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Some Results on the Global Inversion

of Bilinear and Quadratic

Isoparametric Finite Element Transformations*

By A. E. Frey, C. A. Hall and T. A. Porsching

Abstract.   This paper contains sufficient conditions under which a map whose domain

is a compact set is a bijection onto a given set.   Relative to certain isoparametric fi-

nite element maps, one set of conditions involves the nonvanishing of the Jacobian;

another the notion of overspill.   An algorithm based on elimination is given for the

numerical inversion of these maps.

1.   Introduction.  Let S = {(r, s)l0 < r, s < 1}, and let x: dS —+R2 be a con-

tinuous transformation of the boundary of S into the plane.  Then the transformation,

f: S -+R2, given by

f\r, s) = (1 - r)xiO, s) + rx(l, s) + (1 - sjx^ir, 0)

(1) + sxir, 1) - (1 - sXl - rMO, 0) - (1 - s)rx\l, 0)

-s(l-rjx(0,1)-S73c(l,l),

has the property that T(dS) = x(9S).  Thus, given the four curves x(0, s), jc(1, s), 0

< s < 1; x(r, 0), x(r, 1), 0 < r < 1, the transformation (1) maps the boundary of the

unit square onto these and "fills in" the remaining points from the interior of S-  As

such, (1) represents an interpolation formula and indeed has been termed a "transfi-

nite bilinearly blended" interpolation formula by Gordon and Hall [5].

In this paper we investigate conditions under which the mapping (1) is a bijec-

tion from S to a closed, bounded set E having x(9S) as its boundary. In particular,

we consider the cases when the curves x:(0, s), x(l, s), x(r, 0) and xir, 1) are either

four straight Une segments specified by the four nodes (points) x(z, /), i, / = 0, 1, or

four parabolic arcs specified by the eight nodes xQ, j), xilA,j), xQ, Vi), i, / = 0, 1.

Then (1) reduces, respectively, to the well-known bilinear or quadratic isoparametric

transformations of finite element analyses, and E is known as the four- or eight-node

isoparametric element [3], [10] (see Figure 1).

Considerations concerning the bijective nature of isoparametric transformations

are important from both the theoretical and practical points of view.   For instance,

the numerical solution of boundary value problems by finite element techniques em-

ploying isoparametric elements requires the evaluation of certain integrals by means of
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Figure 1

(a)  4-node isoparametric element,  (b)  8-node isoparametric element

the change of variables defined by T.  Thus, knowledge of the bijectivity of Tis neces-

sary to insure that this change of variables is in fact proper.   Furthermore, after the

isoparametric finite element solution has been found, the actual inversion of (1) is

necessary to obtain values of the dependent variables, such as stress, at prescribed

points of E.  Therefore, in addition to establishing the a priori existence of an inverse

of T, it is also useful to have an algorithm for its pointwise inversion.

In the next section of this paper, we recall an early theorem of de la Vallée

Poussin, relating the bijectivity of a smooth transformation of a compact domain to

the nonvanishing of its Jacobian.  We then use this result to establish computable

sufficient conditions for:   (a) the bilinear transformations, (b) a special class of qua-

dratic transformations called semi-rectangles, and (c) other general quadratic transfor-

mations.

The notion of "no overspill" is introduced in Section 3 and is shown to be a

necessary and sufficient condition for a certain subclass of the quadratic transforma-

tions to be bijections.   Finally, in Section 4 we develop an elimination algorithm for

the numerical inversion of the bilinear and quadratic transformations, and illustrate

its effectiveness by several examples.

2.  The Jacobian and Global Invertibility.  Clearly, if x: dS —* R2 is not an

injection, then T: S —> R2 as defined by (1) cannot be a bijection to any set having

xidS) as its boundary.  Therefore, we state the following fundamental

Boundary Hypothesis:   The continuous transformation x: 95 —* R2 is an in-

jection.

This condition is obviously equivalent to hypothesizing that x(9S) is a simple

closed curve.  Under the boundary hypothesis, we know from the Jordan Curve Theo-

rem that x(3S). partitions the plane into two disjoint, open, connected sets and forms

their common boundary.  Furthermore, only one of these sets is bounded and in the

sequel it is the closure of this bounded set that we take as the set E.

Theorem 1. Let T, as defined by (l), be a continuously differentiable trans-

formation on an open set TDS.  If the boundary hypothesis holds, and if the Jaco-

bian of T does not vanish on T, then T is a bijection from S to E.

Proof.   The theorem is essentially a rewording of a result of de la Vallée Poussin

[9, p. 355], and the reader is referred to this reference for the details of the proof.
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Figure 2

Nonconvex 4-node element E

We remark that de la Vallée Poussin 's theorem is also cited without proof in fl] and

[4].  Q.E.D.

2.1. Bilinear Transformations.   The bilinear isoparametric transformation results

from (1) when the four nodes x(/, /), /, /' = 0,1, are given and x(95) is defined by

x(0, s) =■ (1 - s)x(0, 0) + sxiO, 1),

xil,s) = il -sWl,0)+^(l,l),

x(r, 0) = (1 -fpciO, 0)+rx(l,0),

xir, l) = (l-rM0, l)+rxil,l).

In this case, if we denote the left side of (1) by Txir, s), it follows that

(2) Txir, s) = (1 - rXl - s)x(0, 0) + ril - s)x(l, 0) + rsjc(l, 1) + (1 - r>jc(0, 1).

Theorem 2.  Consider the transformation Tx and assume that the boundary

hypothesis holds.   Then the following conditions are equivalent:

(i)  The four-node isoparametric element E is convex.

(ii)   The Jacobian of Tx is positive at the four vertices of S Q.e. (r, s) = (i, j),

i, j = 0, 1)._

(iii)  Tx is a bijection from S to E-

Proof. That (i) implies (ii) is shown by Strang and Fix [8, p. 157] (see also

Ciarlet and Raviart [2]). To show that (ii) implies (iii) we note that Tx is contin-

uously differentiable in R2. Thus the only hypothesis of Theorem 1 that requires

verification is the nonvanishing of the Jacobian of Tx in some open set containing S-

By continuity, it is sufficient to have the Jacobian nonzero in 5- But we find by

direct computation that this determinant is a linear function of r and s and so, if (ii)

holds, is in fact positive in S-

To prove that (iii) implies (i) we suppose that (i) does not hold, and for definite-

ness assume that the reentrant corner of E is at node x(l,l) as shown in Figure 2.

