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Numerical Solution of an Exterior Neumann Problem

Using a Double Layer Potential

By J. Giroire and J. C. Nedelec

112
Abstract.   We give here a variational formulation in H '  (T)/R of the exterior Neu-

mann problem for the Laplace operator using a double layer potential.   This formu-

lation is then applied to the construction of a finite element method.   Optimal er-

ror estimates are given.

Introduction.   Solving boundary value problems for partial differential operators

by integral equation methods is not a new idea.  However, the classical way to do it

consists in representing the unknown solution as a potential of the type that will lead

to an integral equation of the second kind.  Then, Fredholm's theorems can be used.

Thus, the Dirichlet problem is usually solved with the help of a double layer potential,

and the Neumann problem with the use of a single layer potential.

We shall have a different point of view. Our aim will be to obtain a variational

formulation of the problem in order to obtain the existence and unicity of a solution

and error estimates. This philosophy leads to opposite choices for the representation

of the solution. Thus, J. C. Nedelec and J. Planchard, for the three-dimensional case,

and M. N. Leroux for the two-dimensional case, have solved the Dirichlet problem by

using a single layer potential. We propose here the solution of a Neumann problem

by using a double layer potential.

Let Í2 be a bounded open set of R3.   Let T be the boundary of f» and f»c de-

note the complementary set of £7.

We assume that T is sufficiently smooth, and we put the coordinates' origin in

Í2.  We shall write

n, for the exterior normal to T,

r, for the distance to the origin,

[v] = ulp* - i>l^xt, for the jump through T, of the function v defined in R3.

I.  The Exterior Neumann Problem for the Laplace Operator.   Let us consider

the following problem.

¡Find «, £ W0(Í2C) = {vG £>'(Sîc)lu/r G L2(ilF), Dv G L2(Slc)}, such that

Aw. = 0    in nc,

duxldn=gx GH~XI2(Y).

We have the
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Proposition 1-1.   Problem (P.) has one and only one solution.

Proof. It is a straightforward consequence of the fact that llgrad ull, 2(nc\ is

a norm on IV¿(Í2C) equivalent to the definition norm [4, Theorem II-2, p. 20].  D

For gx arbitrary in H~XI2(V), it is impossible to find a harmonic extension of

«j in Í2.  Let then X and uQ be defined by

. XI
A-v*., l>ff-i/2(r)xííi/2(r)   and   u0(x) = —     _

where x0 is an arbitrary point of Í2.  Let us take

3t»0
t. = u. -u0    and   #=g. -—.

an

Then, u is harmonic in i»c and can be harmonically extended in Í2.  We are

thus led to problem (Pj.

Find u G iHxiü)/R) x IV0(£2C) such that

i At. = 0    in SI and Í2C,

au/3/i=^eyv0-1/2(r) = {/iG^-1/2(r)l<A, i> = 0}.

We have then

Theorem 1-1.  Problem (P) /iaí o«e and only one solution.

Proof.   We have only to split up Problem (P) into an interior problem and an

exterior one.   For an interior problem, the result is well known [9].  For an exterior

problem, it is the result stated in Proposition M.  D

In order to introduce the formulation on T which we are interested in, we shall

need a problem (P') that we are going to define now.   First, let us define

HxiA; fi) = {_> G Hxin), Av G ¿2(»7)},

H^íA; Í2C) = {u G W0(í»c), rAv G L2(Í2C)},

K = {vG iHxiA; Í2)/R) x WxiA; Í2C) Isupp(Au) C I\ [dv/dn] = 0},

llullA:=Mn lgradi>l2-fcc+ fnc Igradul2 dxj

Problem (P') is the following:

(P') Find uGK,    such that [u] =qGHx/2(r)/R.

We have then

Proposition 1-2.   Problem (?') has one and only one solution.

Proof.  For u G HxiA; Í2) we have the following Green's formula [9].

