"(£) which fall in (-1, 1) correspond to points in (x(-, xj+x) at

which the jth derivative approximation is superconvergent.   For example, a property of

the polynomial PC) in (2.5) is that Pit) = (- i)kPi-%), so that /**-1>(0) = 0.  Hence,

P^k~1\%) has a real root at ? = 0 which implies

(2.8) e<k-lXxi+v) = OQi2)      (1</ < AO,

or

(2-9) "(fc-,W/2) - "(,c"1 >(*,+ *) = Oih2).

III.   A Mesh Placement Algorithm.  The mesh placement algorithm proposed in

[3] and further discussed  in [1], [4] is based on the error bound

(3.1) ||m - v\\¡ =       max     |«(x) - u(x)| < consthk„u(fc)||,. + Oihk+l)
x<E(x¡,x¡+x)

for the methods with d > k.  The algorithm attempts to reduce the error by picking

the mesh so that

(3.2) hk\\u(k\ = const      (1 « i < N).

From (2.4) we see that a mesh satisfying (3.2) equidistributes the leading terms in

the error and minimizes ma\Xfí¡<Nihk\\u^\\¡).  For such a mesh

||u - v\\¡ = const(l + Oih))      (Ki<N).

In practice one does not use (3.2) but rather the condition

(3.3) J   '+1\u(k\x)\llkdx = const      (1</<JV),
xi

where u(k\x) is a piecewise constant approximation to u^k\x).  Condition (3.3) is

asymptotically equivalent to (3.2) if w^(x) converges to t/fc'(x).

De Boor suggests [1] the following approximation for u^k\x) using the spline

approximation u(x):

2(v{k'1)(x5,2)-v^l\x3/2))

-hx+h2 °n (*" **>'

^'W^-^'U     ,   "(fc-1)(^+3/2)-^-1)(^+./2)

(3A)u^k\x)=<i hi + hi-i hi+l+*i

on(x,, x,.+ 1)      (2<i<AT-l),

2i¿k-lXxN+y2)-¿k-i\xN_ÍA))

hN + hN_x
on ixN,xN+x).
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Table 1

A= 6 N=\2 A= 24 N=48

1. .13(-6) 7.5 .59(-9) 7.8 .24(-11) 8.0 .35(-13)* 6.1

2. .28(-5) 6.2 .29(-7) 6.6 .27(-9) 6.8 .22(-11) 6.9

3. .29(-4) 4.8 .68(-6) 5.4 .13(-7) 5.7 .23(-9) 5.8

4. .36(-6) 7.8 .15(-8) 7.9 -59(-11) 8.0 .29(-12)* 4.3

5. .55(-4) 4.9 .13Í-5) 5.4 .25(-7) 5.7 .43(-9) 5.8

6. .15(-2) 4.0 .66(-4) 4.5 .25(-5) 4.7 .86(-7) 4.9

7. .13(4) .85 .50(3) 1.4 .15(3) 1.7 .42(2) 1.9

8. .55(5) .51 .34(5) .72 .19(5) .85 .99(4) .92

9. .29(5) -.17 .16(5) .86 .60(4) 1.4 .18(4) 1.7

*affected by roundoff error

Substituting (2.9) into (3.4) shows that u(k)ix) = i/fe)(x) + 0(h), so the mesh

strategy of (3.3) (3.4) will asymptotically equidistribute the dominant terms in the

error as A —► °° if K in (2.3) is sufficiently large.   For cases where the scheme may

fail, see [1].  The problem of simultaneously finding an approximation u(x) to u(x)

and a mesh rr satisfying (3.2) is nonlinear [5] ; as such, convergence of the mesh selec-

tion scheme when one alternately approximates u(x) and picks n will depend upon the

first approximation.   Continuation has been useful for us in picking meshes for diffi-

cult problems.

IV.   Numerical Example.   Numerical results for collocation, including the adap-

tive scheme of Section III, have been dealt with in many other places so we confine

ourselves to a single example to demonstrate the convergence properties derived in

Section II.

The problem

u"(x) + Au'(x) + u(x) = I00e-l0x,      0<x<l,      M(0) = 1,      u(l) = e~10,

is solved using C( '} quintics and collocating at the four Gaussian points in each sub-

interval.   For this method, from (2.5)

"OD-T^-î)«2-')2.

so P(%) has roots % = ± 1/V7 in (-1, 1) and P"(Ç) has roots £ = ± y/Jp in (- 1, 1).

Therefore, from (2.6) and (2.7) we expect the following rates of convergence:

1. Oih8) for e(x,.) (1 <z</V+ 1),

2. Oih1) for eixi+V2 ± h¡/2y/j) (1 </ < A),

3. 0(h6) uniformly for e(x),

4. Oih8) for e'(x¡) (1 < i < N + 1),

5. Oih6) for e'ixi+V2 ± ih¡l2)yjW) (1 < / < N),

6. Oih5) uniformly for e'(x),

7. 0(7z2)fore<5>(x,.+ ,/2)(l <t<N),
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8. Oih)  uniformly for e(s)(x),

9. Oih)  for i/6)(x,.) - uWix¡) (1 < i < N + 1).

Table 1 gives the actual errors (measured using the exact solution «(x) = e~l0x

and its derivatives) and convergence rates from using equal spacing with N = 3 initially

and then halving the mesh four times.   Uniform errors are estimated by monitoring

the error at 20 points per subinterval.

Note that the convergence rate for u^6\x¡) - u ^6\x¡) appears to be Oih2)

rather than the predicted Oih).  When using nonuniform meshes, as one would typi-

cally do in practice, the rate of convergence drops to the predicted Oih), so that all

quantities have the convergence rates expected.  We omit these numerical results.

Department of Mathematics

Simon Fraser University

Burnaby, B. C, Canada VSA 1S6

1. C. de BOOR, "Good approximation by splines with variable knots," II Conference on

the Numerical Solution of Differential Equations, Lecture Notes in Math., vol. 363, Springer-Ver-

lag, Berlin and New York, 1973.

2. C. de BOOR & B. SWARTZ, "Collocation at Gaussian points," SIAM J. Numer. Anal,

v.  10, 1973, pp. 582-606.     MR 51 #9528.

3. D. J. DODSON, Optimal Order Approximation by Spline Functions, Ph.D. Thesis, Pur-

due Univ., 1972.

4. R. D. RUSSELL & J. CHRISTIANSEN, "Adaptive mesh selection strategies for solving

boundary value problems," SIAM J. Numer. Anal. (To appear.)

5. A. B. WHITE, JR., On Selection of Equidistributing Meshes for Two-Point Boundary-

Value Problems, Report  112, Univ. of Texas, Center Numer. Anal., 1976.