From (2) it follows that the image of any coordinate line s = constant in 5 is a

straight Une segment whose endpoints He on the sides x(0, s) and x(l, s), 0 < s < 1.

Moreover, as s varies continuously from 0 to 1, these endpoints move in a continuous,

strictly monotone manner from x(0, 0) to x(0, 1) and from x(l, 0) to jc(1, 1).  Thus
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for some s*,0 <s* < 1, Txir, s*) n {x(l, s), 0 < s < 1} is a nondegenerate Une

segment.  Since this segment is also the image of a portion of the Une r — 1, 0 < 5

< l, Tx cannot be an injection on S-  Q.E.D.

2.2.  Quadratic Transformations.   Now suppose that the eight nodes x(i, j),

x(*Á, j), x(i, 1á), i, / = 0, 1, are given; cf. Figure 1(b).  We define x(9S) by

x(0, s) = 2(s - ti)is - l)x(0, 0) - 4s(s - l)x"(0, ti) + 2s(s - H)x(0, 1),

(3)     x(l, s) = 2(s - lá)(s - 1)5(1, 0) - 4s(s - 1)5(1, V7) + 2sis - }4)x(l, 1),

x(r, 0) = 2(r - %)(r - 1>(0, 0) - 4r(r - l)x"04 0) + 2rQ- - Wpc\l, 0),

x\r, 1) = 2(r - H)(r - l>c(0, 1) - 4ri/ - 1)504, 1) + 2<r - H)x(l, 1).

When this is used in conjunction with (1), the resulting transformation, which we de-

note by T2(r, s), is called the 8-node quadratic isoparametric transformation.   Of

course, Theorem 1 again applies.  However, we have been unable to find an analogue

of Theorem 2 relating bijectivity directly to an obvious geometric property of the

set E.

2.2.1. Semirectangles.   Let P¡ = (x¡, y¡), i = 1, ... ,8, denote the given nodes,

where x(0, 0) = PX, x(l, 0) = P2, x(l, 1) = P3, x(0, 1) = P4, xÇA, 0) = P5, x(l, H)

= P6, xQA, 1) = Pn and x(0, Vi) = P8.  We consider a special class of quadratic iso-

parametric transformations obtained by requiring that the boundary transformation

x satisfy:

(a) x(r, 0) = (x2r, 0),

(b) x(0,s) = (0,y4s),

(c) under componentwise ordering, x(r, 1) > (0, e) and x(l, s) > (e, 0) for

some e > 0,

(d) x7 = x3/2 and y6 = y3/2.

If (a)—(d) and the boundary hypothesis hold, we call the set E a semirectangle.   Fig-

ure 3(a) shows a typical semirectangular element.  In this case, the components

x(r, s),y(r, s) of T2 assume the form

x(r, s) = (a0s2 + axs + a2)r,

yir, s) = iß0r2 + ßxr + ß2)s,

where

x2 + x3
a0=4i——    -x6i, ax=x3-x2-a0,     a2 = x

2'

Vo = \—-yi)'      ^=y3-y4-/30,    ß2=^4.

Thus, if det / denotes the Jacobian of T2,

det J = iß0r2 + ßxr + ß2)ia0s2 + <xxs + cx2) ~rsi2ß0r + ßx)i2a0s + a,).
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l/2x3,y7)

x,,y,)

(b)
Figure 3

Semirec tangles

Since det / > 0 when r = s = 0, det / =£ 0 on S if and only if

(4)

where

max fir)gis) < 1,
(r,s)<=S

fir) =
rj2ß0r + ßx)

ß0r2 +ßxr + ß2
gi*)=-

s(2a0s + ax)

a0s2 + axs + c^

Note that by (c) both denominators are positive on S-  Now

(5)        max fir)gis) = maxiMfMg, Mfmg, mfMg, mfmg),
(r,s)<=S

where M* = max0<r<1 fir), m* = min0<i.< x fir), etc.   So in any given instance it

is a straightforward exercise to compute the right side of (5) and test (4) (interior

critical points of/and g are solutions of simple quadratic equations, e.g. ßQßxr2 +

4ß0ß2r + ßxß2 = 0).

There are a number of conditions which imply the validity of (4).   We are

content to note that the simplest of these occurs when either f or g vanishes identi-

cally, that is, when the semirectangle has two parallel sides (Figure 3(b)).  Thus, T2 is

a bijection from S to any such semirectangle.

2.2.2. Perturbations.   Let the convex quadrilateral (¿have vertices and side

midpoints Q¡,i = 1,..., 8, shown in Figure 4.  Then the associated quadratic trans-

formation defined by (1) and (3) and the nodes Q¡, i = 1,.. ., 8, is in fact bilinear

and by Theorem 2 has a positive Jacobian on S-  A nondegenerate quadratic transfor-

mation may be obtained by perturbing the midside nodes from 9Q.   By continuity,

the Jacobian remains positive for all sufficiently small perturbations.  In the remainder

of this section, we develop bounds on the size of perturbations which guarantee that

the associated transformation has a positive Jacobian on S-

Suppose that the transformation T2 is defined by the nodes P¡ = (x,.,y,), where

P¡ = Q¡, i = 1, . . . , 4, P¡ = Q¡ + r¡¡, i = 5, . . . , 8.  We consider the class of per-

turbations r¡¡ for which 7?s = (0, t?s), t)6 = (n6, 0), i?7 = (0,7j7), t?8 = (t?8, 0), and

we assume that xx <x2, x4 <x3,yx <y4, y2 <y3-  See Figure 4.
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Figure 4

Quadratic element obtained by perturbations

Under these assumptions, the components x(r, s),yir, s) of T2 may be written

xir, s) = (1 - r)xi0, s) + rx(l, s),      y{r, s) = (1 - s)y(r, 0) + syir, 1).