VuG/Y'i--),   ja grad u grad vdx = - fa Auvdx +(—, v)H-i/2(T)xHxl2(r)

In the same way, one can prove for u G WxiA; £»c) the following Green's for-

mula [4].
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VvGWx0itt%   j     &adumdvdx = -$     Auvdx-fë,}) .
1 \3«   /h 1,i(r)XÄ1'i(r)

Let us now consider u G K.   We have

VuGLT/^/R) x IV0(Í2C),

ftounc&™d»&zdvdx=(^-,[v]\
\dn      / H0x'2(r)x(Hx'2(r)/K)

If v belongs to K too, we have

f /ov      \
I      „» grad u grad vdx ={—, [«])   _,,, ,/2 »

jí-uííc6 b \a«      /HÔ1/2(r)x(H1/2(r)/R)

which gives a variational formulation of Problem {?') and ends the proof.  D

Thus, Problem (P) defines an isomorphism J0 of /¿'¿"1'2(r) onto #, and Problem

(P') defines an isomorphism /. of Hx/2iT)IR onto Jf.   Therefore, / = /f1 o JQ is an

isomorphism of //¿"^(T) onto //''2(r)/R.  We shall see in a moment that a coercive

bilinear form corresponds to this isomorphism.

Let q and q belong to Hx>2iT)lR and define a(-7, »7') = {q, J~xiq')).  Then, we

have

Theorem 1-2.   The bilinear form a is symmetrical and positive definite on

Hxl2iV)lR.

Proof.   Define

u=Jxiq),      v=J0iJ-xiq')).

Then,

aiq, q) = (M. f\ = Jnun^rad « 8rad üd* = \M ' ¿) = «&'• «>•

and

-.(-7,-7)= f        ^ \gradu\2dx>C\\u\\2   , .

hence,

a(c7>t7)>Cll67ll2   .
/i1/2(r)/R

which ends the proof.  D

Thus, the jump through T of the solution u of Problem (P) is the solution of

the coercive variational problem.

Í Find q G Hx /2(r)/R   such that

(Q) )aiq,q') = (g,q) ,/2 ,   Vq' G Hll2(T)IR.
( //01/2(r)x(//*'2(r)/R)

In order to use these results, we have to find an explicit expression of a.  This

is what we shall do now.

(nc)
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Proposition 1-3.   Let q belong to XHT).   The solution u of Problem {?') can

be expressed by

"00 = "T" fr <-(*) T" (l-T ) dyf
4irJr dnx \\x-y\ j

Proof. It is an immediate consequence of well-known facts about double layer

potentials [13].  D

Theorem 1-3. Let q and q belong to VfV). Then, the bilinear form a has the

following expression

* «■> - ¿ ir ir «0 - .00) UM - VW) ¿- (^) W

«»»«--Jr-W¿|"¿J>'<*>¿ feH** = "•
Since a is symmetric, we have

f              9    i     i    T            3   /     1      \       .
«fa, -7') = -4 + J   -7 0) —   - — Jr -7v»-- )dyx\ dyy = A + Ä

On the other hand,

r dnx  \ Ijc -^ly

where £2   is the solid angle sustained by the surface T at the point .y.   Therefore,

írZ-Í^

and

C

¿¡/.¿(iT-Tri^i-o,

" S ir -MlW ¿ j/r ¿ (ü-Ti)^! ¿^ = °-

Moreover, since

/9w    \
Vw G tf,   ( —, 1 ) = 0,

\3n    /

we have

^¿ir^l/r^'W^^,)^!^^'

Finally, we arrive at

aiq, q')=A+B + C + D.
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Then, we can write

provided that we do not forget that the differentiation with respect to n   does not

concern qiy) and q'iy). This can be seen in the expressions of A, B and C.

It becomes possible then to interchange the order of integration and differentia-

tion.  This leads us to

* «'> - ¿ ir Ir **» - -M«*) - «*» ¿^ (^y *_-v Q

Remark.  The same arguments can be used for the exterior Neumann problem

in R2.  This time, the space IV0(Í2C) becomes

GL2ii1c),DvGL2iQ.c)\.
rLogr

IV0(i2c)=juGp'(i2c)

Problem (P.) becomes

( Find u G W¿(ftc)/R   such that

(Pj) < Au = 0   in Í2C,

( du/dn=gGH~xl2ir);

for now, IIgrad u\\L2(UC) is a norm only on W0(£2C)/R equivalent to the quotient

norm [4].

Then, we can immediately find a harmonic extension of u inside Í2.  Thus, Prob-

lem (P) can be written

\") J   a,. — n    j« o o«»i r>c

Find t/ G (tf^nyR) x (IV0(_2C)/R)   such that

A« = 0    in £2 and Í2C

3t»/3n=^G7V0-1/2(r).

