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Od de Vogelaere's Method for y"=ftx,y)

By John P. Coleman and Julie Mohamed

Abstract.   Easily calculated truncation-error estimates are given which permit effi-

cient automatic error control in computations based on de Vogelaere's method.

An upper bound for the local truncation error is established, the interval of abso-

lute stability is found to be [-2, 0], and it is shown that the global truncation
d

error is of order h   where h is the steplength.

1. Introduction. Ordinary differential equations of the special form

0) y"=fix,y),

and systems of such equations, arise in a variety of physical contexts.  Examples in-

clude atomic and nuclear scattering problems, molecular-dynamics calculations for

liquids and gases, and stellar mechanics.  A numerical method proposed by de Voge-

laere [3] has been used extensively to solve equations of this type (e.g. [1], [8], [9]

and [12]), and Chandra [2] has published a computer program which uses de Voge-

laere's method to solve the differential equations arising in a close-coupling formula-

tion of quantum mechanical scattering problems.  Chandra's program makes no at-

tempt to monitor the local truncation error, and leaves the choice of steplength strat-

egy entirely to the user.

A major objective in recent work on numerical methods for nonstiff ordinary

differential equations of first order has been the development of efficient codes which

automatically select steps as large as possible while satisfying some error criterion

specified by the user (see surveys by Shampine et al. [11] and by Lambert [7]).

Adopting this philosophy, our aim has been to improve on existing implementations

of de Vogelaere's method for the second-order equation (1) by incorporating a meth-

od of truncation-error estimation, and an automatic mesh-selection facility.

For ease of reference, and to establish notation, we present in Section 2 a der-

ivation of de Vogelaere's method based on Taylor expansions.   The estimation of

the local truncation error, on which the choice of steplength depends, is discussed in

Section 3.  Despite the frequent use of de Vogelaere's method we are unaware of any

previous error analysis, or any study of the stability of the method; later sections of

the paper deal with these matters.  A bound for the local truncation error is derived

in Section 4, the stability region of the method is established in Section 5, and the

global truncation error is examined in Section 6.

2. Derivation of de Vogelaere's Method.   The differential equation (1) is to be

solved, in some real interval [a, b], subject to the initial conditions
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:K*o) =->V       Z(*0) = Z0>

where y0 and zQ are specified numbers and

The mesh points, which in general are not evenly spaced, are denoted by xn in = 0, 1,

. . ■), yn is an approximation to the exact solution yixn) at the mesh point xn, and

we shall also use the abbreviation

fn = f(*n> yn)-

Let h be the initial steplength, so that

xx = x0 + h,      x2 = x0 + 2h.

Then, by using the equations

hfó=f0-f-i +y/ö+Ö(/z3)

and

A/¿+y/o=/i-/o-C/o"+^4)

in Taylor expansions about x0, we obtain

(2) y(x,) = y0 + hz0 + y (4/0 - /_,) + ^f¿ + 0(/is)

and

,,l"v     \   =  1J        -I-   "IU-7        4-
3 v-vi      -jo;      45

1,2 ^1,5

(3) yix2) =y0+2hz0+\ (4/, + 2/0) + -£- /J' + 0(/i6).

These expressions are valid provided that any errors in f_x and fx are of order h3 and

h4, respectively.

The de Vogelaere algorithm is obtained by neglecting Oih4) terms in (2) and

Oih5) terms in (3). For a fixed steplength h, its general step, leading from x2„ to

x2n + 2 = x2n + 2H may be described as follows:

Giveny2n, z2n, f2n andf2n_x,

h2
(4) (0       ̂ 2« + l  =y2n + hz2n + T^n ~ f2n-0'

(5) 00      f2n + l   =/(X2« + P>;2n + l)'

3

(lv)    /2/1 + 2    = f(x2n + 2> y2n + 2l>

(6> 0»)    ^n + 2 =>"2n + 2te2„ +t(4/2« + 1  + 2/2«)-

(7)

(8) (v)    z2„ + 2 =z2n +3</2„ +4/2n+1 +/2„ + 2).
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The local truncation errors in y2n + 2 and z2n + 2 are of order hs, and that in

y2n + x is of order h4. This algorithm has some similarity with Runge-Kutta methods,

but it involves only two function evaluations per step whereas a Runge-Kutta method

of the same order requires three (see e.g. [10]).  Unlike Runge-Kutta methods, the

de Vogelaere algorithm is not self starting, but, as de Vogelaere [3] suggested, this

difficulty is easily overcome since by taking

h2
(9) y-i =y0-hzo + y/o

we can calculate f_x with an error of order ft3.