Hence, for its Jacobian det /, we have

x(l, s) - x(0, s) (1 - r)xsi0, s) + rxsil, s)

_(1 - s)yrir, 0) + syrir, 1) y(r, 1) - y(r, 0)

It is convenient now to let t)t = e¡/4, i = 5, 6, 7, 8,

e = (es'e6> e7>es)r    and   Xn=Xi-Xj,   ytl=y¡■-y„   i, j =

By direct calculation

det J = det

xij      xi     -"•/'

det /(e) = A0 + Z Afy +     £
i=S S</</<8

Aijei€j>

where

A0 = det /(Ö) = [(1 - s)x2X + sx34] [(1 - r)y41 + ry32]

-  [(1 -^21  +S7341K1 "^l  +^32]>

As=x2iir2-r)- ix4i -x32>ij2 -r)- (1 - 2'X1 - í)[*4iO -f) + x32r],

A6 =-y32Ís2 -s)-(y2i -y3*) (l - ft*2 -*)-»U-2*)l>ai(i -s)+y34s],

Ai =-*34(^ -O-i^i -*3aX'3 -/•)(l-s)-(l-2r>[x41(l -r)+xsar],

A& = ^4i(«2 "*)- (V21 -^34Ms2 -*)-(!- rXl - 2s)[y21(l - s) +y34s],

^56 = "«(I - 'XI - s) + (1 - 2r)(l - sXl - 2s)r,

A58 = rs(l - r)(l - s) - (1 - 2r)(l - s)(l - 2s)(l - r),

A61 = rs(l - r)(l -s)-(l- 2r)s(l - 2s)r,

A18 =-rs(l- r)(l -s)-(l- 2r)s(l - 2s)(l - r),

and the other A¡- = 0.
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Clearly, det /(e) > 0 on S if

8

£ Afy +     Z     Atffii
1 = 5 5 </</'< 8

< det /(0)

for (r, s)E S-  But this holds with Hell = maxle,! and

8

m < min det /(O),   Bx > max £  U,l,   52 > max     £      K/1
5 S     1 = 5 S      5<I</<8

if we have

5, EH + 52llel2 <m,

or

-B. + y/B2, + 4B2m
m <-l-wî—-■

To obtain constants Bx and B2, we first note that after a somewhat tedious

exercise, one can show

max£ Uf/.| = 1;
s    t,l

and moreover, the maximum occurs at each of the four corners of S-  Hence, we set

B2 = 1.

We next observe that As is linear in s, so \AS I is maximized over S when s =

0 or s = 1. It then follows that

U5 I < l*2 j 1/4 + max{ lx411, bc32 I}.

Similarly,

L46l< ly32l/4 + max{ly21l, ly34l},

L47 I < Ijc34 1/4 + max{ lx411, lx32 I},

L48l< ly41l/4 + max{ly21l, ly34l}.

Therefore, we can take

(6a) 51  =  [|*2jJ + b'32l+  U34l+  1/41 U/4

+ 2max{ lx411, Ijc32 1} + 2 max{ ly211, ly34l}.

Finally, since det /(0) attains its minimum at a corner, we have

m = min{y4i*21 ~xAXy2X,y32x2X ~x32y2X,y41x34~ x4Xy34,

(6b) _ -,
^32-":34      x32y34l-

We summarize all of this as follows: If an 8-node element E is obtained from

a convex quadrilateral Q by perturbations of its midside nodes in the manner shown

in Figure 4, and if
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where Bx and m are given by (6a) and (6b), then the Jacobian of the associated

quadratic transformation T2 is positive on S-   Furthermore, if the boundary hypothe-

sis holds, then T2 is a bijection from S to E.

Suppose, for example, that (¿is defined by the nodes Qx = (0, 0), Q2 = (1, 0),

Q3 = (1.3, 1.2), Q4 = (- .2, 1).  Then Bx = 2.175, m = 1 ; and therefore, det /(e)

> 0 for all ir, s) E S if lr/,-1 < .09747.   Figure 5a shows the element obtained when

r¡, =-.097,/= 5, 6, 7,

8  NODE2-D    ELEMENT

Figure 5a

Perturbed element with the associated invertible transformation T2.

The images of s = i/10 and r = z'/10, 1 < / < 10, are also displayed

It can be shown that choosing r¡¡ = -0.27, i = 5, 6, 7, 8 yields a noninvertible

map.  A more dramatic example of noninvertibility is shown in Figure 5b.  This map

results from the choice t}5 = t?6 = -n7 = .5 and rj8 = .1.

8  NODE2-D    ELEMENT

Figure 5b

Perturbations too large in magnitude.   The associated

transformation T2 is noninvertible
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3.  The No Overspill Property and Global Invertibility.  The term overspill has

been used to describe instances when T: S —*■ R   is such that 7"(S) properly contains

E, a specified set (element), [10].  When such is the case, the image of a constant

coordinate line, for example s = s* originates at one boundary curve of E, say at

x(0, s*) extends "beyond" x(l, s) and returns by design to terminate at x(l, s*); it

overspills the set E. In other words, the image of some constant coordinate line inter-

sects 9E in more than two points.  Formally, we say that the transformation T of (1)

has the no overspill property if Tzfi Jt(9S) when z" E S°, where S° denotes the in-

terior of S.

Lemma 1.   Let the boundary hypothesis hold, and let T have the no overspill

property.   Then i\S) ç E-

Proof.   Let [a, b] be any Une segment in S° ■  By the continuity of / and the

no overspill property, there exists an e > 0 such that dist(7Y, 9E) > e for all z E

[ab], and moreover, Tz0 E E° for some z0 E S°,i.e. T cannot be an inversion in

9E-  Suppose that for some z E S°, Tzfc E.  Since [z, z0] E S°, we can apply a

bisection argument to the segment [z, z0] to deduce that for any 5 > 0, there exists

zn,~zn + x in [z, z0] such that \zn - zn + l \< 8, Tzn+1 $ E, and Tln E E.  But,

lfz„ - fz„ + 1 I > dist(fz„, 9E) > e, which contradicts the continuity of f.   Q.E.D.

