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A Quasi-Projection Analysis of Galerkin Methods

for Parabolic and Hyperbolic Equations

By Jim Douglas, Jr., Todd Dupont and Mary F. Wheeler*

Abstract.   Superconvergence phenomena are demonstrated for Galerkin approxima-

tions of solutions of second order parabolic and hyperbolic problems in a single

space variable.   An asymptotic expansion of the Galerkin solution is used to derive

these results and, in addition, to show optimal order error estimates in Sobolev

spaces of negative index in multiple dimensions.

1.   Introduction.  We shall be concerned primarily with the analysis of supercon-

vergence phenomena associated with the numerical solution of second order, linear

parabolic and hyperbolic equations by Galerkin methods based on piecewise-polyno-

mial spaces.  Our principal tool will be an asymptotic expansion to high order of the

Galerkin solution; this expansion will be obtained by using a sequence of elliptic pro-

jections and will be called a quasi-projection.

In Sections 4 and 5 we develop the quasi-projection for parabolic Galerkin

procedures for problems in one or several space variables for both Neumann and

Dirichlet boundary conditions and derive optimal order negative norm estimates for

the error in the Galerkin solution.  In Section 6 we apply the quasi-projection to de-

rive superconvergence results in the case of a single space variable when the Galerkin

space consists of piecewise-polynomial functions of degree r.   It is well known [4],

[6], [7], [9], [10] that, if h is the knot spacing parameter associated with the not

necessarily uniform grid, the Galerkin solution for standard parabolic problems con-

verges with an error that is at best globally of order 0(hr+ ), as measured in L2 or

L°°.   Consider a knot at which the smoothness constraint of the Galerkin space re-

duces to continuity.  We show that the Galerkin solution produces an 0(h2r)-ap-

proximation at such a knot.  Also, we show that a very simply evaluated weighted

quadrature of the Galerkin solution gives an cXft2^-approximation of the flux at the

knot; the direct evaluation of the derivative of the Galerkin solution leads to an

0(/1r)-approximation.

We summarize briefly in Section 7 results presented in detail elsewhere [3]

showing that the superconvergence results above are preserved and that supercon-

vergence occurs in the time increment when the Galerkin procedure is discretized

in time by a collocation method.

In Section 8 we treat continuous-time Galerkin methods for hyperbolic prob-

lems and obtain analogous results.

Throughout this paper we rely heavily on some earlier results of two of the

Received March 21, 1975; revised July 11, 1977.

AMS (MOS) subject classifications (1970).   Primary 65M15, 65N30.

»Research of the first two authors supported by NSF grant MCS74-12461.
Copyright © 1978, American Mathematical Society

345



346 JIM DOUGLAS, JR., TODD DUPONT AND MARY F. WHEELER

authors on two-point boundary problems [1] and on collocation methods for para-

bolic equations [2].   The quasi-projection is conceptually similar to thé quasi-inter-

polant in [2] that played a central role in the derivation of superconvergence results

in that treatment.  The flux procedures evolve from earlier work by the other author

[11] and her husband [8].  The applications of the quasi-projection have been limited

to standard Galerkin methods in this paper; see [5], [12] for applications to H1 and

H'1 Galerkin methods.

2.  Some Notations and Preliminaries.   Let Í2 be a bounded domain in R" with

a smooth boundary 9Í2; if n = 1, let Í2 = 7 be an interval.   For nonnegative integers

s the real Sobolev space Hs(Sl) is the set of all real functions in ¿2(£2) whose distri-

butional derivatives of order not greater than s axe also in L2(£l);Hs(£l) is normed by

II w«2 =   Z    WDaw\\2,

where a = (ax,a2, . . . , an), <*,- a nonnegative integer, lal = a, + • • • + a , Daw

= alalw/9x?i • • -te"«,and

Denote the inner products on the (real) spaces 7,2(Í2) and ¿2(9Í2) by

(P, VO = }n ftydx    and    <</>, \p) = f ß <p\¡tdo,

respectively.  We shall also use the norm on the dual space H~s(£l) = (7/s(£2))'; let

ML, = sup{(*, MM,: ¡pEHs(Sl), 11^*0}.

Note that the duality is with Hs(£l) and not with 7/¿(í72).   Finally, if X is a normed

space with norm II -11^ and if ip: [0, T] —► X, we adopt the notations

and

^L°°(X) =   ^L°°(0 TX) = eSS SUP   "^"a-

' 0<t<T

The time interval [0, T] will be denoted by /.

Let a(x), b¿(x), 1 < i < n, and c(x) be C°°(S2) functions, and assume that

(2.1) 0<ao<a(x)<ax,      xEÜ.

