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Some Observations on Primality Testing

By H. C. Williams and R. Holte

Abstract.    Let N be an integer which is to be tested for primality.    Previous
2

methods of ascertaining the primality of N make use of factors of N ± 1, N   ± N + 1,

2
and N    + 1 in order to increase the size of any possible prime divisor of N until it is

impossible for N to be the product of two or more primes.   These methods usually
2

work as long as N < K  , where K is 1/12 of the product of the known prime power
2 2

factors of N ± I, N   ± N + I, and N    + 1.   In this paper a technique is described

which, when used in conjunction with these methods, will often determine the pri-

3
mality of N when N < IK    and / is small.

1.  Introduction.   Let N be an integer which is to be tested for primality.  In

Brillhart, Lehmer and Selfridge [1] and Williams and Judd [5], [6] several methods

are presented for ascertaining the primality of N. These methods make use of the

factors of N ± 1, N2 + 1, or N2 ± N + 1 in order to increase the size of the possible

prime factors of N until it is impossible for N to be the product of two or more primes.

The combination of these various methods has proved quite successful for testing

values of N up to 90 or more digits; however, it sometimes occurs that a much smaller

number can be very troublesome.  For example, consider the 76 digit value of ./V below:

N= 124234067210162251532295145371764077620872877495523069552841

6715857159207729.

This number is the large pseudoprime divisor of the Lucas number l416.  Here

N-l =24 • 72 • 17 • 773 - Rx,

N+ 1 = 2 • 34 • 5 • 199 • 2571 • R2,

N2 +N+ 1 = 73 - R3,

N2 + 1 = 1741 • R4,

N2 -N + 1 = 3 • 13 • 31 • 37 • R6,

where Rx, R2, R3, R4, R6 axe all composite and have no prime divisor < 5 x 107.

With this information it is not possible to prove N a prime by using only the methods

referred to above.

For a given TV let

N-1=FXRX,      (Fx=Fx/2),

N+l=F2R2,      (F2=F2/2),

Received July 7, 1977; revised November 14, 1977.

AMS (MOS) subject classifications (1970).   Primary 10A25.
Copyright © 1978, American Mathematical Society

905



906 H. C. WILLIAMS AND R. HOLTE

TV2 + TV + 1 = F3R3,      (F3 = F3/3 when 3\F3; otherwise F3 = F3),

TV2 + 1 = F4R4,      (F4 = F4/2),

N2-N+l= F6R6,      (F6 = FJ3 when 31F6; otherwiseF6 = F6),

where Fx, F2, F3, F4, F6 axe completely factored and all prime divisors of any of the

R. (i = 1, 2, 3, 4, 6) must exceed the factor bound B. We further assume that if pa

is a prime power divisor of any of the above polynomials in TV and p <B, then pa

appears as a factor in the appropriate F¡. Put

K = FXF2F3F4F6

and assume that (TV, 6) = 1, B > 3.   In this paper we present a technique which can

often be used in conjunction with the tests of [1], [5] and [6] to determine whether

or not TV is a prime when TV < IK3 and / is small.

2. TV the Product of Three Primes.  If TV is not too large (not over 100 digits), it

is usually possible to use the methods of [6] to show that TV cannot be the product of

three or more primes. In this section we give another method which is sometimes

useful for proving that TV cannot be the product of three primes.  We make use of the

notation of [5], [6] and we assume that TV has satisfied the appropriate tests of [1],

[5], [6].  As we make extensive use of [5] and [6] in what follows, we will indicate,

when relevant, those parts of these papers which we are referencing.