It is clear that no overspill is a necessary condition for T to be a bijection of S

to an element E having x(9S) as its boundary.  It is also sufficient for a large subclass

of the quadratic isoparametric transformation T2 defined by (3).  To define this sub-

class, we begin with a result concerning a parametrized curve.

Lemma 2. Consider the curve

zit) = 2(r - *A)it - l)ßx + 4r(l - t)Q2 + 2r(r - lA)Q3,     o < r < 1,

where Qi = (x¡, y¡) are three given noncollinear points in the (x, y) plane. Then z(i)

is an arc of a parabola with axis parallel to the y-coordinate axis if and only if x2 =

ixx + x3)/2, xx ^x3.

Proof.   The x:-coordinate of zit) is linear in r if and only if the hypothesis

holds.   Q.E.D.

As in Section 2, we denote the eight nodes appearing in (3) by Pt = ix¡,y¡),

i = 1, . . . , 8.  Now suppose that they satisfy (cf. Figure 4)

Assumption Al.

x5 = Viixx + x2),   x7 = lA(x3 +x4),   Xj ¥=x2, jc4 ^x3,

y6 = ^2 +^3). ^8 = Wy\ +/4X ^1 =^4*      y2 ïy*,

and let the boundary hypothesis hold. According to Lemma 2, the boundary of E

consists of four parabolic arcs, two of which have the generic functional form y =

fix) = ax2 + bx + c, and two of which have the form x = giy) = Ay2 + By + C.

See Figure 6. As the following lemma shows, this is also true of the images of the

r and s coordinate lines.
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Figure 6

An 8-node element with parabolic boundary segments

Lemma 3. Under Assumption Al, the curve T2(r, s*) = (x(r, s*), y(r, s*)) is a

parabola y = fix) with axis parallel to the y-axis for each fixed s = s*, and T2(r*, s)

is a parabola x = g(y) with axis parallel to the x-axis for each fixed r = r*.

Proof. We consider only the case s = s* since the r = r* case follows a similar

argument.   From the formula for T2(r, s) we have that the coordinate

x(r, s*) = (1 - s*)[(x2 - xx)r + xx] + s*[(x3 - x4> + x4]

+ lA(l - r)s*(s* - l)[4jcj - 8*8 + 4jc4]

+ ttrs*(s* - l)[4x2 - 8jc6 + 4jc3]

is linear in r.   Hence, we can solve for r and substitute into y(r, s*) to get a quadratic

fax   Q.E.D.

The final assumption that we need to define the subclass concerns the rates of

change of the tangents of a typical pair of parabolas y = f(x) and x = g(y) appearing

in Lemma 3.  Specifically, we assume that

max    l/"(x)l< min       I Üf1 (*)]"!•
0./(*))=E (x,g~X(x))<E£

In terms of the transformation T2ir, s) = (x(r, s),yir, s)), this becomes

Assumption A2.

3W9*V3     / 92*/9xV3max       —- I — J <    mm Z-± ( ^
0<r,s<l      br2   yr/ 0<r,s<l        9s2   \9s/

Note that 9 y/dr   and b2x/bs2 are respectively independent of r and s.   Moreover,

if Assumption Al holds, then 9*/9r also does not depend on r, and the left side of

the above inequality is a function of s only.  We will discuss the implications of this

assumption in more detail later.  Now, however, we prove the main result of this

section.
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Theorem 3. Let the transformation T2 be defined by (1) and (3). Assume

that the boundary hypothesis holds and that Assumptions Al and A2 are true. If

T2 has the no overspill property, then it is a bijection from S to E.

Proof.   We first show that T2 is an injection on S-  Suppose, on the contrary,

that T2irx, sx) = T2(j2, s2) for rx <r2. Then the boundary hypothesis and the no

overspill assumptions imply that the curve T2ir, s,) intersects the curve T2(r2, s) at

the two distinct points T2(r¡, s¡) E E°, i = 1,2. Moreover, T2(r, sx), 0 < r < 1, and

f2(r2, s), 0<s< 1, are in E°.

By Lemma 3 we can reparametrize the curves T2(r, sx), 0 < r < 1, and

T2(r2, s), 0 < s < 1, as the parabolic arcs y = f(x), x0 <x <*j, and x = giy),y0

<y <yt.  Suppose that g"(y) > 0, i.e., the parabola opens to the right.   (The case

g"(y) < 0 is even simpler.)  Let 4>+(x) and 0_(;c) be, respectively, the increasing and

decreasing functions which are inverse to giy).  Since the curves x = g(y) and y =

fix) are assumed to intersect twice, there is an x* such that either fix*) = </>+(x*),

0 < <t>'+ix*) < fix*), or fix*) = </>_(x*), fix*) < </>L(x*) < 0.  But A2 requires that

in the first case 4>"+(x) < fix), x* < x < min(xj, giy2)), and in the second case

fix) < <t>lix), x* <jc < min(x,, giyx))-  Hence, in each case we can show that

either T2(l, sx) lies on the same side of x = giy) as r2(0, sx) or the no overspill as-

sumption is violated.  These contradictions then establish that T2 is an injection on S.

To prove that T2 is onto E, let P be any point in the interior of E- Since we

have just shown that T2 is an injection on S, the curve T2(j~, sx), sx = Vi, divides E

into two subsets, E(0, Vi) and EQÁ, 1), each having a simple closed curve as its bound-

ary. If P E T2(r, xh), the proof is complete.  Otherwise P is in the interior of either

E(0, V7) or E(lA, 1), and we can repeat the subdivision process by using either

T2ir, s2), s2 = %, or T2(j, s2), s2 = %.  Continuing in this way, we generate a con-

vergent (possibly finite) sequence sn —► s* such that P E T2(r, s*).  Q.E.D.

The above proof of the surjectivity portion of Theorem 3 is essentially construc-

tive in nature. However, a more general result can be obtained in a nonconstructive

manner by the use of degree theory.   For the definition of the degree of a transforma-

tion, as well as the fundamental properties of degree, the reader is referred to [7,

Chapter 6].

