Skip to Main Content

Mathematics of Computation

Published by the American Mathematical Society since 1960 (published as Mathematical Tables and other Aids to Computation 1943-1959), Mathematics of Computation is devoted to research articles of the highest quality in computational mathematics.

ISSN 1088-6842 (online) ISSN 0025-5718 (print)

The 2020 MCQ for Mathematics of Computation is 1.78.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

The construction of rational iterating functions
HTML articles powered by AMS MathViewer

by W. F. Smyth PDF
Math. Comp. 32 (1978), 811-827 Request permission

Abstract:

Suppose integers $n \geqslant 1$ and $\sigma \geqslant 2$ are given, together with n distinct points ${z_2}, \ldots ,{z_n}$, in the complex plane. Define ${\Phi _M} = {\Phi _M}(\sigma ;{z_1}, \ldots ,{z_n})$ to be the class of rational functions ${\phi _{p,q}}(z) = {g_p}(z)/{h_q}(z)$ (where g and h are polynomials of degree $p \geqslant 1$ and $q \geqslant 1$, respectively) such that $(1)\;p + q + 1 = M,(2)\;\phi$ when iterated converges with order $\sigma$ at each ${z_i}, i = 1, \ldots ,n$. Then if $M < \sigma n,{\Phi _M}$ is null; if $M = \sigma n$ ${\Phi _M}$ contains exactly $\sigma n$ elements. For every $M \geqslant \sigma n$, we show how to construct all the elements of ${\Phi _M}$ by expressing, for each choice of p and q which satisfies $p + q + 1 = M$ , the coefficients of ${g_p}$ and ${h_q}$ in terms of $M - \sigma n$ arbitrarily chosen values. In fact, these coefficients are expressed in terms of generalized Newton sums $S_n^{j,k} = S_n^{j,k}({z_1}, \ldots ,{z_n})$, $1 \leqslant j \leqslant n,k \geqslant n$, which we show may be calculated by recursion from the normal Newton sums $S_n^{j,n}$. Hence, given a polynomial ${f_n}(z)$ with n distinct (unknown) zeros ${z_1}, \ldots ,{z_n}$, we may construct all ${\phi _{p,q}}(z)$ which converge to the ${z_i}$ with order $\sigma$ in the case $\sigma = 2$, the choice $p = n$, $q = n - 1$, yields the Newton-Raphson iteration ${\phi _{n,n - 1}} \in {\Phi _{2n}}$; the Schröder and König iterations are shown to be elements of ${\Phi _{2(2\sigma - 3)(n - 1) + 2}}$ and ${\Phi _{2(\sigma - 1)(n - 1) + 2}}$, respectively. We show by example that there exist cases in which ${\phi _{n,n - 1}}$ has an undesirable property (attractive cycles) not shared by other iterating functions in the same class ${\Phi _{2n}}$.
References
    GASTON JULIA, "Mémoires sur l’itération des fonctions rationnelles," J. Math. Pures Appl., v. 1, 1918, pp. 47-245.
  • P. Fatou, Sur les équations fonctionnelles, Bull. Soc. Math. France 47 (1919), 161–271 (French). MR 1504787
  • PAUL MONTEL, Leçons sur les Familles Normales de Fonctions Analytiques et Leurs Applications, Gauthier-Villars, Paris, 1927.
  • Paul Montel, L’itération, Univ. Nac. La Plata. Publ. Fac. Ci. Fisicomat. Serie Segunda. Rev. 3 (1940), 201–211 (French). MR 2590
  • Hans Rådström, On the iteration of analytic functions, Math. Scand. 1 (1953), 85–92. MR 56702, DOI 10.7146/math.scand.a-10367
  • R. A. Brooker, The solution of algebraic equations on the EDSAC, Proc. Cambridge Philos. Soc. 48 (1952), 255–270. MR 46138, DOI 10.1017/s0305004100027614
  • HUBERT CREMER, "Über die Iteration rationaler Funktionen," Jber. Deutsch. Math.-Verein., v. 9, 1952, pp. 185-210. H. S. HALL & S. R. KNIGHT, Higher Algebra, Macmillan, New York, 1950.
  • E. Schröder, Ueber unendlich viele Algorithmen zur Auflösung der Gleichungen, Math. Ann. 2 (1870), no. 2, 317–365 (German). MR 1509664, DOI 10.1007/BF01444024
  • A. S. Householder, Schröder and Trudi: a historical excursion, SIAM Rev. 16 (1974), 344–348. MR 359308, DOI 10.1137/1016055
  • Alston S. Householder, Principles of numerical analysis, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1953. MR 0059056
  • JAMES L. HOWLAND, Private communication, 1977. L. LEAU, "Étude sur les équations fonctionnelles," Ann. Fac. Sci. Univ. Toulouse, v. 11, 1897, pp. 22, 29-35. E. DURAND, Solutions Numériques des Équations Algébriques. I, Masson, Paris, 1960.
  • P. Jarratt and D. Nudds, The use of rational functions in the iterative solution of equations on a digital computer, Comput. J. 8 (1965), 62–65. MR 179936, DOI 10.1093/comjnl/8.1.62
Similar Articles
  • Retrieve articles in Mathematics of Computation with MSC: 30A20, 65E05
  • Retrieve articles in all journals with MSC: 30A20, 65E05
Additional Information
  • © Copyright 1978 American Mathematical Society
  • Journal: Math. Comp. 32 (1978), 811-827
  • MSC: Primary 30A20; Secondary 65E05
  • DOI: https://doi.org/10.1090/S0025-5718-1978-0486465-4
  • MathSciNet review: 0486465