An arbitrary change of steplength can be introduced without additional function

evaluations.   If a steplength hx is used as far as x2n, the quantity f2n_x refers to the

mesh point x2n_x = x2n - hx.  If we now change the steplength to h2 = chx, f2n-X

must be replaced in Eq. (4) by /2„_,, an approximation for / at x2n - h2.  This can

be achieved by defining

0°) /2„-l=/2*+<{/2n-l-/2*)>

which has a local truncation error of order h\.

3.  Truncation Error Estimates.  Equation (3) shows that the leading term in

the truncation error in the step from x2„ to x2n + 2 is

(11) —f'45 ¡2n-

De Vogelaere [3] described a method for estimating this quantity when the steplength

h is constant.  To allow us to monitor the truncation error immediately after changes

of steplength, it is necessary to introduce some modifications which are described in

this section.  We consider four separate cases.

3.1.  Fixed Steplength.   Since the truncation error in y2n+x is of order ft4,

and that iny2n + 2 is of order hs, yix2n+x) may be estimated more accurately by

Taylor expansion about x2n.  By using the equations

h J2n + 2 ~ An+ 2 _2/2„+1  + f2n + Oih  )

and

¥'2n + 2 = |/2« + 2 - 2/2n+l  + \hn + 0(h3)

to replace the low-order derivatives, we obtain the new estimate

24

h2
(12) ^2« + l  =y2n + 2-hz2n + 2 + ^(7/2n + 2  + 6f2n+l "A«)'

which has a local truncation error of order h .  Consequently,

(13) y*2n+i -y2n+1 = \fin +oih5).
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Similarly, if the same steplength is used for the next step,

ft4
y*n + 3-y2n + 3 = "g" ^n + 2 + <Kh5),

and the required truncation-error estimate is given by

2ft   fi" ~b_(f"       _ f» \
45    2n     45 U2"+2    32n>

o

~ 45 lv2n + 3 _^2« + 3) ~ O^n + l _>;2n + l)J-

The truncation error per unit step, which is a more appropriate basis for de-

cisions about the steplength, is approximated by

4
(14) 45^[0;2n + 3-^2n + 3)-0;2n + i -JWi)l-

3.2. Immediately Following a Step Change.   Let At be the steplength used in

the step from *2n-2 t0 *2n> ana m tne Preceding step.  Equations (6) and (8) can

be used to put Eq. (12), with n replaced by n - 1, in the form

(15) y*2n-X  =y2n-2 + hlZ2n-2 + 24^(7/2„_2  + 6/2„_,  ~/2„).

Then

J^n-l      ^2rt-l  _ 24^!(   ^2n-2 + ^2n-l      An  + 4/21,-3)

(16)
*} ft*

- y/2'n-i ~~^f¡,n-\ + °(*i)-

If the steplength is now changed to ft2 = chx for the next step, Eq. (10) combines

with (4) to give

(I7) JWi =y2n +h2z2n +gft^[(3 + c)f2n - cf2n_x].

Equations (6) and (8) apply with h=h2, and

y*n+î =y2n +f>2z2n + 24^10f2n +6/2„ + 1 -f2n+2).

Steps similar to those used in deriving Eq. (16) then show that

(18)  y%n+i -y2n+i -5(1 +|)fi,+i -|(2 + f+ i)/;„+i +o(ft26),

and

OL + i ->Wi)-f c4(! +j)0;*n-i -J'an-i)
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The resulting estimate of the truncation error per unit step is

,     , MOIn + l -y2n+l)-<*y*n-l "^n-l)!
(19)- ,

5hxil2 + 1c - c2)

where

(20) a = | c3(2 + c).

3.3.  77ie Second Step After a Step Change.   If the steplength A2 = chx, in-

troduced for the step from x2n to x2n + 2, is retained in the next step, the equation

ft4 A| 6

^2n + 3 ~y2n + 3 =   g~ fln + 3 ~ ~¿   fin + 3 + °(h2)

follows directly from (16).  This combines with Eq. (18) to give

3(1 +-)(y*2n + 3 -^2n + 3)-0*n+l "^n + l)

(21)

36 \J        C        c2//2» + 2  +

The local truncation error per unit step is estimated to be

4g[pXy|n+3 -y2n+3) - iy*n+i -y2n+i)]

5/1,(1 + 5c + 3c2)

with

-èH>
If we now continue to use the steplength A2 the results of Subsection 3.1

apply to later steps.

