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Analysis of Some Difference Approximations

for a Singular Perturbation Problem

Without Turning Points

By R. Bruce Kellogg* and Alice Tsan

Abstract. Some three point difference schemes are considered for a singular perturbation

problem without turning points.  Bounds for the discretization error are obtained which

are uniformly valid for all h and e > 0.  The degeneration of the order of the schemes at

e = 0 is considered.

1.  Introduction.  We consider the two point boundary value problem

Ly = - ey" + py' + qy = /,   j(0) = a,    v(l) = ß,
(1.1)

p(x) > a > 0,      qix) > 0,

where e > 0 is a small parameter.  It is well known that the solution y(x, e) of this

problem converges, as e —> 0, and for 0 < x < 1, to the solution i>(x) of the reduced

problem

(1.2) pv'+qv=f,      i>(0) = a.

The loss of a boundary condition at x = 1 in the reduced problem results in a

"boundary layer" in the solution y, for small e.  It is also well known [1, p. 300]

that a reasonable difference approximation to (1) may give inaccurate results for

small e.  In particular, the usual centered three point 0(h2) difference approximation

has this property.  In this paper we analyse three difference operators, Lk, k = 1,2,

3, on a uniform mesh of size h, for use in the approximate solution of (1.1).  Each of

the operators results in a tridiagonal, diagonally dominant matrix with negative off-

diagonal entries.  The operator Ln, which has been frequently proposed for such

problems, uses a one sided difference approximation to the first derivative, and gives

an 0(h) approximation to (1.1).  The operators L2h and L\ give 0(h2) approximations

to (1.1). L\ was proposed independently by D'in [2] and by K. E. Barrett and others

[3].  The operator L\ was considered by Samarskii (see [9] ).  Each of the three ap-

proximate schemes behaves reasonably for e small, and upon setting e = 0 in Lh and

L\, an 0(h) approximation is obtained for the reduced problem (1.2).

Our purpose is to give bounds for the discretization error for the three schemes

that are uniform in e and h.  Our error bounds contain a term that gives the effect

of the boundary layer, and the bounds demonstrate that the boundary layer does not
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"pollute" the error away from x = 1.  In the case of the second order schemes, our

bounds contain a term of the form h2/(h + e), reflecting the loss of one order of

accuracy in the error as e —► 0.  We also show that, among a certain class of dif-

ference schemes, this loss of an order of accuracy as e —► 0 is unavoidable.  Finally,

we give some numerical results illustrating our bounds.  To obtain our error bounds

we utilize the positivity of the difference schemes and a comparison function that

is designed to handle the effect of the boundary layer in the truncation error.  This

technique may be of use in other problems.

The literature on the numerical solution of singular perturbation problems is

large.  A useful discussion of a variety of problems is contained in Dorr [1 ].  II'in

[2] gives an 0(h) error bound for his scheme that is uniform in e.  We give a different

proof of this result.  Abrahamsson, Keller, and Kreiss [4] give an asymptotic expan-

sion of the difference solution in h and e.   Some other methods for the numerical

solution of singular perturbation problems are given, e.g., in [5].

In Section 2 we given some properties of solutions of (1.1), and in Section 3

we state the difference approximations that are being studied.  The main results are

contained in Section 4, and some numerical examples are presented in Section 5.

Throughout the paper we let c, c., . . . denote positive constants that may take dif-

ferent values in different formulas, but that are always independent of h and e.  We

assume that the parameter e satisfies 0 < e < 1.  We assume that the functions p(x),

q(x), and f(x) are sufficiently differentiable for our purposes, but we shall not write

out the assumptions in each instance.

2.  Differentiability Properties of the Solution.  To estimate the error in our

difference approximations we shall require a bound for the derivatives of the solution

of (1.1) that is valid for all e G (0, 1].   To analyse the D'in scheme we require

more precise information on the behavior of the solution.  These results are contained

in Lemmas 2.3 and 2.4.  To obtain the results, we require some information about

the solutions of

(2.1) Ly=gix,e),   yiO) = a,   yÜ) = ß,

where g satisfies

(2.2) \gV\x, e)I < A-(l + e"'-1 expi-ae-1 (1 - x))).