Assume TV = pxp2p3, where px,p2,p3 are primes and px is a prime of the first

kind [5, p. 167].  We have

px=\       (xxioà qxFx),

px=-\     (mod q2F2),

p\=-\     (mod q4F4),

where q¡ is some prime divisor of R¡ (i = 1, 2, 4).   Let Q be the largest prime divisor

of F4 when F4 > 1 ; then

px = \x    or    X2    (mod C),

where C = QFXF2, Xx=\2 = l (mod Fx),Xx=X2=-\ (mod F2), \x = N (mod Q),

X2 - ~N (mod Q), and 0 < Xj, r\2 <C.  Now p2 and p3 must both be of the same

kind [5, p. 167], and we first assume that they are of the second kind; hence, p2 =

p3 = ±1 (mod F2).  If we choose the positive sign here, we get

p2=p3 = l    (mod FXF2)    and   p2> B2FXF2,   p3>B2FxF2.

If we verify by trial division that A,- + mC \ TV for i = 1,2 and 0 < m < T, we cannot

have TCB4F2F2 > TV.

Now suppose p2 = p3 = -1 (mod F2).  Since p\=p2 = \ (mod F4), we see that

P2 =vx, v2    (mod C)    and   p3=vx, v2    (mod C),

where vx =v2 = \ (mod Fx), vx=v2= -1 (mod F2), vx s 1 (mod Q), v2 = -1

(mod ß), and 0 < vx, v2 < C.  Let p¡ s r¡ (mod C) (i = 1, 2, 3), where 0 < r¡ < C.
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There are only three possible values for rxr2r3; these are Xxv2, Xxv2, \2vxv2.  Let V1,

V2, V3 be the three possible values of (TV - rxr2r3)/C.   Since TV is of the form

TV= (mxC + rx)(m2C + r2)(m3C + r3),

we see that

V¡ = mxr3r2 + m2r3rx + m3rxr2    (mod C).

It follows that mx +m2+m3> V{ (mod FXF2), where V, = Vt (mod FXF2), 0 <

Vi < FXF2.  Let V = miniFj, V2, V3) and verify that mC + vt\N for / = 1, 2 and

all m < T.   Since one of mx,m2, m3 must exceed V/3, we see that if T2VC3/3 >TV,

we have a contradiction.

When px, p2, p3 axe all of the first kind,

TV = (mxC + rx)(m2C + r2) (m3C + r3),

where r1r2r3 can only be A2X2 or X2.  Let V4 and Fs be the two possible values of

(TV - rxr2r3)/C modulo FXF2 (0 < V4, Vs < FXF2). We can use the same reasoning as

that above to show that mx + m2 + m3 > V¡ (i = 4, 5).  Thus, if

V = min(P,, V2, V3,V4, V5)      and     TV < xrún(T2VC3/3, TCB*F2F2),

then TV cannot be the product of three primes.

If this method fails because one of the inequalities above is not satisfied, another

method of proceeding is to find a lower bound Bx on a prime of the first kind which

divides TV by using the method of [6, p. 878] to first find all the possible positive re-

mainders Sx, S2,S3, . . . ,Sk (mod K) of a prime factor of the first kind of TV.  We

then verify that for each S¡, S¡ + mK \ TV for m = 0, 1, 2, . . . , T, and put Bx =

(7*+ 1)K.

If p is a prime divisor of TV of the second kind, we must have either

p2 = 1 (mod qxFx),

p2 =" 1 (mod q2F2),

p2 = 1 (mod q3F3),

P2 = 1 (mod q4F4),

P2 = 1 (mod q6F6),

and p > s/b5K or

f p = l (modFj),

\ p = 8 (xxiodF2)   (|«| = 1),

(*) <   p2 + p + 1 = 0 (mod F3),

I p2 = l (xxiodF4),

(p2 + ep + 1 = 0 (mod F6)   (\e\ = 1),

where we cannot have 5 = e = -1.  If the system of congruences (*) has no positive

solution which divides TV and is also less than Bx and if BSK > B2X, then TV cannot be

the product of three primes when B3 > TV.
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3. TV a Product of Two Primes. If TV has satisfied the tests of [1], [5] and [6] and

if TV must be the product of at most two primes, then TV = pxp2, where px is a prime

of the first kind and p2 is a prime of the second kind.  There are six possible cases

([5, pp. 167-168], [6, pp. 877-878]).  For all of these cases we have

px = 1       (mod qxFx), p2 = 1 (mod qxFx),

px=-l    (mod q2F2), p2 = 1 (mod q2F2).