Concerning Problem {?'), the only change will be the definition of

WxiA; OF) = {v\v G Wx0inc),r LogrAvG L2inc)}.

Finally, for regular q and q , the solution of Problem (P') can be written as

1    r a
"00 = — Jr ^x)-Loglje-^lrfTx + C,

2rr dnx

where C is an arbitrary constant; the bilinear form a becomes

<q> l') = -T L L («(*) - q(jWix) - q'iy)) T-~r~ ̂ 6^-y\dyxdy .
4tt   r    r dnxdny
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II.   Approximation.  The problem is to approximate the solution q of

( Find qGHx /2(T)/R   such that
(0)

{<q,q') = (g,q'),</q'GHxl2iT)IR.

1. Construction of an Approximate Surface Tn [14].  Let { 0¡] be a family of

p bounded open sets of R3, covering T and such that, for each i, there exists a C°°

mapping

0¡ ̂  Q = {y\y = {y. y3h l/Kl.-l <J3<1)-

Let us further assume that 6¡ has aC" inverse mapping Q —*■ 0,- and that d¡

is a mapping of 0¡ Ci Í2, t). Cl £2C, 0,- Cl T, onto, respectively,

(2_ = {^eôl73<0},   Q+={y&Q\y3>0},   Q0 = {yGQ\y3=0}.

We shall assume that the usual compatibility relations [10] hold between the &¡.

In what follows, we shall write ip,- for 9JX considered as a mapping of Q0 onto

0t n r.
To define T.,, let us assume that we know a partition of V into p closed parts

r¿ such that

p
T,- C 0t,    U T,- = T,   rf Ci I\ is a curve of r (or empty), when i ¥= j.

i=i

Let us denote by D¡ the image of T- by 0¡.

Let 2., be a set of nodes on T, and let o¡h he the image of ¿Zh n T- by Ô-.  Now,

we build on oih a triangulation T¡h of Z)..  Then, to each element T of each triangula-

tion Tih, we append a C    Lagrange finite element with an interpolation space G such

that Pk C G, where i°fc is the space of polynomials of degree k or less.

Let y>ih be the mapping the restriction of which, on each element T of Tih, is

the G interpolate FT of <p¡.  Then, rh is the surface defined by the mappings ipjh.

2. Approximation nh of the Normal n to T. We will use, as an approximation

to n, the G interpolate nh of n. As we shall see later, this is consistent with the ap-

proximation chosen for T.

3. Construction of an Approximation Vh of HXI2(T). To each element T of

the triangulation

Jh = Ú Tih,
J=l

we associate a functional vector space P, such that Pm C P.

Then, we define Vh as the space of the images of the elements of P on every

curved element of Fn by the mapping FT, i.e.,

Vn={qhGC\Tn)\qh\T = poFT-x,VTGTh,\JpGP}.

We want the elements of Vh to be continuous on Th, in order to have the in-

clusion of V„ inHx'2(rh).
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4.  The Approximate Problem.   The kernel of Problem (Q.) is

32     /     1    \    jnx,ny)        ix-y, nx\x -y, ny)

dnxdny\\x-y\)     \x -y\3 \x -y\s

Let us approximate this kernel by

(nhx ' nhy)    2(x~y' ""*X* - y, nhy)

\x-y\3 \x-y\5

where x, y belong to rh, and nhx, nh   are the approximations of nx and n , defined

in II-2.

We shall write

32        /      1

onhxonhy  VX-y\,

for this kernel.  Then, we approximate Problem (Q.) by

Find qh G Vh/R   such that

«W j "¿ir. i. w»-*frJ*-«-«-fr»¡¿; (ubi)*--**.

|,.1JÄW<l»lrV,;el',/ll

where g., is an approximation of g defined on Fh and satisfying <#.,, 1 > = 0.

We shall write Problem (Qj,) more concisely as

Find qh G Vh/R   such that

uto» «.) - <*.«;> V/2(rÄ)x(Hx/2(r/,)/R)' v^ e F"/R-

According to Theorem 1-2, that we apply now to Problem (Q.h), this problem

would have one and only one solution if nh was normal to Th.