We will say that g is of class (#, /) if (2.2) holds for 0 < . < /.   Our first result is

Lemma 2.1.    The problem (2.1) has a unique solution y.  If g is of class iK, 0),

then \yix) I < c where c depends only on a, ß, and K.

Proof.   The existence and uniqueness of a solution follows easily from the

maximum principle [6].   A computation shows that

¿(1 +x)>cx,      Z,(exp(-ae_1(l - x))) > c2e~x exp(-ae_1(l - x)).

Hence we may choose c3 and c4 so that

z(x) = c3e~x + c4 exp(-ae-1(l - x))
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satisfies Liz ± y) > 0, z(0) > \a\, z(l) > Ijîl.  From the maximum principle, lj>(x)l

< z(x) < c.

Lemma 2.2.   Let g be of class (AT, /).  Then the solution y of (2.1) satisfies

1^^(1)1 < ce"1, 1 < i </ + 2, wAere c > 0 -foes «o¿ depend on e-

Proof.   From (2.1), -ey" + py' = h where h = g - qy.  Let ¿°(x) be an indefi-

nite integral of p.  Then we obtain

(2.3) yix) = yp(x) + KX+K2 £ exp(- e"1 (/>(1 ) - />(.)))df,

where

V*) = -/J z^^'     z(*) = il e_lÄ(r) exPÍ"e_1^) ~ A*)))*-

Using the inequahty

(2.4) exp(-e-1 (;>(.) - P(x))) < exp(-ae_1(- - x)),      x < t,

and (2.2),

lz(j»)l < ce~x C [exp(-e_1a(. - x)) + Ke~x exp(-e_1a(l - x))] dt

<c[l + e_2(l -x) exp(-e_1a(l -x))].

Hence l.y»,(x)l < c.   The constants /.. and K2 must satisfy

Kx + K2 po exp{-e~xiPil) - Pit))}dt = a - ypi0),      Kx = ß.

Since pix) is bounded on (0, 1), Pil) - Pit) < c(l - t).  Hence

P exV{i-fxiPil)-Pit))}dt>ce,

and we find that K2 < ce-1.  Hence, \y\l)\ = IA^2 I < ce~x, so the inequahty is

proved with i = 1.  If /' > 1, the result is obtained by induction and repeated differen-

tiations of (2.1).

Lemma 2.3.   Let g be of class iK, j).  Then the solution y of (2.1) satisfies

(2.5) \yV\x) l< c{ I + e-'' expf-ae-1 (1 - x))},      0 < i </ + 1,

where c > 0 does not depend on e.

Proof.   The proof is by induction.   From Lemma 2.1, the inequahty holds for

i = 0.  Differentiating both sides of (2.1) i - 1 times and setting z = y^'\ we have

-ez' + pz = h, where h depends on y, p, q, g, and their derivatives of order up to

and including i - I.  Using (2.2) and the inductive hypothesis,

(2.6) /i(jc) < c{ 1 + e_/ exp(-ae_1(l - x))}.

Let P be an indefinite integral of p.  Then

z(x) = z(l)exp(-e-1(/,(l)-nx)))

4- e_1 f1 hit) expi-e-xiPit)-Pix)))dt.
J X

From (2.4), (2.6), and Lemma 2.2,
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lz(x)l <ce_/ exp(-ae_1(l -*))

+ ce-1 |   {exp(-ae-1 (¿ - x)) + e"' exp(-ae_1 (1 - x))}dt,

and the desired inequahty follows from this.

Remark 1. In particular, (2.5) holds when y is the solution of (1.1). This is

used in the analysis of the difference schemes Lkh, k = 1,2.

Lemma 2.4.   Let y satisfy (1.1).  Then

yix) = y exp(- pOy^l - x)) + z(x),

wAere I7I < c., _.«_.

(2.7) \ZV\x)\ < c2{ 1 + e'i+ x expi-ae-xil - x))},

with c. > 0 and c2 > 0 independent of e.