For two of these cases we have

pt=±N   (mod q4F4), p2=±l (mod q4F4),

px=N      (mod c73F3), p2 = 1 (mod q3F3),

px=N      (mod q6F6), p2 = 1 (mod q6F6),

where q¡ is some prime divisor of /?,-.  Thus, if sx =s2 = 1 (mod Fx), sx =s2 =—1

(mod F2), sx=s2=N (mod F3F6), sx=N (mod F4), s2 = -TV (mod F4), 0<sx,

s2 <K, and Km + sx, Km + s2 \N for m = 0, 1, 2, . . . , T, then neither of these

cases can hold if TB4KFXF2F3F6 > TV.   Since, in most cases, this inequality can be

satisfied when we are dealing with a value for TV that is not too large, we will devote

the rest of this paper to a discussion of the four remaining cases.

For another pair of cases we have

px s ±TV   (mod q4F4),      P2=±\ (mod q4F4),

px=\       (mod^T^),      p2=N (mod q3F3),

px=-\    (mod q6F6),      p2=-N (mod q6F6),

and we put E = F2. In the last pair of cases we have

p,=±TV (mod<74F4),      P2=±\ (mod q4F4),

Pl = - N - 1    (mod F3), p2 = -TV - 1     (mod F3),

px=-N+ I    (mod F6), p2=N-\       (mod F6),

and we put E = F2F6.  For all of these cases we see that

px =-p2    (modE)*

and in each of them we can find rx, r2 such that px -rx,p2 =r2 (mod K) and 0 <

rx, r2 < K.   Thus, if TV is composite,

N = (mxK + rx)(m2K + r2)

for some nonnegative integers mx and m2.

We will assume that mx > m2.  We have

M = (TV- rxr2)/K = mxm2K + rxm2 + r2mx;

* An analogous theory to that given below can also be developed for E = F, in the second

pair of cases and E = FXF3 in the last pair of cases.
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hence,r1m2 + r2mx =M (mod K).  Since m, > m2, we get mx - m2 = Mx + sE,

where s>0,Mx = r2lM (mod 7?) and 0 < Mx < E.   It follows that mxm2 > m2sE.

Since pxp2 > mxm2K2 and TV < IK3, we see that if m2sE > IK, we have a contra-

diction.

We attempt to show that m2sE > IK.   This can usually be done on a fast com-

puter as long as IK/E < 1020.  We do this by first finding G a factor of K/E such that

(G, E) = 1 and EG > IK/L, where L is some preselected integer such that L3 > IK/E

> N/EK2.  We use three algorithms to show that m2sE > IK.   The first algorithm de-

termines that either m2 > L or TV is composite, the second algorithm determines that

s > L or TV is composite, and the third algorithm determines that either s or m2 > G

or TV is composite.

Once these algorithms have been employed we know that TV is composite or that

mx cannot exceed or equal m2.  If the latter occurs, we interchange the values of rx

and r2 and use the algorithms again.  This will show that TV is either composite or m2

cannot exceed or equal mx.  If this latter case occurs, we see that

TV # (Kmx + rx)(Km2 + r2).

We repeat this entire procedure for each of the four possible pairs (rx, r2).  After this

has all been done, we will know whether or not TV is a prime.

4.  Algorithm to Show that s and m2 Exceed L.   We first verify that Km2 +

r2\N for all m2 such that 0 < m2 < [/] .**  Then, since mxm2 < IK, we have mx <

K.  Since

mxr2 + m2rx =M   (mod K),

we have mx = Axm2 + A2 - vK, where

Ax=-r21rx    (modK) (0<Ax<K),

A2 = Mr2 •       (mod K) (0 < A2 < K).
Put

vx = [(Ax+A2)/K],      px=Ax+A2-uxK,

and define

Pk+i =Pk +Ai ~ekK>      "¡t+i =vk +£k'

where

Í 0   when pk < K - A x,

ek =  )
/ 1    when pk > K -Ax.