3.4.   Two Step Changes in Succession.   The alternative to the situation dis-

cussed in Subsection 3.3 is that having completed the step from x2„ to x2„ + 2 with

steplength ft2 we then adopt a new steplength h3 = cxh2.  The relevant mesh points

are

*2n-l  = *2n ~"l>        *2n' x2n+1 = x2n + "2'

X2n + 2 =X2n + 2*l2,     *2n + 3 = X2n + 2 + "3'     X2n + 4 = *2n + 2  + 2*l3'

In this case, by analogy with Eq. (18),

(23)72„ + 3->W3=§(l+c7y^

The appropriate linear combination of (18) and (23) is
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0o1n+3 -^+3) - ai(y*n+i -ym+i>

with

H(1+f)      ai=|c3(2+Cl).

Our estimate for the local truncation error per unit step is then

24c2c^[^„ + 3-y2„ + 3)-aiO$„ + 1 -y2H + i)]

5ft3[c2(12 + 7Cl -c2)+c(20+ 12c x -2c\) + 2cx +4] '

4.  A Bound for the Local Truncation Error.  The error analysis described here

is based on three functional which are related to the truncation errors in the formulae

(4), (6) and (8).   For an arbitrary function y(x), having p + 1 continuous derivatives,

we define the functional

(25) Lx \yix), ft] = y(x + ft) - yix) - hy\x) - |- [4y"(x) - y"(x - ft)].

By using Taylor's theorem in the form

yix + /ft) = yix) + jhy'ix) + ■■■ + ^y^\x) + ^f0 ij - Syy^ + 1\x) ds,

it can be shown that

(26) Lx [yix), ft] = yjl, Gxis)yivix + sh) ds

with

!(1 +s),       -Ki<0,
(1-s)3,      0<s<l.

Since Gxis) is of constant sign on the interval of integration, Eq. (26) may be written

as

(27) L, tvOO. h] = ft4c,yiv(;c + 6xh),      -1<6X<1,

with

ci =^P-rGi(s)ds =|-

The same approach applied to the functional

(28) L2 \yix), ft] = yix + 2ft) - y(x) - 2hy\x) - y [4y"ix + ft) + 2y"(x)]

gives

L2 \yix), A] = |j- J02 G2is)yvix + sh) ds,
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where

(2-s)4-16(1-s)2,       0<s<l,

(2-s)4, l<s<2.

The kernel function C72(s) is of constant sign, and consequently

(29) L2 \yix), h] = h^^ix + 62h),      0<62<2,

with

1   f2 2
c2 = 24-JoG2(s)<* = 45-

The third functional required is

(30) L3 ¡yix), ft] = y'ix + 2A) - y\x) - | [y"(x) + 4y"(* + A) + y"(x + 2ft)],

and the standard expression for the truncation error in Simpson's rule gives

(31) L3[yix), A] = - ^yviix + 63h),      0<93<2.

Let yix) be the exact solution of our initial-value problem.  To investigate the

local truncation error in the step from x2„ to x2n + 2 we suppose that the starting

values at x2n are exact, i.e.

>"2n = yix2n)> Z2n  = y'ix2n)>

f2n=y"iX2n)>        f2n-l = y"iX2n-l)-

Then the truncation error at x2„ + 1 is

X^2n + l)->'2n + l  =  Ll [K*2n)> *}

(32) ,4

= Yy1V(X2n+0lV>        -1<«,<1.

Also, in view of the assumed starting values,

A2
L2\yix2n),h] = yix2n+2) -y2n - 2hz2n - YWix2n+i) + 2/2„],

and the truncation error at x2n + 2 is

4A2
(33) X^2n + 2)-^2n + 2 =  L2\yix2n),h]   + — b"(^2n + i) " An+ 11 •

To obtain a bound on this error we assume a Lipschitz condition

(34) \fix,y)-fix,n)\<K\y-v\

for all x in the appropriate interval [a, b] and all finite y and r¡.  Then, if

G2is) =
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[yiv(x)| < M4,       [yv(x)| < M5,      xE [a, b],

Eq. (33) gives the bound

2ft5 Kh6
(35) lK*2n+2) ->W2l< ^5-^5 +~77-M4-

In a similar manner it can be shown that

4ft
/(*2« + 2)-Z2« + 2 =  ¡-3\y(X2n)>h]   + Y Lv"(*2n + l) ~ f2n+ 1 ]

(36) ft
+ 3 \y iX2n + 2> ~ f2n + 2l '

giving the bound

(37) l/(*2B+2) "Z2„ + 2I <^M6 + -yg- (3 +tfft2)M4 + ^-jlfs,

where

[yvi(x)|<M6,      JcG[flfi].