Proof.   Set ¡.(x) = exp(-p(l)e-1(l ~x)), and set y = e/(l)/p(l).  Then from

Lemma 2.2, we see that I7I < c. where c. > 0 does not depend on e.  Set z(x) =

yix) - yvix).  Then z'(l) = 0.  Differentiating both sides of (2.3) and setting x = 0,

we find that ly'iO) I < c.   Calculating

Lz =f~qy + y[pil) -pix)]v' + qz = g

and differentiating once, we get Lz = g - p'z - q'z.   Using (2.5), we see that y is

of class (A', j).  Hence, z = y - yv  is of class (A', /), and we find that the function

Lz is of class iK, j).  Using Lemma 2.3 with y replaced by z', we find that z satisfies

(2.7), and the lemma is proved.

Remark 2.   Lemma 2.4 is used in the analysis of the Il'in scheme, L\.

3. The Difference Equations. Let (0, 1) be divided into N uniformly spaced

mesh intervals, with mesh spacing h = N~ and with mesh points x¡ = ih, 0 < /' <

N.   Using the usual notations for divided differences,

D+uf = iui+. - u¡)lh, D_u{ = (u¡ - ut_x)lh,

Doui = ("/+1 - "í-i)/2A,        D+D_u¡ = (ui+. - 2u¡ + W/_. )\h2,

we define our difference operators by

Lnu¡ = -eD+D_u¡ + PiD_u¡ + q{u(,

¿2"Ui = 1 + hPi¡2e D+D-Ui + piD~ui + Wi'

3 1       /        Pih\
Lhui = ~2 pih Icoth 2e~) D+D-Ui + PPoui + '-/"i-

where p¡ = p(x¡), q¡ = q(x¡).  We shall also write f¡ = /(*,).

In this section we give some elementary facts concerning the positivity and the

truncation errors of these operators.

Lemma 3.1.   For k = 1, 2, 3, the system Lklui = f¡, 1 < /' < TV - 1, with u0

and uN specified, has a solution.  If L^Uj < L%vt, I <i <N - I, and ifu0 <v0,uN

< vN, then u¡ < v¡, 1 < í < N - 1.
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Proof   The equations Lklui = ff, 1 < I < JV- 1, may be regarded as a system

of A7 - 1 linear equations in the unknowns u¡, 1 < / < _V - 1, where for /' = 1 and

i = N - 1, the terms involving w0 and «^ have been moved to the right-hand side.  It

is easy to see that the matrix of coefficients is diagonally dominant and has nonposi-

tive off diagonal entries.  Hence, the matrix is an irreducible M matrix [7], and so

has a positive inverse.   Hence, the solution u¡, 1 < i < N - 1, exists and, if the v¡ are

as described in the lemma, u¡ < v¡, 1 < i < N - 1.

The following lemma, whose proof is a computation, enables one to give a

bound, that is uniform in e and h, for the norm of the inverse of L\.

Lemma 3.2.   Let zi = (1 + x¡), 0 < i < N.   Then Lnz¡ < c, k = 1, 2, 3, where

c > 0 does not depend on e.

We now consider the truncation error associated with the operators Lkn.  If y(x)

is a smooth function, we define Tk = Lklyi - Ly(x¡).  We require estimates for rf

that are in integrable form.

Lemma 3.3.    There is a constant c > 0 depending only on p(x) such that

(3-1) It?I <c Pi+1 [el/3>(r)l + \y(2\t)\]dt,      k = 1,3,
' Jxi—l

(3.2) W21 < j^j PJ+* [e2 \y(4\t)\ + e|/3)(f)l + \yV\t)\] dt,

(3.3) Irf |< ch p'+1 [el/4>(r)l + l/3>(r)l + (A + e)-1 ly<2 >(.)!_...