\Sk = m2, then vk = v and pk = mx.

Now since M = mxm2K + rxm2 + r2mx, we have

(M-A2r2)/K = Axm\ + m2(A2 + (Axr2 + rx)/K) - v(m2K + r2).

**We use the notation [a] to denote the largest integer which is less than or equal to a.
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Let n be a set of about 30 small primes such that if n ETl, then n \ K.   For

each of these tt¡ E ÏI put

ai = K~lAl    (mod it),

bt ■ K~l(A2 + (Axr2 + rx)/K)   (mod jr,),

c,- s -JT" X(M-A2r2)/K   (mod rr,),

d,. = i^- ' r2    (mod 7r,),

where 0 < a¡, b¡, c¡, d¡ < nr Tabulate modulo 7r¿ the values of

f¡ k = (a¡k2 +b(k + ct) (k + d,)- '    (mod 7T,.)

for all values of k (mod rr,) except k = -d¡ (mod n¡). We note that if m2 = k (mod 7r,),

then v=fik (mod tt,).

To determine that m2> L we simply calculate each i>k for fc = 1, 2, 3, . . . , Z.,

and find some rr,- such that ffc p f, k (mod 7r;).   If, for some value of k, vk = /,_ k

(mod n,-) for each n¡ E U, trial divide TV by r2 + kK.   If r2 + A:/C divides TV, TV is com-

posite.

In order to show that s > L we use the result

mx = Mx + m2 + sE

together with

TV = K2mxm2 + Kr2mx + Krxm2 + rxr2.

If we put X = Km2 and substitute for m x in the formula for TV, we get

TV = X2 + X(KMX + KEs + rx + r2) + KMxr2 + KEr2s + rxr2.

Since X is an integer, we must have

h(s) = (KMX + KEs + rx + r2)2 - 4(KMxr2 + ÂT£>2s + rxr2 - N)

= (KMX +rx-r2 + /C/Js)2 + 4TV,

a perfect integer square.

In order to show that h(s) is not a perfect square for any nonnegative s < L, we

select 71 G n and find those values of s (mod 7r) such that (h(s) \ it) = -1 (Legendre

symbol) and then eliminate all such s < L.   We then take another prime from II and

eliminate more s values.  We continue sieving in this way until all values of s < L have

been eliminated.  If there are still some s values left over after all the -n E W have been

used, then some further primes can be used.  If after this there is still a value of s which

is not eliminated, h(s) may be a perfect square.   Find Y = \/h(s).  If Y is an integer,

then since KMX + KEs + rx - r2 <N, we must have Y - KMX + r2 - r, - KEs > 2,

and Af is composite.

5.   Some Results Concerning m2.  We must now devise a technique to show that

s > G or m2 > G.   In order to do this we require some preliminary results, which we

will develop in this section.
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We first find X, k such that 0 < X, k < G and s = \m2 + k (mod G).  Since

mxr2 + m2rx = M (mod G) and mx = Mx + m2 + sE, we have

X= -(r2ET\rx +r2)    (mod G),

k = (r2E)~x(M - r2Mx)   (mod G).

Select a factor H of K/EG such that (//, G) = 1 (H2 « G) and then determine

a, ß such that 0 < a, ß < H and m = ctm2 + ß (mod //), where s = Xm2 + k - wG.

By using the formulas above, we get

a s (r-^GrVi + r2 + r2EX)       (mod #)>

0 s (r2EG)~x (r2EK + r2Mx - M)   (mod //).

Our method of showing that either s > G or m2 > G consists of assuming that s,

m2 <G and determining that this cannot be so.  Under our assumption we have 0 <

L < Xm2 + k - Gu < G and u = awî2 + j3 - u//; consequently, pm2 + o <v < pm2

+ o + l/H, where p = (Ga- X)/GH, o = (Gß - k)/GH.   It follows that if H > 2, then

u = [pm2 + o] +1.  Denoting by {7} the value of 7 - [7], we must have 1 >

{pm2 + 0} > 1 - l/H.