5.   Stability Analysis.  If yix) is the exact solution of the initial-value problem,

the global truncation errors in the function and derivative values at the end of the

nth de Vogelaere step are

yix2n-l) ~y2n-\  = en    >

yix2n)-y2n =e„2),

y'ix2n) - z2n = ^Ih.

The factor of ft in the third definition is introduced to simplify the form of later

equations.   Equation (4), combined with the definition of the functional Lx, gives

e(D   =e(2) + „(3) + 2ftlr »(      )_f    1
en + l       cn      ^ en T> 2n 2"

(38)
ft2

- -¡7 \y"ix2n_x) - f2n_x] + Lx\yix2n),h].

Similarly, from Eqs. (6) and (8) and the definitions of the corresponding functional,

(39)

and

(2)     =    (2) + 2 (3) + 4A_r   »/v )-f 1
en+l       en     T ^n 2 ^  2n+l>     -'2n+ll

+ ^V(*2n)-/2n]   +  L2b>ix2„), h]

*„% =43) +T^"(x2»)-An +4{y"(x2„+1)-/2„+1}+yV2n+2)-/2„+2]
(40) 3

+ hL3\yix2n),h].
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In accordance with normal practice (e.g. Lambert [6, p. 257]) the stability of

the method is discussed with reference to the equation

y   = X2y.

In this case our equations for the cumulative errors simplify to

(41) Aen + X =5e„+0„+1

where e„ is a column vector with components en'\ en2* and e^3\ <t>n+x has as its

components the three functionals occurring in Eqs. (38)-(40), and the matrices A

and B are

/    1 0     0   \

A =

M
4A' 3

4ft' 3

1     0

■I i
B

1 +

1 +

h
3

2ft
3

2ft
3

'     f      '
with ft = X ft .   Since A is nonsingular Eq. (41) may be written as

e„+l =Ce„ +A    '*„+!,

where

C =

ft
6

2P
9

O J

!+*+?   i(l+?)

\-?M) i(«+f+f) i+-+f /
The characteristic polynomial of the matrix C is

pir, h) = 6r3 - (12 + 23Â + 8A2)r2 + (6 - 2A - 4ft2> + ft.

The "Schur criterion" described on p. 78 of Lambert's book [6] can be used to

show that pir, ft) is a Schur polynomial, in other words that all its zeros lie inside

the unit circle, if and only if hE (- 2, 0).  Thus, the interval of absolute stability of

de Vogelaere's method is [-2, 0].  The moduli of the zeros of p(r, A) are plotted in

Figure 1 for a range of values of A.   The three zeros, though distinct, have the same

modulus when A = - 1.732 (to 3 decimal places).

6.  The Cumulative Error.   Bounds for the global truncation error can be obtained

from Eqs. (38)-(40) and bounds established in Section 4.   However, the dependence

on a (fixed) steplength ft is more readily obtained in an alternative approach described

by Kopal [5, p. 219].   Let y be the exact solution of the initial-value problem

/ = fix, y),    yix0) = y0,     z(*0) = zc
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h

Figure 1
77?e moduli of the zeros rx,r2 and r3 of pir, A).   r2 and r3 are

complex for h e (- 1.75, 0), and rx is always real

and z its derivative.  Another solution of the differential equation is denoted by % and

its derivative is r\.  Then, if the squares and higher powers of the differences |i|(x) _

yix)\ and |i?(x) - z(x)\ are neglected,

When this is combined with the adjoint system

X' = ~(^)ß'      M' = _X'

solved subject to the boundary conditions

H*2n)=l'       "(*2„) = 0,

Kopal's approach [5] gives the truncation-error estimate

(43) yix2n) -y2n a ¿ Wx2¡)Rt + píx2¡)Sj] .
j=i

Here R* and 5- represent the errors in evaluating the solution and its derivative in the

;th step of the de Vogelaere method; more precisely

Rj = S/*2/) - y2p        Sj = ¥X2/) - Z2/>

where Ç/jc) and n(x) are the solutions of (42) on the interval [x:2,-2. x2j] satisfying
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the initial conditions

Ç/C*2/_2) = y2j-2i        TlpX2j-2) = Z2/-2-

Regarding the right-hand side of (43) as a quadrature sum we may write

(44) yix2n) -y2n^^ fl]" [MxMx) + P(x)S(x)] dx,

and only the lowest power of ft in R and S is required for our purpose.   From Eq. (3),

or by retaining only the lowest power of A in (33), we obtain

Rix) = ^yvix).

The ft5 contribution to the local truncation error in the derivative comes from two

sources, the first and second terms on the right-hand side of Eq. (36) ; thus,

S(x) = -h¿y^(x) + h-¡^(x).