/Voo/   By repeated use of the fundamental theorem of calculus, or by Peano's

theorem [8, p. 70] we obtain the formulas

D_yix) -y(x\x) = -hTx p_h is - x + h)yi2\s)ds

(3.4)

= -\ hy(2\x) + | h~x px_h is + h- x)2y<3\s)ds,

E>oy(x) -y{1)(x) = -i h'1 pxh is-x + h)y<2\s)ds

1        ,   rx + h ...
+ ^h-x\ ix + h - s)y(2\s)ds

(3.5)

= \h~x P_his+h-x)2y(3\s)ds

+ i h~x p + " ix+h- s)2y<~3Xs)ds,

D+D_yix) - y2ix) = y h~2 j*_h is + h- x)Y3\s)ds

+ i h~2 j*+H ix + h- s)2y(3\s)ds

(3.6)

= \h-2Px_his + h-x)3y^\s)ds

+ W2 ÇX + H ix + h - s)3y^\s)ds.
O J x
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Let us designate Rm n to be a quantity which satisfies

\Rm J<chm ri+1  \y<n\s)\ds.

Using (3.4) and (3.6) and the formula

(3.7)   Liyixt) - LyiXj) = - e [D+D^ixA - /2 >(x,.)] + Pi [£>,>>(*,.) ~ / 1 Kx,)],

we obtain

7i   = ^0,3 +Ä0,2-

This proves (3.1) with k = 1.  Next, using (3.7) with the higher order error estimates

of (3.4) and (3.6), we get

Lxnyix¡)-Lyix¡) = eR1>4 - \âp^ywixt) + Rx>3.

Using the differential equation to eliminate y^2\x¡), and using (3.4) again, we obtain

/2)(x,.) = e"1 \pp^ixt) + qyiXi) -/.] + e~xR0>2,

so

-eD+¿Ly(x,.) + (1 + pJifeXPiDMXi) + q^ix¡) -Lyix¡)}

= ^1,4+^1,3 +e_1^0>2.

Dividing both sides by (1 4- p¿i¡2e), we see that the left side gives r2, and the right

side gives the bound in (3.2).  To analyse t3 , we start with the formula

(3.8)    T'
tPjh ph ...— coth ^-1    D+D_yiXi) - e[D+D^i*i) --V(2)(*/)]

+ PilE>0y(xí)-y(x)(x¡)].

Since g(t) = t coth t satisfies #(0) = 1, g(t) = g(-t), we have \g(t) - 11 < ct2 for

t < 1.  Since coth t —*■ 1 as t —*■ °°, \g(t) - 11 < ct for t > 1.  Hence

Ircothr- 11 <cf2/(l +0,     t>0.

It is easily seen that

\D+DMx,)\<h-1 g** \y(2\s)\ds.

Using these inequalities to estimate the first term of (3.8), and using (3.5) and (3.6)

to estimate the two remaining terms, we easily obtain (3.1) with k = 3 and (3.3),

completing the proof.

4.  Error Bounds.  In this section we derive error bounds for our difference

schemes Lkh,k= 1,2, 3.  We set r. = 1 + ahe~x ,r2=rx+ lAa2h2e~2, r3 =

exp(a/.e-1). We first require some inequalities.

Lemma 4.1.   (a) (/rfc/e*>7(iV-/') < cr?"-** < cr*1*-*, 0<i<N,or,0< i

< N if k = 0, where k is a nonnegative integer and c depends only on k;

(b) ff*-* < r<N-» < exp{- ail - xj/iah + e)};

(c) r?N~i) < r^-V < c exp{-e-1 _z(l - x-)}, where h<e,anda~G (0, a) is

a constant depending only on a.
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Proof,   (a)  Since ef>l +t + t2/2 and rfc(l + t + r2/2>_i < c, for all t > 0

where c is some constant, these imply that t > ln(l + t + t2/2) and k In í < t -

ln(l + t + t2/2) + In c.   It follows that

1-x,.
k In ¿ < —r-1 1 +/ +V + lnc.

Let r = a/z/e, then

,   akhk     1 "*<    oft   .    1 "*. x (.   ,ah  , a2h2 \ , .
In —--r— • — <-;— ln( 1 + — + ——    + In c.

€k h e h        \      e       2e2 /

Taking the exponential'of both sides, we get the first inequality.  The second inequal-

ity is easy to prove.