If m2 = h + kH, then it < [G/H] and 0 < h < H.   Also, {pm2 + 0} = {{ph + 0}

+ 1 - {Xk/G}}. We now have two cases.

Case 1.   {pk + 0} > {Xk/G}.  In this case we have

{pm2 + 0} = {ph + 0} - {Xk/G}.

If {ph + 0} < 1 - l/H, then so is {pm2 + a}. If {ph + 0} > 1 - l/tfand {/>m2 + 0}

> 1 - l/#, we must have {kX/G}< l/H. If we find all pairs (h, k) such that .0 <

h < H, {ph + 0} > 1 - l/H, 0 < k < [G/#], and {¿fcX/G} < 1/ff and verify for each

such pair that Km2 + r2 \ TV for m2 = h + kH, we will see that Case 1 cannot occur.

Case 2.   {ph + 0} < {Xk/o}.  Here we have

{pm2 + 0} = {p/i + a} - {itX/G} + 1;

thus, if {pm2 + 0} > 1 - 1///, we find that

{pfc + a} < {kX/G} < {ph + 0} + 1/Ä

If we find all pairs (h, k) such that this is so and verify that Km2 + r2 \ TV for m2 =

A + Hk, we will see that Case 2 cannot occur.

In order to eliminate Case 1 or Case 2, we must begin by sorting the lists {ph + a},

h = 0, 1, 2, 3.H- 1, and {fcX/G}, it = 0, 1, 2, 3.[G/tf].  We make use of

the following theorem (see, for example, Slater [3]).

Theorem. If the list {k9}, where 0 < 9 < 1, k = 1, 2, 3, . . . , n, is sorted in

ascending order, the interval [0, 1 ] is partitioned into only three distinct lengths.   These

are given by x = {a9},y = 1 - {b9}, z = x + y, where {a9} is the minimum element

of the list and {b9 } is the maximum.

We call the integers a, -b, a - b the integers corresponding to x, y, z, respectively.

In [3] a fast and simple algorithm, which uses continued fractions, is given for calcula-

ting a and b when 9 is rational or irrational.
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6.  An Algorithm to Show that m2 or s > G. Find, by searching the list {ph + a},

h = 0, 1, 2, . . . , H- 1, that integer t? such that {pn + o} is the least element of the

list.  Let P be the positive remainder on dividing (Ga ~X)tj + G(3- n by GH:   then

{pr¡ + a} = P/GH.   Let the three lengths for 9 = p, n = H be xx, yx, zx with corre-

sponding integers ax,-bx, ax - bx.  If t is any of these lengths, we can write it as

r/GH for an integer T; for, if y is the integer corresponding to t, V is the positive re-

mainder on dividing 7(Ga - X) by GH when y > 0 and T is GH decreased by the re-

mainder on dividing I7I (Ga - X) by GH when 7 < 0.   Arrange the three possible T's

into ascending order Vx, T2, T3 with corresponding integers 7i, 72, 73-

Let the lengths for 9 = X/G, n = [G/H] be x2, y2, z2 with corresponding in-

tegers a2, ~b2, a2 — b2.  As before, we can represent any length t as A/G, where A is

an integer.   Arrange the possible A's into ascending order Ax, A2, A3 with correspond-

ing integers 8X, o2, b3.

Let

{ph + 0} = CJGH     (0 < Ch < GH),

{kX/G} = DJGH    (0<Dk< GH).

For Case 1 we wish (h, k) such that Ch/GH > 1 - l/H and DJGH < l/H, i.e. Ch >

GH-G, Dk< G.   In Case 2 we wish (h, k) such that Ch<Dk<G + Ch.