Theorem 4. Let T, as defined by (1), be a continuously differentiable trans-

formation on an open set T 3 S, and let the boundary hypothesis hold.  Let there

be a point (r0, s0) in S° satisfying the following three conditions:  (i)  T(r0, sQ) E

E°; (ii)  T(r, s) = 7T/0, s0) implies that r = r0, s = s0 ; (hi) the Jacobian of T is not

zero at (r0, s0).  Then E Ç f(S).

Proof.   Let P0 = ï\r0, s0), and denote the degree of fat any point Pfi T(9S)

with respect to S° by deg(f, S°, P). Then by the hypotheses deg(f, S°, P0) = ± 1.

Furthermore, if /* is any point in E°, then there is a continuous curve lying in E°

with P0 and P as its endpoints. It follows from the properties of the degree [7, p.

158] that deg(7; S°, P) = deg(f, S°, P0) - ±1, and, hence, the system f\r, s) = P

has a solution in S°.  Q.E.D.

The surjectivity part of Theorem 3 now follows from the fact that the Jacobian
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of T2 cannot vanish at every point in S°-  Therefore, any point where the Jacobian

is nonzero will serve as the point (r0, s0) in Theorem 4 once it is known that T2 is

an injection on S-

Some remarks on Assumption A2 are now in order.  In the first place, if Al

holds, then we find by direct computation, using (1) and (3), that

dx/dr=x(l,s)-x(0,s),

^y/dr2 =4[(l-SXv1-2y5 + y2) + s(y4 - 2y7 + y3)],

dx/ds = (1 - ^(4*, - 8*8 + 4;c4) - (3xx - 4x8 + x4)]

+ r[s(4x2 - 8x6 + 4x3) - (3x2 - 4x6 - x3)],

d2x/ds2 = 4[(1 - r)(xx - 2x8 + x4) + r(x2 - 2x6 + x3)].

Therefore, for A2 to hold, it is necessary that xx - 2x8 + x4 and x2 - 2x6 + x3

have the same sign.  That is, the parabolas f2(0, s) and f2(l,s) should both open to

the right or left (see Figure 6). When this is the case, it is easy to see that the right

side of the inequality in A2 is bounded below by

(8) _4 min(lx, - 2x8 + x4l, \x2 - 2x6 + x3l)
m=-,

d3

where

d = max(l4x6 ~3x2~x3\, I4x6 - 3x3~ x2\, \4x8 -3xx~x4\, \4x8 -3x4~xx\),

and the left side is bounded above by

_ 4 max(ly1 - 2ys +y2l, ly4 - 2y7 +y3l)

(9) ' min    bc(l,s)-x(0,s)l"l3min
|_0<i<l

Note that in any given case, it is a simple matter to obtain the quantities m and M,

the denominator in M giving rise to an elementary minimization problem via (3).

Clearly, A2 holds if M < m, which is certainly the case if f2(r, 0) and f2(r, 1) are

straight line segments since then M = 0.

As a final remark on A2, we note that in Theorem 3, it may be replaced by

Assumption A2'.

max
0<r,s<l

tfx  *y}-
ds2  V3*.

<    min
0<r,s<l br2 \9r

In view of Theorem 3, we now seek conditions which guarantee that quadratic

transformations f2 satisfying Al will have the no overspill property. Consider the

element E in Figure 4.  If both coordinates of the four midside nodes were averaged,

E would be the straight sided quadrilateral Q with vertices Q¡, i = 1, 2, 3, 4, as indicat-

ed by the dotted Unes in Figure 4.  In this case f2 = fx and Theorem 2 applies.  The

element E differs from Q by perturbations r?6 and 7?8 in the x-coordinate of Q6 and

Q8, and perturbations r)s and t?7 in the y-coordinate of Q5 and Qn.  The question is:

How large can these perturbations be without producing overspill?   Before answering
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this question we find it necessary to make a further assumption.

Assumption A3.  Assume that for each r — r* (resp. s = s*) the straight line

segment

il-s)xir*,0)+sxir*,l),      0<s<l,

(resp. (1 - r)x(0, s*) + rxQ.,s*), 0 < r < 1)

intersects each of the boundary curves xir, 0) and x(/% 1) (resp. .x(0, s) and x(l, s),

i = 1,2, once and only once.

If i?6 and tj8 (resp. r¡5 and r,7) are zero, then A3 guarantees that T2 is one-to-

one since T2 is then just a "railing" of the curves xir, 0) and xir, 1), (resp.x:(0, s)

and*(l,s)).  That is,

(11) T2ir, s) = Psir, s) = (1 - spcir, 0) + sxir, 1)

(resp. T2(r, s) = Prir, s) = (1 - fpcis, 0) + rx(s, 1)).

Conversely, if Pr and Ps are invertible for 0 < r, s < 1, then Assumption A3 holds,

hence we have

Lemma 4.   Assumption A3 /io/<is // anc? o«/y i/ Pr and Ps are injections on S.

The importance of Lemma 4 is that the validity of A3 can be established com-

putationally by investigating the invertibility of Pr and Ps.  By Theorem 1, we need

only establish the nonvanishing of their Jacobians.  But, the Jacobian of Ps is by direct

calculation of the form (1 - s)qx(r) + sq2(r), 0 < s < 1, where the q¡(r), i = 1, 2, are

quadratics in r.   The nonvanishing of the Jacobian is then established by checking if

«71(r)t72(r)>0for0<r< 1.

We are now ready to determine bounds on the perturbations r¡s, n6, t?7 and n8

so as to guarantee that T2 has the no overspill property.

Theorem 5.   Assume that the boundary hypothesis, Al and A3 hold and, refer-

ring to Figure 6, let

xL =   min   x(0, s),    xR =   max   jc(1,s),
0<J<1 0<i<l

yT =   max   y(r, 1),   yB =   min   yir, 0),
0<r<l 0<r<l

Mv = max ]     max      \dfjdx\,      max      \df2/dx\\
(xL<x<xR xL<x<xR \'

My = max j     max      \dgx/dy\     max      \dg2/dy\\,

(yB<y<yT yB<y^yT >

Sx =   max    lx(r, 1) - jc(r, 0) I,   Sy =   max    ly(l, s) - y(0, s) I,
0<r<l 0=Cs<l

Hx=   min   (x(l,s)-x(0,s)),   Hy=   min   (y(r, l)-y(r, 0)),
0<«<1 0^r<l

ys = Oi + y2)l2 + r>s>    ^7 = Os + y*)!2 + »«7.