Let b(x) be the vector with components b¡(x), and define the differential operator

L on £2 by

(2.2) Lw = - V • (fl(x)Vw) + b(x) • Vw + c(x)w.

The formal adjoint L* of L is given by
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l*^ = - v ■ (aV<p) - V • (bip) + op.

Let B be the bilinear form associated with L:

B(ip, ip) = (aw, Vi/0 + (b ■ Vip + op, \¡i).

Assume that B is coercive over 7/'(i2); i.e., assume that there exists a positive con-

stant b0 such that

(2.3) B(ip,ip)>b0\\ip\\2,      ipEH1^).

The assumption (2.3) is always obtainable by a trivial change of dependent variables

in the non degenerate parabolic case.

Galerkin methods require finite-dimensional subspaces of H1^) having good

approximation properties.   Let 0 < h < 1 and associate a space M„ with h such that

Uh is a finite-dimensional subspace of H1^) and such that there exists a constant

C, independent of h, for which

(2.4) M   {Wip-xW +h\\ip-xh}<ChS]]iPh

for any ip E Hs(£l), 1 < s < r + 1, where r is an integer greater than one.  Set

M° ={xGM„:x = 0on9iî},

and assume the approximation property that (2.4) holds for any ip E Hs(fX) such that

ip = 0 on 9Í2.  Note that it is usually difficult to construct M° such that (2.4) is

valid for piecewise-polynomial spaces.  We make this limiting assumption in this paper

only because our applications are to problems with Í2 = 7.

3. The Parabolic Problem and its Galerkin Method.  We shall consider parabolic

boundary problems with either Dirichlet or Neumann boundary conditions.   Let p E

C°°(572), where 0 < p0 < p(x) < p, on £2, and let w satisfy

Pjj- + Lw=f,      (x,t)EttxJ,

(3.1) vv(0) = w*,      xE Í2,

a^ + (l-a)w=g,      (x,t)EdtlxJ,

where v denotes the exterior normal to 9Í2, and a assumes the constant value zero

or one for all (x, t) E 9Í2 x /.   If a = 0, assume g = 0; i.e., we restrict ourselves to

homogeneous Dirichlet data.  Let

(3.2) M
M-,      a=l.

Then an integration by parts shows that

(3-3) (pdw/dt, v) + B(w, v) = (f,v) + a(g, v),      vEM.

A continuous-time Galerkin approximation to the solution of (3.1) can be defined
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by requiring that wn : J —* M satisfy

(3.4)        (pdwjdt, v) + B(wn ,v) = (f,v) + (g, v),      vEM,0<t<T;

in addition, it is necessary to specify the initial condition wn(0). The initial condition

will be given later (see (4.11)), since we have in mind a modification of the usual ini-

tial values in order to achieve superconvergence.

4.   The Parabolic Quasi-Projection.   The usual analysis [9] of the error in the

Galerkin approximation for parabolic problems is founded upon comparing the func-

tion wn to the elliptic projection of the solution w of (2.1). Let wn : J —* M be

given by

(4.1) B(wn -w,v) = 0,      v E M, t E J.

If the initial condition for wn is chosen properly, it can be seen [6], [10] that wn -

wn is one power of h smaller than either wn - w or wn - w in both L°°(L2(Sl)) and

L°°(H1(Q,)).  This motivates the further use of elliptic projection to produce an ap-

proximation of wh to some higher order; it will be shown that an approximation of

wn to order 0(h2r) can be obtained in the form of a finite expansion with the terms

decreasing geometrically in size with ratio 0(h2).

Let z0 = wn - w, w0 =wn, and 6Q = w0 - wn.  Then it is easy to see from

(3.3), (3.4), and (4.1) that

(4.2) (pdOJdt, v) +B(d0,v) = (pdz0/dt, v),      vEM.

Define maps zs. J —► M recursively by

(4.3) B(zj, v) = -(pdzHX/bt, v),      v E M, t E J, j = 1, 2, . . . .

Set

(4.4) wj = wn+zx +■■ -+Zj,    j>l,

and

(4.5) 61. = u. Wu />!•

A simple induction argument using (4.2) and (4.3) shows that

(4.6) (pMf/bt, v) + B(d¡, v) = (pdzjldt, v),      vEM,tE J.

The immediate objective is to show that the terms z- decrease for / ranging

to approximately r/2.  The argument will involve duality and estimates in Sobolev

spaces of negative index in a serious way.

Lemma 4.1.   Let I < q < r + 1 and assume that cri+kw/b'ri+k E Hq(il) for

t E J.   Then, for - 1 < s and y = min(i + 2/, r - 1),

(4.7)
9*z;.

<C
bi+k w

bti+ k
(t) hq + lf, J.