(b)  We only prove the second inequality.  We have

B = (í+é.Y1~xl),H =(i     ^ \(1~Xi)lh

e \       ah + e

in bJ-^íJ I
ah + e

\ < J ~xt r_    ah    "I = _ (1 -Xj)a

J        h ah + e J ah + e  '

Taking the exponential of both sides, we get the results.

(c) To improve the upper bound in (b) when h < e, we start with the inequal-

ity

(4.1) expiât) < I + at,      0 < t < 1,

where a G (0, a) depends only on a. Setting t = h/e, we obtain r^1 < exp(- ähe~x),

and raising both sides to the power N - i, we get the result.

The next lemma will be used, with Lemmas 3.2 and 3.1, to convert bounds for

the truncation error into bounds for the discretization error.

Lemma 4.2. There is a c > 0 depending only on p(x) and a such that, for k =

1,2,3,

(4.2) ¿fo("-° > —7T-T 'S"-0-" K max(/i, e)   K

Proof.   A computation shows that

Lhrix>h-xirx-l)ipixi)-a)rix-x.

If h > e, then there is a constant c. such that r. - 1 i> c.r., so Lnr[ > c2h~xrlx,

and we obtain (4.2) in this case.  If h < e, since rx - I = ahe~x we have

LVl  > CZe~ïr\~l   = C3r\Ke + ah) > C4e_1''Í.

and we obtain (4.2) in this case.  A similar argument is used when k = 2.   For k =

3, a computation gives

L3r3 > (pfihr^ - l)2Arl
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where

a     r3 + 1 t. Pih        ,, ah        t. Pi«      . , (Pi - '»   I . ,ah        P¡h
A =-:-coth -r- = coth-coth — = sinh-/ sinh — smh -—.

r3 - 1 2e 2e 2e 2e     / 2e 2e

If h < e, since cxt < sinh t < c2t for 0 < t < c, we have A > ce/h.   Since, in this

case,

(r3-l)2r-3x=4sinh2fe>ch-,

we have

L3ri3>cri3le.

if h> e, since c.e' < sinh t < c2e' for c < r < °°, we have A > ce~aH^e = cr3x.

Since, in this case, r3 - 1 ^ cr3, we have

L\T\>cr\\e,

and the proof is complete.

Remark. The qualities rfc arise in the following way. If, in the definition of

Ln, we set q(x) = 0, p(x) = a, then Lkrlk = 0, k = 1, 2, 3. We also note that r^1,

¡fc = 1, 2, is the Padé approximation of type (0, k) to r^1 = expi~ahé~x).

We now prove the main theorems of the paper.   Let yix) he the solution of

(1.1), and let y = 711 + z be the decomposition of Lemma 2.4, where we have set

i>(x) = exp(-p(l)e-1(l ~ x)). We let y^¡ be the solution of the system Lknykhi =

Ly(x¡), 1 < i < N - 1, .y£0 = j(0), ^^ = j>(1). We define the mesh functions

Vfti and zkhi in a similar manner.   Our first result is

Theorem 4.1.   There is a c > 0, independent of h and e such that

\y(xt) -yxhi\<ch[l+ e~x exp(- ae~x(1 -*,.))],      h < e,

Wd - yhi\<c[h+ expi-ail - xJHah + e))],       h > e,

where a is as in Lemma 4.1.

Proof.   We first suppose that h < e.  We obtain from Lemma 3.3 and 2.3,

It/ I < cíe'2 J"^1 exp(-e_1a(l - f))rfi + h\

< ce-1 sinh(a/ie-1) exp(-e-1a(l ~x¡)) + ch.

Since sinh t <ct for í bounded, we obtain, using Lemma 4.1(a)

It/I <ch{e-2r3<N-» + 1} <.A{£-2^Ai-i) + 1}.

Since Lxhiyix¡) -yxhi) = r/, we may use Lemmas 3.2, 4.2, and 3.1 to obtain

\yiXi)-yhi\<ch{e-xr-x(N-» + i}.

We obtain the desired inequality from Lemma 4.1(c). To treat the case h > e, we use

the decomposition y = yv + z, yni = yvxhi + zL.  We have
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(4.4) \y(Xi)-yhi\ < c{ \v(Xi) - vxhi\ + \zixf) - zxM\ }.