^6  = (^2   + Xs)l2 + ^6'     and     x9,  ~ iXl   + ^4)/2 + 1?8-
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nx = max{ It76 I, Itj8 I} < %{Hy/Mx - Sx),

(12) vy = max{ It?5 I, It?, I} < %{HX/My - Sy },

then T2 has the no overspill property.

Proof.   We first show that the intermediate curve T2(r, s*), for any fixed 0 <

s* < 1, does not intersect y = f2(x).  By Lemma 3, T2(r, s*) is a parabola y = f3ix).

Fix r = r*.  Then by (1) and Al, the y-coordinate of T2(r*, s) is linear in s

y(r*, s) - (1 - s)yir*, 0) + syir*, 1).

We recognize this as also being the linear parametrization of the y-coordinate of the

Une EF in Figure 7, or equivalently the y-coordinate of the mapping Ps in (11).  But

for t)x = 0 the hypotheses imply that the Une EF is contained in E-  We now increase

rjx, and T2ir*, s*) moves off of the line EF to a point A.  We want to restrict the x-

coordinate xir*, s*) so that A is on the same side of y = f2ix) as B.   But such will be

the case if

(i3) i££i>H!
¿<0 for some a < £ < b.

\AB\     \AB\

Now it may happen that a < min-Oj, x4}, but the monotonicity of xir, s*) implies

that xL < x(0, s*) < a.   Hence (13) holds if

\A~B\< \EB\/MX.

This in turn yields

, ,,,  Jyjr*,l)-yjr*,s*)\      jl-s*)(yir*,l)-yir*,0))
* AB I <-Tz-= -—-»

Mx Mx

which is true if

\AB\< il -s*)Hy/Mx.

Now, from the formula for xir*, s) we have

\AB\ = \xir*, l)-x(/*,s*)l

= (1 - s*)lx(r*, 1) -xir*, 0) - 4s*((l - r)r?8 + n,6)l

<il-s*)[Sx+4Vx],

which is bounded by (1 - s*yHJMX if r)x satisfies (12).

By similar arguments, the curve y = f3ix) does not intersect y = fxix).  In this

case (12) will guarantee that \J~Â\/\JF\ > \TF\/\JF\.

Now if some intermediate parabola x = giy) intersects y = /2(x) twice, then

there is an s*, 0 < s* < 1, such that T2(jr, s*) also intersects y = f2(x).  But we have

shown this is impossible, and so for each r*, 0 < r* < 1, T2(r*, s) intersects 9E only

for s = 0, 1.

Interchanging the roles of x andy, we show that no intermediate curve can inter-

sect x = g¡(y), i = 0,1.  Q.E.D.
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y
i

y(r*,l)

y(r*,s*)

y(r*,0)

a        b

Â=T2(r*,s*)

B=(x(r*,l),y(r*,s*))

G=(x(r*,s*),y(r,l))

Figure 7

Intermediate parabola does not intersect T2(r, 1)

Remarks.   Note that Sx = max{ lx:4 - xx I, lx3 - x2 I } since x(r, 1) and x(r, 0)

are Unear in r.  Similarly, 5   = max{ \yx - y2 I, ly4 - y3 I }. Sx and Sy are measures

of the "skewness" of the quadrilateral Q and, hence, the element E. If Mx or My is

zero, then we interpret the bounds in (12) to be arbitrarily large.

To illustrate how one might use the bounds in (12), consider the following

example:   Let Px : (0, 0), P2 : (6, 1), P3 : (5, 5), and P4 : (0, 4) be the corner nodes

and P6: (5, 3) and P8: (-0.5, 2) be two of the midside nodes of a given element.  We

consider how the straight lines PXP2 and P3P4 can be deformed into parabolas so as

to guarantee that the element does not have the overspill property.  A class of such

parabolas is described in terms of the perturbations rjs and r?7 of the y-coordinates

of the midside nodes P5 = (3, 0.5 + t?s) and Pn = (2.5, 4.5 + n7). Note tj5 = 1?7 =

0 corresponds to T2(r, s) = Pr(r, s), which is one-to-one.  We use Theorem 5 to bound

Itj5 I and It,7 I as follows:

1. Compute

Sx = max{ \x4 - xx\, \x3~ x2\} = 1,

Sy = max{ly1 -y2\, ly4-y3l} = 1.

2. By direct calculation, using (3),

Hx=   min    lx(l,s)-x(0, s)\ = 5.
0<J<1
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Figure 8

A one-to-one isoparametric mapping T

3.  We choose tj7 < 0 and t?s > 0, soyB = 0 and yT = 5.  By the chain rule

max    \dgjdy\ = .75,        max    \dg2/dy\ = 1.0
0<>-<5 0<v<5

SO     My = l    .

From (12) T2 has the no overspill property if 775 and t,7 are chosen in magni-

tude less than 1.0. Figure 8 illustrates this extreme case where P1 = (2.5, 3.5) and

P5 =(3.0,1.5).

Referring back to (8) and (9), we see that m = 4/27 and M = 8/125 < m.

Hence, A2 holds and by Theorem 3, for the element in Figure 8, T2 is a bijection

from S to E-

4.   Inversion by Elimination.  Calculation of the stiffness matrices involved in the

finite element method does not require the inversion of any associated isoparametric

transformations [10, Chapter 8].  However, computation of displacements or stresses

at points (other than nodes) in the x-y coordinate system does in general require nu-

merical inversion of the transformation.   For example, suppose that a quadratic

transformation T2 is used and that stresses along a specific Une are desired (cf. Figure

9).  Since the basis functions are in terms of the generalized coordinates (r, s), if P is

given on /, we first must find its preimage Qin S-  The basis functions or their deriv-

atives are then evaluated at Q.