Proof   Note first that the coefficients of 7, are independent of t; hence
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(4.8) B
3*z.

;v =

dk+1z
M

jtK     I        \   btk+1

It follows immediately from setting v = dkzJdtk that

9fcz  " l,afc+1-

vEM.

(4.9)
dtk

<C
'7-1

tEJ,j>l.
Il-i9r*+1

Note that, if r is even and (4.7) holds for ; < r/2, then it holds for / = r/2.  Conse-

quently, it suffices to consider s < r - 2/ - 1.

Let s > 0 and assume that \p E HS(Q,).   Let ip E 77i+2(£2) be determined as the

solution of the boundary problem for L*ip = i//, x E £2, with

tft^ + f • ¿V = 0,      XG9Í2, ifo=l,
OP

or

V? = 0,      x e 9Í2, if a = 0.

In either case, H^Hi+2 < Clli/>lls by standard results on elliptic regularity.

First, consider z0 = wn - w.   By the usual argument,

Zr ■,H =
dm-Zn

bt"1        /     \ i

Hence, (2.4) implies that

-,I\>    =ß
¿o

9^
><P   =*

9-Ze

9im
«p-u  , vEM.

9/m
-,* <C

>rn „
O   Zr

9r"
inf   ll<i - ull, <C

1   uSAi

9mz„

9r"
»^l,+ a**+1

for s + 2 < r 4- 1 or s < r - 1.   Since the inequality

Il9mz0/9rmll, <CH9mw/dr'"l|(7/2<.

is trivial, (4.7) holds for/ = 0.

Next, it follows from (4.8) that

-i

(4.10)

9mz

9/' ?,#i.,g5,-.
am + 1.

a-i
m + 1

= 5
9mzy

9^
tp-ii    + Ip

ar

im + l.

, ^

'/-I

dfm + l
(¿> - 17

9m + 1z
7-1

9im + l ;*¡.

Thus, (4.9) and (4.10) imply that

9mz;

of
<C

<C

9mz;
LS+l

df"

9m + l

btm +

+
bm + 1z.

df +1

kS+l +

-1

»m + l.
V-l

3rm + l -i-2)

7-1 Li+1
+

9m + 1z

dt

7-1

m + l
-s-2



350 JIM DOUGLAS, JR., TODD DUPONT AND MARY F. WHEELER

Since (4.7) holds for/ = 0, induction on / implies that (4.7) holds, with the reduction

on the range of s in going from / - 1 to / being caused by the last term in the above

inequality.  Thus, the lemma has been proved.

Note that each bkzJbtk is 0(h2r) in H~s(il) for its maximum applicable value

of s if the solution w is sufficiently smooth.

The estimates of Lemma 4.1 can be applied to (4.6) to bound the difference

6 ■ between w- and wn after a choice of the initial value of wn is made.

Theorem 4.2.  If 2k <r- 1, let

(4.11) wn(0) = wk(0) = w„(0) + z,(0) + • • • + zk(0),

and let 1 < q < r + 1.   Then,

(4.12)
1kKL°°(L2(n))

<c
dk+1w

at
7c+l

i^<7 + min(2fc+ 1 ,r— 1)

L2(Ha(Sl))

and

(4.13)

dk+1w

btfc+1
h"+ 2k

L2(H1(Sl))

if2k<r- 1,

<'k uL°°(Hl(n)) ~^)c dk+1w

af
fc+1

+

L°°(H1(il))

dk+2w

btfc + 2
\hq + 2/C+1

Ll(//<7(Í2)) ,

if2k<r-2.

Corollary 4.3.   If 2k < r - 1, 1 < q < r + 1, and w„(0) is defined by (4.11),

then

\w - w/i"í,"°(7/-*(í2))

fc+1
<chq+s Z

7 = 0

y'v

9«y L2(HQ(Ü.))

for0<s <min(2Ä + 1,7-- 1).

Proof of Theorem 4.2.  Note that 0fc(O) = 0.  To prove (4.12) choose v = dk

in (4.6).  Thus,

1 d
2^^ek^k)+B(h^k)= [P^T'h

bz.

<c
9z.

bt -i
+   £*0  IM?!

and (4.12) follows from (2.3) and Lemma 4.1.   Next, choose v = bdkjbt in (4.6) and

observe that

/      ddk\     1 d Id I dek\
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Hence,

(4.14)

rt  (   Wk   9öfc\ 1
S0{p^F'jr)dT+2B^^e^

= So (p % d-t)dT+12(b- 7fl*W> 5*W) - So(b • Vö*'

If (2.3) is used along with the Gronwall inequality, it is easy to see that

lite,

30,

9r
dr.