Unfortunately, this is not the case because, in order to get an optimal order of

convergence, we have chosen another nh.  Thus, the existence of a unique solution to

Problem (Q./,) will be a consequence of the uniform coercivity of the bilinear forms

ah.  This uniform coercivity will appear during the error study of the following section.

5. Error Estimates.   To compare q and qh, we have to define a mapping of rh

onto T.  For the same reasons as those of [14], we have to use \p defined by

-for x belonging to Fn, \pix) is the orthogonal projection of x onto T, i.e.,

i//(x) is the foot of the normal to T passing through x.

For T., sufficiently close to T, i.e., for h sufficiently small, \¡i is regular and bi-

jective [14].

Then, we have the following estimates,

Theorem II-1.   Let q and qh be the solutions, respectively, of Problems (Q)

and iQn).  Then, if q belongs to //m + 1(r), we have
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«i-«./,0*'1!   1/2
// ' (r)/R

<C{\\g-Íh\\ +hm + x/2\\q\\      ., + /.fc+1MI ;
V'V) ^ + 1(D/R ?V/V)/R}

art-.

¿2(r)/R " -V/2(r) -V<r>

+ /»"» + 1M       .. +hk+xWq\\    x/2 },
Hm + X(V)IR w1/2(r)/R

where

ghix) = igh°riix)Jirxix))).

Proof.   Let Vh be the subspace of HXI2(T), the image of Kft by the mapping

*-1 i.e.,

Let us consider Problem (Q./,) on F.  Defining / as Jacobian mapping, we obtain:

find qh G VJR such that

" T Jr i ^(*) " «/»OOXÎÏC*) - 9») j.     -      ( ̂ ZTTT—^TTT
8rr •/1 onhx°nhy \ 1^     V» - ^     GO

'x-'y

= Jr¿ACvÄiCKVir1^))^, V?; eiyn.

Define #,, = ghJi^~x), then, <£ft, 1> = 0; and we have the following estimate

'«"i*11     1/2^"  H-1/2(r)/R

<c i*-**» _1/2
ffo ' (r)

+     inf

?'h^Vh/R

I   ~»l +   s„n    la(?h> wh) - ah(«'h> *h)\
I -7 - <7h II +     sug      -

//1/2(r)/R     wftei-ft/R II wh II   1/2 (r)/R       J

Let us choose "q'h = Uhq, where Uh is the Vh interpolation operator. We know

then [1] that

and

\q-Whq\\   2      <CAm+1llt7ll   m + 1     ,
L2(r) Hm + 1{T)

lq-Uhql <Chm\\ql ;

hence, by interpolating between ¿2(r) and HX(T),
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Wq-nhq\\ <Chm + xl2\\q\\   m +
Hx'2(r) Hm + (D'

and since

we have

(-7 + O - Ilh(q + C) = q - X\hq,    VC G R,

\\q-Uhq\\ <Chm + 1'2lql   m + x .
//1/2(r)/R /im + 1(r)/R

It remains to estimate the error due to the change of bilinear form.  For this,

we shall need

Lemma II-1.   The quantity

iqix)-q(y))2

'r -'rbiq) -lu djr dy.
11/2

\x - y i3    "'»."'y

is a norm on HXI2(T)¡R equivalent to the usual norm.

Proof of Lemma II-l.  According to Theorems 1-2 and 1-3, aiq) defined by

aiq) = UriTiqix)-qiy))2 -1 dy   dy
dnxdny \l*-^l/

11/2

is a norm on i¥1/2(T)/R equivalent to the usual one.  But

dn dn    \\x - y\ J     \x - y

inx, ny) _    (pc-y, nx\x -y, ny)

so that

'x""ydn dn    \ \x -y\ \x-y\

\x-y\s

and   aiq) < 4biq).

On the other hand,

i        fix,y)

dnxdny \\x-y\)      \x -y\*     \x-y\'

where fix, y) is bounded in a neighborhood of x = y, so that

b2iq) < a2iq) + J"   J   (,(,) - q(y))2 j^dyxdyy,
11 \x-y\

and since

J,\fix, y)
dyx

'r   \x-y\

is a bounded function of y, by developing (_7(x) - -7(v))2, we obtain
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62(<7)<-.2(-7) + Cll.7ll22      -

Moreover, biq) equals 0 when q is a constant, so that Lemma II-l is proved.  D

We shall use three other lemmas proved in [5].   Let us give them.