It follows from (44) that the global error is of order ft4.

As an example we consider the initial-value problem

/ = -*    yio) = o,    y'(0) = l.

In this case

yix) = sinx:,      X(x) = cos(x2„ - x),      pix) = sin(x2„ - x),

r>, x     2AS _, . 7ft5   .
Rix) = -TT- cos x,      S(x) = - -T7- sin x,

and the global error estimate is

ft4  fx2n
yix2„)-y2n- 973 J0    [2cos(*2n -x)cosx-7sin(x2„ -x)sinx]<Zx

A4
= Ï8Ô t9*2" C0S*2" " 5 Sinx2"] •

In particular, when x2n = tt/2 this estimate becomes -ft4/36 which agrees closely with

numerical results.

7.  Conclusion.  The truncation-error estimates presented in Section 3 provide a

practical means of efficient error control in applications of de Vogelaere's method.

The error estimates are inexpensive, requiring no extra function evaluations, and only

two function evaluations are lost if a particular step has to be discarded.  We have

used this approach in a program for quantum mechanical scattering calculations, al-

lowing the computer to choose the steplength at each step so that the truncation er-

ror per unit step is less, but not too much less, than a specified tolerance.

An important conclusion from our error analysis is that the global error in de

Vogelaere's method is of order ft4.  This contrasts with linear multistep methods for
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Eq. (1) which have a local truncation error of order Ap + 2 but a global error of order

hp (see Henrici [4, p. 314]).  For example, Numerov's method (Lambert [6, p. 255],

Kopal [5, p. 183]) has a local truncation error of order ft6 but a global error of or-

der ft4 like de Vogelaere's method.
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Added in Proof. We have now established a rigorous upper bound on the global

truncation error, assuming the Lipschitz condition and derivative bounds introduced in

Section 4. For any ft0 > 0, constants a and M exist such that, for all ft < A0,

exp[a(x2„ -*o)l " l
\y(x2n)-y2n\ < e exp[a(x2n -x0)] +-^-h M

where

e = max{|y(x0)-y0|, h\yix_x) -y_x\, |z(*0)~zol}-

In particular, if the initial conditions of Section 2 are satisfied exactly, then

e = A|y(*_i)-J'-il,

which is of order A4 if Eq. (9) is used to compute y _  . Details will appear in Julie

Mohamed's Ph.D. thesis.

Department of Mathematics

University of Durham

Durham, England

1. S. BASAVAIAH & R. F. BROOM, "Characteristics of in-line Josephson tunneling gates,"

IEEE Trans. Magnetics, v. MAG-11, 1975, pp. 759-762.

2. N. CHANDRA, "A general program to study the scattering of particles by solving cou-

pled inhomogeneous second-order differential equations," Computer Phys. Commun., v. 5, 1973,

pp. 417-429.

3. R. de VOGELAERE, "A method for the numerical integration of differential equations

of second order without explicit first derivatives," /. Res. Nat. Bur. Standards, v. 54, 1955, pp.

119-125.

4. P. HENRICI, Discrete Variable Methods in Ordinary Differential Equations, Wiley, New

York, 1962.

5. Z. KOPAL, Numerical Analysis, Chapman and Hall, London, 1955.

6. J. D. LAMBERT, Computational Methods in Ordinary Differential Equations, Wiley,

London, 1973.

7. J. D. LAMBERT, "The initial value problem for ordinary differential equations," in

77ie State of the Art in Numerical Analysis (D. A. H. Jacobs, Editor), Academic Press, London,

1977, pp. 451-500.

8. J. -M. LAUNAY, "Body-fixed formulation of rotational excitation: exact and centrifugal

decoupling results for CO - He," /. Phys. B: Atom. Molec. Phys., v. 9, 1976, pp. 1823-1838.

9. W. A. LESTER, JR., "De Vogelaere's method for the numerical integration of second-

order differential equations without explicit first derivatives: application to coupled equations

arising from the Schrodinger equation," /. Computational Phys., v. 3, 1968, pp. 322—326.

10. R. E. SCRATON, "The numerical solution of second-order differential equations not

containing the first derivative explicitly," Comput. J., v. 6, 1964, pp. 368—370.

11. L. F. SHAMPINE, H. A. WATTS & S. M. DAVENPORT, "Solving nonstiff ordinary

differential equations—the state of the art," SIAM Rev., v. 18, 1976, pp. 376—411.

12. L. VERLET, "Computer 'experiments' on classical fluids. I. Thermodynamical proper-

ties of Lennard-Jones molecules," Phys. Rev., v. 159, 1967, pp. 98—103.