(4.15)

,tf*lL-ari(o))<C,|«»*«L-aa(o)) +

<c
9fc+1w

btfc+i

9*

/j<7 + 2fc

L2(L2(n))!

L2(HQ(n))

provided that 2k < r - 1.  This establishes the first inequality in (4.13).  If r is odd,

the choices 2k = r - I and ¿7 = r + 1 produce an 0(h2r)-estimate for 0fc in H1(Q,);

however, if r is even, only an 0(h2r~^-estimate can be obtained from (4.15).  The

following argument regains the 0(h2r).  Integrate the first right-hand side term in

(4.14) by parts in time:

j.'('^)*-(^<*w)-i:('^.'.j dr.

Then, if llôfc(i*)ll1 maximizes the //'-norm of 0k(t),

¿t*)l\<C<
9ffc
bt

(f*)l|2   + llfl^i*)!, So
-1

b2zh

bt¿
dT  +   U0fc(i*)l|2      ,

-1

and

(4.16)

bz.

<C

bt

bk+1

+
z,°°(//-i(n))

b2Zl

bt1 lHh-1^))
+ l9klL-(L2(n))\

w

btfc+1
+

L°°(H<i(n.))

bk+2w

btfc + 2
£i(//<7(n))

h"+ 2fc+l

for 2k < r - 2.  Thus, the theorem has been demonstrated.

For t > 0 the functions z, are not, in general, computable; consequently, it is

of interest to show that the initial condition (4.11) can be evaluated using no more

than the data / and w* and the differential operator. Let k be chosen so that k <

k, where

Ir - 1,      r odd,

r - 2,      r even.

In order to evaluate zk(0) using (4.3), it is necessary to evaluate 9zfc_,(0)/9i first,
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which in turn requires 92zfc_2(0)/9r2, . . . , bkzo(0)/btk, by (4.8).  Indeed, the evalua-

tion of (4.11) necessitates performing the xh(k + l)(k + 2) projections using (4.1) or

(4.8) to obtain bmzj(0)lbtm,0<j + m<k.   Now, 9mw(0)/9fm can be evaluated

using/, w*, and time-derivatives of the differential equation.  Also, it follows from

(4.1) that

Dfbmwh bmw \

hence, the process can be started and then continued using (4.8) to find zx(0), . . . ,

zk(0).  While the computational effort called for by (4.11) is obviously greater than

that for the commonly used initial conditions, it is insignificant in terms of the over-

all problem.   The code that takes time steps can be used to make the projections, so

that the work for any single projection is about equivalent to that for a time step.

5.  The Parabolic Quasi-Projection in a Single Space Variable.  When Í2 = / =

(0, 1), Lemma 4.1 can be sharpened to give a bound on the value of z- at any knot

x¡ at which the smoothness constraint reduces to simple continuity.   Let Ah = {x0,

x,, . . . , xNfj }, 0 = x0 < x, <•••< xNh = 1, with max(x¿ - x(_, ) = h, and as-

sume that M,, consists of piecewise-polynomial functions of degree r having knots at

xi G A,,.   At each x(, 1 </' </V/J - 1, the elements of Un will be assumed to be CPl-

functions, 0 < pi < r; p0 and pN   will be interpreted to be zero.   Then (2.4) holds

for both M„ and M°.

Let x E [0, 1], and assume that x = x¡,h^ for each h and that P¡th\ = 0.   In

the discussion below, x will be treated as an interior point of [0, 1]; the modification

in the argument to allow x = 0 or x = 1 will be indicated at the end of the proof of

Lemma 5.1.

It is convenient to define some spaces that generalize Hs(Çl) in order to include

a bound on the values of the functions at the point x.   For s > 0 let

(5.1) Hs={u: u\(0-)EHs(iO,x)),u\{-> X)EHs((x, 1))} x R,

and set

(5.2) l«OfcW-»«"J»((oS» + l«li.(ff.i))+^1-

For any elements (u, ß) and (v, 7) of//0, define the inner product

(5.3) [(u, ß), (v, y)] =iu, v)+ßyy

where (u, v) denotes the usual L2(I)-innex product.  The space H~s, s > 0, can be

defined by duality with respect to the above inner product; however, since we shall

need the dual norm only for functions in //'(/), we shall avoid some technicalities by

restricting to such functions.   Let z G //'(/), and set

(5 41 111   111 Í Kz' ZW)>("> 0)1     ,„,    Älll /
lllzl"- = supj   me.,mu,   :ll|c-ft"i>°-



GALERKIN METHODS 353

Note that the choice u = 0 and ß = sgn z(x) shows that

(5.5) \z(x)\< NlrllL,,      s>0;

thus, the value at x of any function in //'(/) is majorized by any Hs-noxm, s positive

or negative.  Hence, the following generalization of Lemma 4.1 provides excellent

estimates for the functions z-(x) generated by (4.3).