To estimate the z term, we use Lemmas 3.3 and 2.4 to obtain

\LxhiziXi) - zxhi)\ = \Llhzixt)-Lzb,)\

<cpi+i {elz(3>(.)l + lz<2>(r)l}¿..

< c ! e_1 Pi+l exp(- e_1a(l - t))dt + 4
I J xi-l I

< c sinhiahe~x) exp(-e-1a(l - x¡)) + ch.

Since sinh t < ce* for t > c., we have, using Lemma 4.1(a),

IZ,¿(z(x,.) - z£,.))l < cr7(Ar-(/+1)) + ch < crxf<N-^ + ch.

Hence, we obtain from Lemmas 3.2, 4.2, and 3.1,

lz(x,) - zxM\ < chr-(N-«+x» +ch< ch.

It remains to bound the u term on the right side of (4.4) in the case h > e.  From

the definition of i>(x), \Lvix)\ < ce-1i>(x).  Since vix¡) < r^N~'\ we have

\Lxhvxhi\ = iLvixjKce-i^W-i^ch-1^"-»,

where we have used Lemma 4.1(a) with k = I.  Hence, from Lemmas 4.2 and 3.1,

lu^KcrT^-O,

so

1 »(*/) - vhiI < IKx,)I + lw«K cr-W-^,      Ki<N-l.

The desired estimate then follows from Lemma 4.1(b), and the proof is complete.

We next have, for the operator L\,

Theorem 4.2.   There is a constant c > 0, independent of h and e, such that

W*/) - yli I < 7T- [1 + e_1 expi-ae"1 (1 - *,))],      h < e,
A + e

W - »v2,.I < c j ^ + exp(-a(l - x;)/(a/i + e))J,      h > e,

where a is as in Lemma 4.1.

Proof.   The proof is the same as that of Theorem 4.1, except that (3.2) is used

instead of (3.1) to estimate the truncation error, and r2 is used in place of r..

To analyse the Il'in scheme, we shall use the decomposition y = yv + z both

when h < e and when h > e.  In the next lemma, we give a bound for v - v3h.  Note

that if p(x) is a constant, then vh = v and the lemma is not needed.

Lemma 43.   l->(xf) - vhi\ < ch2\(fi + e), where c > 0 is independent of e.
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Proof   A computation gives

Lvix) = -e-xpil)\pil)-pix)]vix) + qix)vix),

L3v - - Mx) ^(M^e-1) sinhQ./.e-1 [pjl) -pjx)})
L"V~ h sinhiKpix)he-x) -ü(x) + <7(x)ü(x).

We use the approximation sinh £ = % + S, where ISI < cl|l3(l + g2)-1el£ '.  We

have

t(x) = Iu(x) - L3hv(x)

[Xp(l)he-1 + Sx]We-x(p(l)-p(x)) + S2]
= 2p(x) -;-v(x)

M.h2p(x)e-X + hS3

-i

(4.5)

-e-xp(l)[p(l)-p(x)]v(x),

r(x) = {p(x)he-x\pil)-PÍx)]Sx

+ pix)pil)he~xS2 + 2pix)SxS2

' -he-xpil)\pil) -pix)]S3}vix)lh sinhQApixyïe-1),

where

ch3 <
l5i ' <      ?    2   expCMiyie-1),

e(/i2 + e2)

ch3il-x)
IS, l<-T exp(c(l - xyie-1),

2       eih + e)2

ch3
\S3 I < —- exp^^e"1),

eih2 + e2)

and where we have used the inequality lp(l) - p(jc)l < c(l - x).  Using the inequality

sinh % > c%(l + Çfxei, £ > 0, we see that the denominator in (4.5) is bounded from

below by ch2(h + e)~x expQÁhe'1 p(x)).  The numerator in (4.5) consists of four

terms.  We bound each of these terms as follows:

IpixVie"1 [p(l) -pix)]Sx I <che-xil -x) • h3e~xih2 + eVexpCápOVie"1)

<cfcV2(l -xXh + e)~2 exp^piiyie-1);

\pix)pil)he-xS2\ <c/iV2(l -xX/i + e)"2 exp(c(l -x^e"1);

I2p(x)5.52 I < c/iV2(l -xXh + e)~2 exp^pO^e-1 + c(l -x)he~x] ;

\he-xpil)\pil)-pix)]S3\<ch4e-2H -x)(h2 + e2)"1 exp^p^e"1).