Another application where inversion of an isoparametric transformation (or

determination of preimages) is of importance is mesh generation.  Refining a given

mesh about a point P can be facilitated by being able to work directly with the (r, s)

system once the preimage of P has been determined.

In this section, we describe an algorithm based on elimination for the pointwise

numerical inversion of the quadratic transformation T2.  Since the bilinear transforma-

tion Tx is a degenerate case of T2, our method also inverts Tx.
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Figure 9

The preimage QofP

A straightforward but tedious calculation shows that T2 defined by (1) and (3)

can be written as

/x(r,s)\      /aQ(s)\ /ax(s)\       /A2(s)\

(15)    ^"-UJ-UMmJ w>>
where

"ois) = aoos + aoi>   axis) = aXQs2 +axxs+ a12,   A2is) = o^qS2 + c^^ + o¿22,

b0is) = ßooS+l}oi>   bxis) = ßXQs2 +ßxls + ßX2,     B2is) = ß20s2 +ß21s+ß'22,

and where, with P¡ = (x¡, yt), i = 1, 2, . . . , 8, as in Section 2,

0£00 = -2xx - 2x2 + 2jc3 + 2*4 + 4xs - 4xn,

Uqi    —  ¿-Xa    ~t   ¿X<y ^rXe >

al0 =-2x1 + 2x2 + 2x3 - 2xA - 4x6 + 4x8,

ai i = 5*i ~ x2 ~ 3x3 -jc4 - 4x^5 + 4x6 + 4jc7 - 4jc8 ,

Oí » 2   — """* ̂X 1   """ <^t o ■ Jt e ,

0(2 0= 2xj + 2x4 - 4;c8,

Oí^ i    — —" JAi    ~™ Xa    ~r  fXo ,

«22 = di-

similar expressions for the jä's can be obtained by replacing the x¡'» by y 7s in each of

the above equations.

If we let a2 = A2 - x, b2 = B2 - y, we see that determining inverse images of

a point (x, y) E E under the mapping T2 is equivalent to finding the roots, r and s,

of the two simultaneous bivariate polynomial equations

(16) 0 =aC)r2 +axr + a2,      0 = b^r2 + bxr + b2

with the a's and 2>'s defined as above.  System (16) may be solved by the method of

elimination which we now briefly discuss.

Our discussion is based on Householder's elegant presentation [6].  Consider the

seemingly simpler problem of determining all of the common zeros of the two univari-
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ate polynomials

fir) = a0r" + ax/"x + •••+«„,      g(r) = b0r>" + b,^1 + • • • + bm.

This is clearly equivalent to finding the roots of the greatest common divisor (g.c.d.)

of /and g.  One way to generate the g.c.d. is by the use of bigradients.   There are two

classes of bigradients.  To define the first class, let a¡ = 0 if i > n, b( = 0 if i > m.

Then the bigradient 6(&V) is the i + j order determinant

ui+j-i

ô(        \ = det

b0    bx

ai+j-2

0    an

0 • • • • 0     b0 ■ ■ ■ ■ b{

0     bo    ' ' ' '     bi+j-2

Ji+j-l

where there are / rows of a's and / rows of b's.  The second class of bigradients con-

sists of polynomials in r and is defined by the relation

.IV),

is* det

0     bn

■ «i+i-2r-lf

■ "i+j-i^f

0     an ■■    °j-tr°f

0 •       • 0    b0 • • • •     bt_ir°g

bi+i-i^g

Although bigradients are defined for any /', j > 1, we are concerned with those

for which i = m - k, j = n - k, k = 0, 1, . . . , min(m, n).  The relationship of these

particular bigradients to the g.c.d. is given by the following two lemmas.

Lemma 5.

(f)m-,m—k

ton-n-k
'sl!t->^-'>-
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Lemma 6.   The g.c.d. off and g is 5(^J*) // and only if

743

0 = 8
(fl)m\ „ /(«)«-! \ t (ia)m-k +1 \  ^J (*)m-k

ib\
= 6

ib)n-l

Both lemmas are proven in [6] and as pointed out by Householder, Lemma 6

goes back to Trudi (1862).  From these two lemmas, we can draw the following con-

clusions:

(1) /and g have a common root if and only if the degree of the g.c.d. is greater

than or equal to 1, i.e., if and only if ô([^m) = 0.  This particular bigradient is also

known as Sylvester's determinant, [6] or the resultant of /and g. We note that it is

independent of r.

(2) The common roots of (16) are exactly those of

i°)m

ib)n
0 -d i%C]=0'

where k is given by Lemma 6.  This trivial observation is the key to the method of

elimination.

(3) In most cases the value of k in Lemma 6 is unity, whence the g.c.d. is

linear in r.

Now consider the system arising from the pointwise inversion of T2.  From what

has been said above, (r, s) is a solution of (16) if and only if s is a zero of

Ôfê, = det

(17)

0

0      ac

0     b0     bx      b2

b0     bx     b2

ra0bx -axb0     a0b2 - a2b0l
= det = 0.

[_a0b2 - a2b0     axb2 - a2bxJ

Furthermore, if

(18) •$.-* \"    "1*0.Uo     bj

then the following equation yields the desired values of r,

(19) •Œ'"-
lb0    gj lb0    bxr + b2]

However, we have

a0bx - axb0 = (a00(310 - |3O0O!10>3 + (<*oo0.i + «oi^io ~ 0ooan ~ 0oiaio>2

+ (<*oo0i2 + aoii3ii - 0ooai2 - 0oi<*u> + Ki^i2 - Poi0^)'
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axb2 - a2bx = ia10ß20 - ßX0a20)s4 + iaX0ß2x + axxß20 - ßX0a2X - ßxxa20)s3

+ 0*10022   + «11^2 1   + «12020  ~ i310a22   _ 0U«21   ~ 012a2O>2

+ («1J.02 2   + «12021  - ßlla22  - 012a21>  + («12^22  ~ i312a22)>

a0b2 - a2b0 = i<x00ß20 - ß00a20)s3 + (a00ß21 + a01/320 - ß00a2x - 0ola2O)s2

+ («00022   + «01021   " 0OOa22   _ 0Ola21>   + K>1022  ~ 0Ola22)>

where a22 = xx - x, ß22 = yx — y.  Equation (17) is seen to be at most a seventh

degree polynomial in s, while (19) is linear in r if (18) holds.