Lemma 5.1.   Let I < q < r + I and 0 < s < r - 2j - I. If b'+kw(t)lbti+k E

Hq(I) for t E J, then

i

(5.6)
9*z

bt
Ho <c

b'+k w

dt' + k (0 hq+s+2>,       tEJ.

Proof. We shall use the s = - 1 case covered by Lemma 4.1. Let s > 0 and let

(i//, ß) E Hs. Determine ip E C(I) as the solution of the two-point boundary problem

given by

L*ip = *l>,      xEI,

(aip' + bip)(x) = 0,      x =0or l,ifa= 1,

ip(x) = 0,       x = 0 or l,if a = 0,

aip'\ll°0=-ß.

It is an exercise in ordinary differential equation theory to show that

(5.7)

"I (¥>,*(*)) I
•s + 2

< cnir>,/ï)iiL

with the constant being independent of the position of x.   Integration by parts and

the assumed jump condition on ip lead to

[(

9fcz,-   9%   _ ,

btk  btk

/b%

= B
bkz

b~f
L,ip-v)+[p

bk+1z
7-1

btfc+1
,ip-v)-[ P

bk+1z
7-1

btk + 1

Since ip E C(T) is such that (with M = Mh or M°, as appropriate)

(5.8)

it follows that

inf \\ip-v\\x <C\\\(ip,ip(x))\\\s+2
vSM

■~s+l

bkZ;

btk
<c

9fcz;

bt"

us+l +

lfc+1.
Li-\

btfc+1
us+l +

9fc+1z
/"I

btfc+1
-s-2

Note that (5.5) implies that lllzlll     < CllzlLj.  The first two terms on the right-

hand side have already been bounded in Lemma 4.1 ; if we can show that

(5.9)
9%

btk
<C

b^w

~btk
hq+ s -1 <s<r- 1,
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then the induction argument of Lemma 4.1 can be repeated to finish the proof.  Since

/9fcz0   bkz0   _\ "1        /9fcz0 \

(5.9) follows from (5.8) and the known bound on \\bkz0lbtk\\x.

For Dirichlet boundary conditions it is pointless to consider x = 0 or 1, but it

is valuable to allow x to be an endpoint when Neumann boundary conditions are im-

posed.   In this case the jump condition at x in the relations defining the function ip

modifies the boundary condition so that

\-ß,    ifx = 0,
(aip'+ bip)(x) = \

(   ß,   ifx=l,

and aip + bip remains zero at the other end.  Otherwise, the argument above is es-

sentially unaffected, and Lemma 5.1 has been demonstrated.

Note that the choice s = r - 2/ - 1 in (5.6), combined with the inequality (5.5),

shows that

(5.10) \Zj(x, t)\<C\\b'w(t)/bt'\\qhr+q-1,       Kq<r+l,tEJ.

The remainder of this section is concerned with some estimates comparing

Dirichlet and Neumann quasi-projections; these estimates will be applied in obtaining

the flux estimates of the next section.   Let w be the solution of (3.1) with homoge-

neous Dirichlet data (a = 0).   Let wn be computed by (3.4) and (4.11), using M = M°,

and a = 0.  Denote the corresponding quasi-projection by wk = wn + z, + • • • +

zk.   Next, construct the Galerkin solution un: J —> Mn by letting

i

,      vEMn,0 <t<T,
o

where uh(0) is again determined by (4.11), except that now the quasi-projection cor-

responds to the Neumann condition; i.e., let uk = uh + y, 4- • • • + yk, where un

satisfies (4.1) with M = Mh and y, satisfies (4.3).  The function uh is being introduced

for analytic purposes; it is not usually computable.

Let z0 = wn - w, y0 =un - w, and p, = y ■ - zy-, / = 0, . . . , k.  Observe that

Í5 12. f*"**     \ (dm»i     \      (   9m + Vi     \
(512)      b[-,v]=B[-L,v)+[p--Li  u   =o,       vEMl.