We put h0 - 77, Ch   = P and define

Vi =*/ + ?,,    ch¡+i=ch¡ + r„

where / is the least of 1, 2, 3 such that 0 < hi+x < H.   We also put k0 = a2, Dk   =

DH and define

*/+i =*/+«„      Dkf+t=Dk/+HA„

where / is the least of 1, 2, 3 such that 0 < fc.+ j < [G/H] and D is the remainder on

dividing a2X by G   We see that the list

Ch/GH,      i = 0, 1,2.H- 1,i

is the same as the list {p/7 + a}, h = 0, 1, 2, . . . , H - 1, arranged in ascending order;

also, the list

DkjGH,       i = 0, 1, 2, . . . , [G/H] - 1,

is the list {kX/G}, k = 1, 2, 3, ... , [G/TY], arranged in ascending order.

Our algorithm is now easy to establish.  Put j = 0 and find all Dk  such that

(*) Ch.<Dki<G + Ch¡.

At the same time save all kt such that Dk  < G (include also 0 as a value for kt).  Store

all the Dk. and k¡ values and verify that K(h¡ + Hkf) + r2 -f" TV (we will give in the

next section a fast method for doing this).  Next increase / by 1 and from among the

stored Dk  and newly created ones store only those Dk  and k- which satisfy (*) and

verify that K(ht + Hkj) + r2 \ TV for each pair (h¡, kf).  Continue this process until
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i> H - 1.   Store as well all h   such that Ch   > GH - G.   Finally, determine for each

pair (hq, kt) that K(hq + Hkt) + r2 \ TV by trial division.  This is not very time

consuming as there are usually only a few of these pairs.

7.  A Method for Verifying that K(h¡ + Hkj) + r2\ TV.   We give here a method

which has proved to be very effective for determining that K(h¡ + Hkj) + r2\ TV.

If m2 = h¡ + Hkj and (m2K + r2)(mxK + rx) = TV, then, since mx = Mx +

m2 + sE, s = Xm2 + k -uG, and u = am2 + ß-vH, we find

M - r2Mx - r2E(K - ßG) = m2(rx + KMX + KE(k - ßG) + r2E(X - Ga) + r2)

+ m\K(E(X - Ga) + 1) + wm2GEK + wr2GE,

where w = vH.   It follows that

w = ((Ga-X)/G)m2 -^ +^ZA_^ +^ + ^** +W*2^
2    G£ G GEK     T m2+ r2/K

m2    rx+KM    M/GEK + r^/I^GE
= H(pm2 + o) -^ --^k- +-^-—-

Since i> = [pm2 + o] + 1 and {pwi2 + a} = {pA + a} - {Xk/o} + 1, we see that

w-H(pm2 +a) = H({Xk/G} - {ph + o})=DkjG - ChjG.

Thus,

m2    rx + KMX    M/EK + rxr2/K2E

°kj    C"i E EK      +      m2+ r2/K

M/EK       m2\    rx    Mx rxr2

Now

hence,

Km2 + r2/K    E j   EK    E     K2E(m2 + r2/K)

<^<1-I>0<¿<|,    0<^ 1 <Jl;

0<-7^+~-—-<L

We must have

£•    £tf    ^¿^ + rj¡Q

D   _c   =r    M/EK     _<|

when m2 = A,- + kjH and Äm2 + r2 I TV.   To determine that Km2 + r2 ^ N, compare

Dk, - Ch_ to the computed value of  [(M/EIQKn^ + /^/¿C) - m2/E] ; only when they

are a distance of 1 or less from each other do we need trial divide TV by Km2 + r2.

The advantage of this method is that M/EK is usually small enough to be stored on the

computer as a double precision (or extended precision) floating point constant.  Hence,

these operations can be done using double (extended) precision arithmetic rather than

multi-precise arithmetic.
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When it is more desirable to use integer arithmetic, we note that

M/EK
m2 + r2/K

= M/EK t
WJt 2 2

M/EK /

m2   \
1 -

Km,
+ T7,

where 0 < 77 < Mr\/EK3m\. Since m2 > L and L 3 > M/EK, we see that 0 < 7? < 1.