Using these inequalities in (4.5), we obtain

,     c/.2(l-x)
It(x)I < —-exp(c(l -x)he~x)v(x).

e (h + e)

Let ft = &(p(l) - a), so b > 0.  We may find a constant c. > 0 so that when h <
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c., p(l) - a - ch > b.   Then we have, for h < c.,

ch2il -x)
It(j.)I < -r1-■ exp(-ae_1(l ~ *)) exp(-¿>e-1(l - x)),

(4.6) e2(A + e)

ch2
lr(x)l < ^f^j expi-ae-^l -x)).

At the mesh point x(-, (4.6) yields

ch2
It(x,.)I = \L3(Vi - **,))! < -^— ^W).

e(« + e)

We now use Lemma 4.2 and Lemma 3.1 to obtain a bound for v¡ - v(x{). If h < e,

/j < c., we have

1       '      h + e   3 A + e

If h > e, h < c., we have

lu(x,.)-1,.l<-^-.r.e-1r7<7V-/>.
/i + e

Since /' < N - 1, 1 -x¡> h, and

he~xr3-<-N-i) = rje_1exp(-ae_1(l - x)) < /ze-1 exp(-aÄe_1) < c,

so the inequahty is obtained in this case.  There remains the case h > c..   For this,

it suffices to show that v and vn are bounded for all h > c., e < 1.  This is true by

inspection for v.  To bound vh, we note that L3hvh = ¿u is bounded for all h and e.

Hence, from Lemmas 3.1 and 3.2, vh is bounded for all h and e.  This completes

the proof of the lemma.

We shall give two error bounds for the II'in scheme.  Our first bound was also

given in [2].

Theorem 4.3.   There is a constant c > 0, independent of h and e, such that

Proof.   Using the decomposition of Lemma 2.4, let t¡ = L3hiz - zh) = L3hz -

Lz.   Using (3.1) with k = 3, and (2.7),

lT,.Kcr/+1 [elz(3)(r)l + lz(2>(r)l]-.-

<ch +ce~x f*'+1 exp(-ae_1(l - t))dt
J x,-_i

< ch + c sinh ahe~x • exp(-ae-1(l ~x-))

= ch + c sinh ahe~x • r^N~'\

Using Lemmas 3.2, 4.2, and 3.1, we obtain
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lz(x,.) - zhl\ <*ch + c max(h, e) sinh ahe ' • exp(-ae x(l - x,.))

< ch + c max(h, e)[l - exp(-2ahe~x)].

For h < e, using the inequality 1 - e~' < et, t > 0, we get lz(xz) - zh¡\ < ch. For

/. > e, we also obtain this inequality. Hence, using Lemma 4.3 and the triangle in-

equality, we obtain the result.

Theorem 4.4.    There is a constant c > 0, independent of h and e, such that

ru2 „1.2

w*/) -y3M\ < rr~+ T- «pi-œ-^i - x,)).
h + e       e

3/
Proof.   Again setting t¡ = Lh(z - zh), we have from (3.3) and (2.7),

I*"'-/;::[ Aelz(4>l + /»lz<3>l+ —— lz<2>l
h + e

<-1-sinh ahe x • exp(-ae ' (1 - x,))
h+e     h + e '

+ che~x sinh ahe~x exp(-ae-1(l - x¡))

< ch2(h + e)"1 + c/ie-1 sinh ahe~x • r7(iV-,).

Using Lemmas 3.2, 4.2, and 3.1, we obtain

(4.7)    lz(x,.) - zM\ < -^— + che~x max(A, e) sinh ahe~x • exp(-ae_1(l - ^/))-

For h < e, we use the inequality sinh at < et, t < a, to get

lz(x,) - zÄ/l < —— + ch2e~x exp(-ae-1(l -x,-)).
h + e

Using the triangle inequality and Lemma 4.3, we obtain the bound for the error in

this case.   For h > e, h < 2h2(h + e)    , and the result follows from Theorem 4.3.