\btm     J        \tr     j      \     btm + 1       J h

First, choose

9mp0     9my0 9my0

v =- - —— (0, iXl-x)- —— (l,t)x;
btm       btm btm

then, by earlier results on Galerkin methods for two-point boundary problems by two

of the present authors [1],

(5.11)
bun

}-bT'v + B(un, v) = (f, v) + a^-v
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(5.13)

Next, choose

dm ,,
Mo

bt™
<C

<C

>o

bt"1

mw

(0,0

i 3my0

-hut)

bt"

bf"

hr+"-1,       tEJ.

btm    btm

then, by Lemma 5.1 and (5.5),

bmp.    bmy, bmy¡

-L(0,t)(l-x)-^-(l,t)x;
bf"

(5.14)

bmpj

bt"
<C

<c

Induction applied to (5.13) and (5.14) shows that

(5.15)
9mM;-

bf"
<C

bmy¡

bf"

hr+q-l   +

0,0

*m + l

+

Vi-

am + 1

Vi
bf"+1

7-1

btm + l

hr+q-\       tEJ,j=l,...,k.

6.   Some Superconvergence Results for Parabolic Problems in a Single Space

Variable.   Let M„ be the space described in the previous section, and assume that x

= x¡,h) E An is a knot for which p¡tn\ = 0.   Let wn denote the Galerkin solution of

the parabolic boundary problem (3.1) with either Dirichlet or Neumann boundary

conditions, and assume that (4.11) defines the initial condition for the Galerkin solu-

tion.

Theorem 6.1.   Let 1 < q < r + 1 and 2k < r - 1.   Then

(6.1)

where

(6.2)

\(w-wn\x, 0KC£
7 = 0

b'w

<)t>
h"+ 1—1 + e,

L°°(HQ(I))

C
gfc+1

bffc+1
\L2(HQ(I))

hq + 2k,   if 2k <#■-!,

9*+1,

9rfc+i
+

L°°(H°(I))

bk + 2w

btfc + 2
Ll(HQ(I))

h" + 2fc+ 1

if2k<r-2.

Proof.   Write w - w/; in the form

(6.3) (w - wn)(x, t) = (w- wn)(x, t) + (wk - wn)(x, 0 - Z */<*> 0-

7=1
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It is known [1] (and follows from (5.10), as well) that (w - wn)(x, t), which is just

the error in the Galerkin solution of the two-point boundary problem associated with

the operator L and whichever boundary conditions are assigned, is bounded at a knot

at which p¡,h j = 0 by

(6.4) I (w - wnXx, t) I < Cll w(t)\\qhq + r-1,      tEJ.

The second term is bounded by e as a consequence of the H1 (Çï)-esx.imafe of Theo-

rem 4.2, and (5.10) completes the demonstration.

A slightly less precise statement of the result when k takes on its maximum

useful value is given by

[r/2 ] + i

(6.5)      \(w-Wh)(x,t)\<C      ¿
i-O

b'w
hq + r~\       tEJ.

I L°°(H1(I))

The superconvergent approximation of the knot value results from evaluating

the Galerkin solution at the knot.  Other superconvergent approximations of quanti-

ties associated with the solution of the differential equation can be formed by simple

manipulations of the Galerkin solution.  Consider (3.1) with homogeneous Dirichlet

data, and let us produce an 0(h2 ^-approximation of the flux across the boundary

at x = 1.  If the Galerkin solution is differentiated and evaluated at x = 1, only an

0(/îr)-approximation will be obtained.

To motivate the selection of a relation to find the flux, consider the function

un: J —► Mn defined by (5.11) and use v(x) = x as the test function in (5.11).  Then,

(6.6) (a9w/9x)(l, 0 = (Pbujbt, x) + B(uh,x) - (f x).

The function un is not computable, but we have seen that un and wh, the Galerkin

solution with the Dirichlet data, are very nearly the same.  Thus, we let

(6.7) r,(0 = (Pbwjbt, x) + B(wn, x) - (f x),      t E J.

Note that T, need be evaluated only at times at which the flux is desired.  Moreover,

since any function in M0, can be added to v(x) = x without changing the right-hand

side, we can for the purpose of evaluating T, take

(6.8) rx(t) = (pbwJbt,y) + B(wn,y)-(f, y),      tEJ,

where

(x - xNfi-i)m

TW = 1(1-^-1)""    *"«-'<*<1'(6.9) 'h-

0,    otherwise,

where m = 1 4- pN■    ,.  Observe that (6.9) requires the evaluation of quadratures

over a single subinterval and, consequently, is a completely trivial calculation.

To analyze the error in the approximation of the flux, first put £ = wn - un.



GALERKIN METHODS 357

Then, (6.6) and (6.7) imply that

r,(0 - (a9w/9x)(l, 0 = (p9(/9f, x) + B& x).