Thus,

M/EK       m2    rx    Mx rxr2

m2 + rJK    E    EK E K2E(m2 + rJK)

-pira-0H
where |/| < 2.  We trial divide by Km2 + r2 only when £>fc. - Ch_ is within 3 of

pfH[Mr2/£K2]
21-1

m:2        -I      L ^ J

W.

8.  Some Examples.  The above algorithms were implemented on an IBM/370-168

computer and run on 28 numbers supplied to the authors by John Brillhart.  These

numbers are pseudoprime divisors of various Lucas (ln) and Fibonacci numbers (f„).

We give below some of the calculations performed on the number TV given in Section 1.

Consider the case with TV assumed to be PjP2 with

px =   1 (mod Fx),

Pi = -1 (modF2),

px =   TV (mod F4),

px =   1 (mod F3),

px =-l (modF6),

p2 = 1 (modF^,

p2 = 1 (mod F2),

p2 = 1 (mod F4),

p2 = TV (mod F3),

P2 = -TV (mod F6),

p, = mxK + rx,p2 = m2K + r2, mx > m2.   Here E = 287804745, and we selected

L = 1900000, / = 8, G = 77022424976, H = 253487.  With these values we found

X = 17422150686,

« = 45747446332,

a = 86832,

ß = 50918,

7? = 226218,

P= 526817664872,

rx = 6149532242,

7j = -30527,

Aj = 21636,

T2 = 589944841356,

72 = 246350,

A2 = 300182,

Sx  =-209354,   52 = 171493,

T3 = 596094373598,

73 = 215823,

A3 =371818,

53 =-37861.
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The computer was then able to verify in less than one minute that mx could not exceed

or equal m2.  The other cases were also run and the number was found to be prime

in about 35 minutes C.P.U. time.

Of the remaining 27 numbers the following 26 were proved prime.  These are the

large pseudoprime divisors of /395(60),/401(77),/447(58),/463(86),/473(88),

/475(62)>/48l(72)>/487(87)>/499(89)> ^i50)' W65)> '392(55)> '40l(71),

'403(68), /407(54). '4i6(69)> '417(55), /436(81), /443(85), /446(78),/453(50),/458(96),

/486(68), /487(99), /490(56), /494(79).  The numbers in the parentheses give the num-

ber of digits in the pseudoprime.  Most of these were proved prime by using only the

methods of [1], [5], and [6] ; however, for the occasional number on which these

methods did not suffice, the algorithms described above were used successfully.

Consider now the 121 digit number

TV=2400-593

= 25822498780869085896559191720030118743297057928292235128306593

56540647622016841194629645353280137831435903171972747492783.

WithB = 1.5 x 108 we have

Fx =2 • 1384711,

F2 = 24 • 32 • 3023 • 23251093,

F3 = 7 • 2521 • 2213647 • 70792627,

F4 = 2 • 5 • 13 • 298013,

F6 = 3 • 19 • 43.

In spite of the size of this number, the methods of [1], [5], [6] together with those

given above suffice to demonstrate that TV is a prime.

For the 65 digit pseudoprime divisor of/470

TV= 19809950476703891759635852223863606381827838846342829232189869441,

we have with B= 1.3 x 109

Fx = 27 • 5 • 19 • 37 • 47 • 139,

F2 = 2 • 33 • 7,

F3 = 13 • 31 • 73 • 79,

F4=2,

F6 = 3.

For this number l> N/K3 « 9.2 x 109 is quite large.  By using the methods described

above it can be shown that TV is either prime or at most the product of two primes

Pj and p2 and that we have either

Pj = 1    (mod qxFx),      p2 = 1    (mod^Fj),

Pj s 1    (mod t73F3),      p2 s 1    (mod c72F2),

or
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px = 1 (mod Fx), P2 = 1 (modFt),

Pj =-1 (modF2), p2 = 1 (modF2),

px = -TV - 1    (mod F3), p2 = -TV - 1 (mod F3).