It should be pointed out that the above procedure for solving system (16) is

based on the implicit assumption that a0(s) • ¿>0(s) ̂  X).  In many situations, however,

either a0(s) — 0 or Z>0(s) = 0.  In such cases the above procedure fails, but then, at

least one of the equations in (16) is at most linear in r.   Let us suppose, for example,

that a0is) £ 0, b0is) = 0, and bxis) p 0.  Then system (16) reduces to

0 = a0is)r2 + axis)r + a2is)

0 = bxis)r + b2is).

The second of these two equations is linear in r, so

bxis)  '

We can substitute (20) into the first equation of (16) to get

/-2>2(s)'\2 /-b2is)\

or

(21) a0is)[b2is)]2 - axis)bxis)b2is) + «2(s)[é,(s)]a = 0.

Equation (21) is at most a sixth degree polynomial in the variable s.  Thus the solu-

tions of (16) can be found by solving the triangular system consisting of Eqs. (20) and

(21).  If more of the a's and b's vanish, then the similar procedures can be employed

to solve the even simpler resulting system.

We finally note that system (16) may have many solutions, and although we are

usually concerned with those solutions (r, s) E S, it is sometimes useful to know the

solutions of (16) which lie both inside and outside the unit square (see Example 4).

We conclude this section with some examples illustrating the capabilities of the

ehmination algorithm.

Example 1.  In this example the points Px, P2, . . . , P8 are chosen as shown in

Figure 10.  The ehmination algorithm is used to find the preimages of the points

(.5, .5), (.1, .3), (1., .2), (.9, .8), and (.2, .7), all lying in the region E-  The preimages

of these points are, respectively, (.5220, .5233), (0.2210, 0.4358), (1., 0.), (.8215,

.7663) and (.4117, .8822).  Figure 11 shows the location of these points.
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8 NODE  2-D    ELEMENT

( 0.00
( 1.00
( 1.10
(-0.10,
( 0.60
( 1.30
( 0.25
( - 0.20 ,

Figure 10.

0.00)
0.20)
1.00)
0.90)
0.20)
0.75)
0.80)
0.25)

Example 1

Figure 11.   Example 1
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8  NODE 2-D    ELEMENT

( 0.00 , 0.00 )
( 2.00 , 2.00 )
( 0.00,1.00)
( - 2.00 , 2.00 )
( 1.00,1.00)
( 1.00,1.50)
(-1.00, 1.50)
(-1.00, 1.00)

Figure 12.  Example 2

As a particular example of the techniques described in this section, we list the

equations used in determining the preimage of (.5, .5). First of all, system (16) be-

comes

fir, s) = (1.4s - Ay + (- 1.6s2 + .4s + 1.4> + (.6s2 - .7s - .5) = 0,

gir, s) = is- A)r2 + (- 1.4s2 + .3s + .6)r + (.8s2 + .Is - .5) = 0.

Obviously, aois)b0is) # 0 so we determine the resultant (17)

.15840s7 + .116s6 - .9012s5 + .0922s4 + .0066s3 - .1564s2

+ .3712s - .128 = 0.

This equation has the following real zeros

sx =-2.8030,    s2 = 1.9835,    s3 =-0.9062,    s4 = 0.5233,    s5 = 0.5011,

plus two complex zeros.

Now applying these five roots to Eqs. (18) and (19) we get corresponding to

each s¡, the following r¡,i = 1,2, ... ,5,

rx = 0.4357,    r2 = 1.6015,    r3 =-0.7015,     r4 = 0.5220,    rs =-4.4916.

The only (rt, s¡), i = 1, 2,..., 5, in S is (0.5220, 0.5233) and so this is the only ad-

missible preimage of the point (.5, .5) under the mapping T2.

It required 1.34 sec. of DEC-10 CPU time to determine these five preimages.
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Figure 13.  Example 2

8  NODE 2-D    ELEMENT

(0.00
( 1.00
(2.41
(0.00
(0.50
(1.71
(1.71
(0.00

1.00)
0.00)
0.00)
2.41 )
0.87)
0.00)
1.71)
1.71 )

Figure 14.   Example 3
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Figure 15.  Example 3

Example 2.  In Theorem 2 it was proven that the bilinear transformation Txir, s)

is a bijection if and only if E is convex.   Figure 12 illustrates the typical situation when

E is not convex.  Note that there is overspill in the neighborhood of the node where

the interior angle exceeds jr.   Furthermore, Figure 13 shows that, as demonstrated in

the proof of Theorem 2, the preimage of the boundary segment P2P3 is a boundary

segment of S plus a portion of its interior.

Example 3.  This example illustrates the necessity of carefully selecting the

points Pj,i = 1,2,..., 8, so that the region E determined by those points closely

approximates the original region under consideration.  The region we wish to approxi-

mate in this example is a quarter annulus with inner radius 1 and outer radius 1 +

V2.  If the eight nodes are chosen with the following polar coordinates

Pi =ihn/2),

¿2 = (1,0),

P3 = (1   + V2,  7T/2),

P4 = (1 + %/2, 0),

P~5 =(W3),

P6 = (1 + V2/2, 0),

P7 = (1 + V2, tt/4),

P8 = (1 + V2/2, jt/2),
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then the resulting region E is shown in Figure 14. Note that our choice of P5 pro-

duces a poor parabolic approximation to the circular arc of radius 1, but the choice

of Pn gives us an excellent approximation to the circular arc of radius 1 + \J2.

We now consider 25 equally spaced points along the quarter circle of radius

one and compute their preimages under T2.   Figure 15 shows the location of these

25 points and their preimages.  Note that since seven of the points on the circular

arc Ue outside the region E determined by the parabolic arc, the preimages of these

seven points lie outside the unit square 5.
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