Now,

B(t x) = ((, ~(a+ xb)' + ex) + (a+ xb)Ü\l,

and it follows that

(6.10) "S^ <C
bt + 11(1 + l((o,oi + 1(0, r)l

If we adopt the notations used toward the end of Section 5 and in addition set \pk

uk - un and dk = wk - wn, then

(611) ( = ^-Ôfc-Mo-ZM,-
7=1

Theorem 4.2, (5.13), and (5.15) show that

(6.12) 11(11 <C£
7 = 0

bWv

bf
(0 h"' + C

bk+1w

btk- L2(HQ(I))

nq + min(2k+l ,1—1)

The estimation of 9(/9r requires that b\pk/bt and bdk¡bt be bounded.   First, it follows

from (4.6) and the fact that \pk(0) = dk(0) = 0 that

90,

bt
(0) 4

°>fc

V(0><C

<C

9z.
-^(0)
9r

3*+i.

bt'TTÍ0)

I ^fc
+ hr(0)9'

ho + ß

for 1 < q < r + 1 and ß = min(2fc, r - 1).   Note that (4.6) can be differentiated

with respect to time and then v chosen to be (for the case of the bOJbt estimate)

bdjbt.   Then, it is easy to see that

bO,

bt

Hence,

(6.13)

L°°(L2(I))
<c

90,

bt
(0) +

92z,

bjl
bt

<C

fc+i

7=1

bk+1w

btfc+1 (0)

b'w
-7(0
bt'

h"

br

+

+1—1

L2(H    '(/))!

9fc+2w|

btfc + 2
hq + ß.

L2(H1(I)))

+ c
bk+1w

bf
(0)

9* + 2w

btfc + 2
L2(H1(I))

hq + ß.
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Since ((0, t) = -un(0, t) and ((1, t) = ~un(l, 0, Theorem 6.1 implies that

l((0, 01 + 1(0,01

(6.14) fc

7 = 0

b'W

bt'
(0 hq+1—1 + C

*k+l,

bt.fc+1
hq + ?.

L°°(H°(I))

The inequalities (6.12)—(6.14) combine to give the following theorem.

Theorem 6.2. Let wn: J —> M° be the solution of (3.4) and (4.11), and let

Tx(t) be defined by either of the equivalent relations (6.7) and (6.8). // 1 < q < r

+ 1 and ß = min(2Ä:, r - 1), then

/ bw\
rl(0-  .-  0,0

(6.15)

(7=0

b' W

bt'
(0 hq-

gfc+l
W

btfc+1
+

ifc + 2
w

bf1+ 2

(6.16)

\L°°(HQ(I))

In particular, if r is odd and 2k = r - 1 or if r is even and 2k = r,

d'w

)h"M.
L2(H1(I))/ )

I    bw\
(1,0

fc + 2

7 = 0 bt'
h"+ 1—1

L 2 (//<?(/))

Kq<r+ 1.

It is also possible to produce an 0(h2 ^-approximation of the flux at an interior

point of I.   Let x = xj(n) E Ah and assume, as usual, that p¡rn) = 0.   Let

(6.17) T-(0 = x-\(pbwnlbt, xYz + B-(wh, x) - (f, x^},

where the subscript x indicates that the integrals are to be taken over the interval

(0,x).  If

(6.18)      5(x)
(Xi(h)     xi(h)-l) r(x     xi(h)-l) '    Xi(h)-X  ^x ^xi(hy

0,   otherwise,

then r-(0 can be evaluated using quadratures over a single subinterval by

(6.19) T-(0 = (p9V9r, ô) +B(wn, 8) - (f 6).

Clearly, by interchanging x for 1 - x, an approximation to (abwlbx)(x, t) can be

obtained using the subinterval to the right of x/(hs instead of the one to the left.

Inequalities analogous to (6.15) and (6.16) can be proved for lr—(f) - iabw/bx)(x, t)\.

The proof is quite similar to that given above, with the function un being replaced by

V J ~■* M„ - = íü'[o,jc]: vE Mn} where sn satisfies

3s»,
p-,vj7+B-xish,v) = if,vyx+^a-,

bw
vElhn-,
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with s„(0) being determined by the analogue of (4.11) for (0, x).  A little care shows

that the corresponding constants C are independent of x.

7. Discretization in Time for the Parabolic Problem.   A detailed description of

the discretization in time of the Galerkin method (3.4)—(4.11) using collocation at

Gaussian points in time for a solution space that is the tensor product of Mrt or M°

in space with C° piecewise-polynomial functions in time is presented in the authors'

Mathematics Research Center technical report [3].  The superconvergence results of

Section 6 are generalized in a way that covers the knot value results, with supercon-

vergence occurring in the time increment as well as h, and that produces flux esti-

mates related to (6.15).  The results pertain to Crank-Nicolson differencing as a

special case.  The development strongly resembles that given earlier by two of the

authors for collocation-collocation methods for parabolic equations [2].