In the first case we see that

Pi = 1 + mxqxq3FxF3,      p2 = 1 + m2qxq2FxF2,

and one of mx ox m2 is even.  For if mx and m2 were both odd, then 28 |TV - 1, which,

since 27 11TV- 1, is impossible.***  Thus

N = pxp2> 2B4F2F2F3 > N,

which is also not possible.

The second case is more difficult.  We first find rx and r2   such that px = rx +

mxK and p2 = r2 + m2K and put E = FjF3.  Then

mx + m2 = Mx + sE,

where Mx = rx *M (mod E), 0 <MX < E, and M = (N - rxr2)/K.   Let L = 1.9 x 106

and verify that h'(s) = (AZMt + rt + r2 + KEs)2 - 4TV is not a perfect square for all

nonnegative s <>L.   If mx > m2, then Wj > ViLE and p2 > B2FXF2; consequently,

pxp2 > (KLEK)B2FXF2 >N.

If we assume that m2 > m,, the size of / in this case does not permit us to use

the algorithm of Section 4 to show that mx > L.  However, by using the result that

m2 = A'xmx + A2 - vK, where

A\=-r~lr2,   A'2=rxlM   (mod K) (0 <A\, A2 < K),

together with M = Kmxm2 + rxm2 + r2mx, we find that

M/K_Vi +^2

Kmx + rx    Kï(Kmi + rx)   K<

Since i' is an integer,

v m (AjK)mx + A2/K - ■       - —--— +-^-

í^ = (^K+4/i.-^f^] +1.

This gives us another method of calculating the value of vn in Section 4.  We first

compute the value In of

\(A[/K)n +4/K--Ä1-];

then ^n = In + 1.  We can eliminate each possible value of vn for n = 0, 1, 2, 3,... , L,

by using the second part of the algorithm of Section 4.

Another method of proceeding is to first trial divide TV by Kmx + rx for mx —

0,1,2,...,!.'.  If ¿' < mx <L, we have

1 The authors are indebted to John Brillhart for this suggestion.
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A\(L' + l)     M/K2 ^       A\L    M/K2
—k—m<v<ir-T+i+L

Since m2 = A\mx + A\ - vK and TV = (Kmx + rx)(Km2 + r2), we can substitute

for m2 as was done in the development of the second algorithm in Section 4 to find

that the expression (A\ r2~rx - KA'2 + K2v)2 + 4A\N must be a perfect square.

We can easily eliminate all the possible values of v between the bounds above by

using the sieve method described previously.

These tests were implemented and it was found that

pxp2 >K2mxm2 >l/iL2K2E>N;

hence, TV is a prime.

9. Conclusion.  On comparing the above methods to those given in [1] or pre-

viously, it is evident that the stress here has moved from positive tests for primality to

more negative processes such as searching, sieving, and trial division.  However, the

greatly increased power of these methods to some extent makes up for this somewhat

undesirable shift in emphasis.  For example, consider the large prime divisor TV of l410.

At the authors' request D. H. Lehmer very kindly consented to use the ILLIAC IV in

an attempt to find more factors ofTV± 1,TV2 + 1,TV2 ±TV+ 1 than those given in

Section 8.   After using 4.75 hours of C.P.U. time, no additional factor was found with

B increased to 38269275600.  The techniques mentioned in this paper seem currently

to be the only way of dealing with such stubborn numbers.

Probabilistic techniques such as those of Solovay and Strassen [4] run very

quickly and have none of the negative aspects mentioned above; however, such methods

do not prove primality but only support the likelihood of primality. Perhaps the best

hope lies with ideas advanced by Miller [2]. When one of the algorithms discussed in

[2] is combined with an as yet unpublished result of P. Weinberger, a fairly good test

for primality can be obtained. Unfortunately, the proof of this algorithm requires the

unproved Extended Riemann Hypothesis.

In any case it appears to the authors that the techniques of the present work have

been pushed about as far as possible and any further advance in the problem of primal-

ity testing will probably have to be made in an entirely different direction.
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