The difference operators L\ and Z.3, have, for e > 0, a truncation error that is

0(h2), whereas the reduced difference operators, obtained by letting e —*■ 0, have

a truncation error that is 0(h).  We shall now show that this loss of an order of ac-

curacy near e = 0 holds for all tridiagonal difference operators of positive type.   For

this, it suffices to consider the case of constant coefficients, p(x) = p > 0, q(x) =

q > 0.  We consider the difference operator

iLhu)¡ = rQi, e)ui+. + sQi, e)u¡ + tQi, e)u(_x.

We suppose that r, s, and t are continuous functions of (A, e) for h > 0, e < 1. We

say that the difference operator is of positive type if sQi, e) > 0, rQi, e) < 0, tQi, e)

< 0.  If yix) is a smooth function, we denote the truncation error by

t(x, h, e) = rQi, e)y(x + h) + sQi, e)y(x) + tQi, e)yix - h)

+ ey«\x)-py<1Xx)-qyix).
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With these notations we have

Theorem 4.5.   Suppose that, for any smooth function yix), the truncation

error satisfies \t(x, h, e)l < ch8 where 5 > 1 and where c does not depend on x, h,

or e, then the difference operator is not of positive type for all e and h sufficiently

small.

Proof.   Letting y be a quadratic polynomial, calculating t(x), and comparing

coefficients, we obtain

r + s + t = q+ p(x, h, e),

h(r-t) = p + X(x, h, e),

1Ah2(r + t) = -e + q(x,h, e),

where It?I, IXI, Ipl < ch6, uniformly in (x, h, e).  Solving this system of equations,

we obtain

e      p     t?(x, h, e)     X(x, h, e)
r(h, e) = - — + — +-+-.

h2     2h h2 2h

Then rQi, 0) = p/2h + OQi~x + &), so for h sufficiently small, rih, 0) > 0.  Hence,

for each h > 0 sufficiently small, there is an e > 0 sufficiently small, such that for

this h and e, the difference approximation is not of positive type.

5.  Numerical Results.  We give some numerical results for our difference

schemes, as applied to the problem -ey" + y' = 1 with boundary conditions yiO) =

0, yil) = 0.  In addition to using the difference operators Lxh and L2h we have used

the centered difference operator

-->,- = -D+D_Ui + DoUi,      D0ut = iui+. - w,._. )/2h.

This difference operator gives an 0(h2) approximation to the differential equation,

but is known to give poor results for small e [1].   The three figures give results of

computations using h = 0.02 and for three different values of e.  In Figures 1 and 2

we have plotted the errors in the approximate solutions.  Denoting the errors in us-

ing Lkh by ek, e°, ex, and e2 are represented respectively by the solid line, the dashed

line, and the long dashed line.   For e = 0.1, Figure 1 shows that L2h produces a

solution that is almost as accurate as that produced by Z,°, while the first order

scheme gives a much larger error.   For e = 0.01 < h, Figure 2 shows that e2(x) is

smaller than e°(x), and e'(x) is the largest error.  This indicates that L2h gives the

most accurate solution.   In Figure 3 we present results for e = 0.001.  e2(x) is very

close to zero in the entire interval, and ex(x) is close to zero except near x = 1.  The

oscillating solid line is the centered difference solution u°(x) which we have shown

superimposed on the true solution, yix).  This figure indicates that the use of L2h

gives a very good approximation, while the centered scheme is worthless.   For this

problem, the scheme L\ gives the exact answer.   In conclusion, the difference opera-

tors L\ and L3h provide accurate solutions to a singular perturbation problem without

turning points over a wide range of values of h and e.
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eu(x)

Figure 1

.1353

t-03133 h

■198

e - 0.01

_L

0-5

FlGURE 2

e°(x)-

e2(xK

e'ixl^li

1.0

1.798

.8753

-.0476:
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