8. The Quasi-Projection and Superconvergence for Galerkin Methods for the

Wave Equation.  We shall restrict our attention to the single space variable case of

Í2 = / = (0, 1) and to the space Mfl of piecewise-polynomial functions of degree r

described in Section 5.  Throughout this section let x = x¿,n) E An and assume that

Pi(h) = 0-   Let w satisfy the wave equation subject to homogeneous Dirichlet bound-

ary values:

92w
p —- + Lw = /,      (x,t)EIxJ,

bt2

(8.1) w(0, 0 = w(l, 0 = 0,      tEJ,

bw
w(x, 0) = wg(x),    — (x, 0) = wf(x),      x E I.

bt

A continuous-time Galerkin method can be defined for (8.1) by seeking wh: J —>M

= M° such that

(8.2) (p92w„/9i2, u) + B(wn, v) = (f, v),      v E M, t E J,

where w„(0) and bwJbtiO) will be specified later (see (8.6)).

A quasi-projection for the hyperbolic problem can be constructed in a manner

analogous to that used in Section 4.   Let wn: J —*■ M be the elliptic projection of

the solution w:

(8.3) B(wh ~w,v)=0,      v EM, t EJ.

Set z0 =wn - w and recursively define z,\ J —> M by the relation

(8.4) B(Zj, v) = -(p92z/_1 /3i2,!;),      v EM, tEJ.

Let wk = wh + z, + • • ■ + zk and dk = wk - wh.   It is easy to show inductively

that

d2°k     \ .  „,„      ,     /    92*fc
(8.5) (p—¿-.u l + /J(0ft,u) = lp—^-,u],      v EM, tEJ.
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We shall utilize the quasi-projection wk to set up initial conditions for (8.2); let

(8.6)
Vu \jyv t-

wn(0) = wk(0),   -r(0) = -r-(0),      2*<r-l.
at bt

The function wni0) can be evaluated using wj and the differential equation, and

9w/I/9r(0) using wf and the differential equation.

An argument paralleling that leading to Lemmas 4.1 and 5.1 leads to the follow-

ing bounds for t E J and 1 < q < r + 1 :

(8.7)
9mz,

bt"
<C

02J+m
W

bt2' + m
hq+s+2',     0</<|,-l<s<r-2/-l,

(8.8)
9mz;.

bf"
(x,t) <C

#i + > W

bt2'"
If + /—1 o</<5.

The total energy is the most natural measure to associate with solutions of wave

equations.   Hence, use v = bdk/bt in (8.5) and note that (8.6) implies that 0fc(O)

90fc/9r(O) = 0; thus, if

ba + ßu

(8.9) lui 2 = y
m Z^

a + ß<m 3xW L°°(L2(I))

it follows that (with the second inequality requiring an integration by parts in 0

|32z,

(8.10) 10,1, <

C

C

bt2

b2:

2k <r- 1,
L2(L2(I))

bt2

+
L°°(H~l(I))

O   Z.

bt"
1.

¿1 (//-!(/)) J

Thus,

2k < r - 2.

(8.11) I0fcl,<
CMq + 2k+2h"

+ 2fc 2k <r- 1,

C\w\  +r+xhq + r-1,       r even, k = (r - 2)/2.

Theorem 8.1.   If x = *,-(/,) E An, Pun\ = 0, and wn is determined by (8.2)

and (8.6), /Tien /or 1 < q < r + 1

\CMq+2k + 2hq + 2k,
(8.12)    Kw-w^Xx, OK

CMq+r+2hq
+ 1—1

2Jfc < r - 1,

r even, k = (r - 2)/2,

Û77(i

(8.13)
bw     3w„\-(*. 0
bt       bt

<
C\w\ hq+2k*-'W'q + 2k+3n '

Clwl hq+r~1'~'W'q + r + 2n

2fc«r- 1,

r eve«, /c = (r - 2)/2.
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Proof   The inequality (8.12) follows from the decomposition w - wn = (w -

wn) + 9k - (z, + • • • + zk), then known [1] superconvergence of the knot value

for the two-point boundary problem, (8.11), and (8.8).   In order to establish (8.13)

it is sufficient to bound bdk/bt in H1if), since the other terms can be handled as

immediately above.   First, it follows from 0fc(O) = 0 and (8.5) that

ll920fc(O)/9r2ll <Cll92zfc(0)/9r2ll.

If (8.5) is differentiated with respect to time and then v chosen to be b26k/bt2, it

is easy to show that

b26L

bt2
+

L°°(L2(1))

90t

bt

<
C\w

C\w

L°°(Hl(I))

y + 2k

q+r+2r

q+2k+3

na + r-l

2k<r-l,

r even, k = (t- - 2)/2,

and (8.13) follows.
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