Lemma LT-2.   Let h be the greatest diameter of the elements T of Th, then

max  sup \<t>¡ix)-<í>inix)\<Chk+x   max   sup  llök+1$I.(^)ll,
i'= i ,p xes¡ i= i ,p xes.

max   sup  \£>r'Qfic)-DrQih(x)\<Chk+1-' max    sup  \\Dk+x^¡ix)\\,
í= 1 ,P x£S¡ i= 1 ,P xSSj

with 1 < l/l </fc + 1.

Lemma II-3.   For each triangle T of Th, the mapping \p - FT is bounded as also

its derivatives up to the order k + 1.   Z)(i// ° FT) is a linear mapping of rank 2, hav-

ing a bounded inverse when considered as a mapping of R2 onto the tangent plane to

T. Moreover,

sup  \4>° FTix)-FTix)\<Chk+x sup  \Dk+x<t>iix)\,

x&T xEiT

sup \Di4>oFT)ix)-DFTix)\ <Chk sup  \Dk+ x<t>¡ix)I.
„et »er

Lemma II-4. Let T and T' be two triangles of Th.   Then,

sup \JiFTXx) -/(i// o FT)(x)\ <Chk+1  sup   IZ>fc+I*f(x)l,
„er »er

C\FT(x) - FT.(y)\ < li// o FT(x) - \¡j o Fr(y)\ < C\FTix) - Friy)\,

\\FT(x)-Fr(y)\2 - I«// o FT(x)-^ o Fr(y)\2\ < Chk+X \FT(x) - Fr(y)\2.

The first inequality of this last lemma shows why we are interested in the map-

ping \p. It enables us to obtain an error on the Jacobian mapping of order k + 1, in-

stead of k.

We are now in a position to resume the proof of Theorem II-l.

The error due to the change of bilinear form can be split up into three parts

—the error due to the change of Jacobian mapping;

—the error due to the change of normal;

—the error due to the substitution of 4/~x(x) to x.

Using Lemmas II-l and II-4, we can see immediately that the first error is

bounded by

Chk+X\\q\\    ...
H''   (D/R

As for the second and third errors, we have to estimate
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dnxdny \\x -y\ J    dnhxdnhy \\s¡j~xix) - ^x(y)\

_ jnx, ny) jnhx, nhy) jx -y, nx)jx -y, ny)

\x-y\3     l^-H-«)-*"1^)!3 lx-y\5

i4i-xix) - r'iy), nhxxrlix) - rliy), nhy)
+ 3

^-xix)-^~x(y)\5

The error on the normal gives two kinds of terms

jnx-nhx,n) (x -y, nx - nhx\x -y, n)
-—   and    -—.

\x-y\3 \x-y\*

We shall examine the first one. Let us recall that nh is the G-interpolate of«, so that

\nx -nhx\ < Chk+X, both terms are bounded by Chk+x/\x -y\3, and the error due

to the change of normal can eventually be estimated by Chk+X \\q\\ rfi/2(r\/R-

Let us now examine the error due to the substitution of \p~xix) to x. There ap-

pear three kinds of terms.

Ix-;pl3       \4<-xix)->l>-xiy)\3      \x-y\5     \^~xix) - 4/~x(y)ls

ix-y,nx)-ir\x)-rliy),nx).

For the first term, we put

A = \x-y\;     B=\^-x(x)-ip~x(y)\.

Then,

1       1  _B3 -A3 _(B-A)iB2 +AB+A2)

A3    B3       A3B3 A3B3

iB2 -A2XB2 +AB+A2)

A3B3iA + B)

According to Lemma II-4, this last term is bounded above by Chk+Xj\x -y\3.  An

analogous argument gives the same bound for the second term.

The third term can be bounded in two ways.

On the one hand, we have

\x-y-^~xix) + \¡/-1(y)\< \x-ip-iix)\+ \y - \p-xiy)\ <Chk+x,

and, on the other hand, we also have

be ~y - 4>~lix) + ^_10)l = \il-^i~x)ix) - (/- i/-_1Xv)l < Ch*\x -y\.

Thus, terms like
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ix-y- 4>~xix) + i//_10), nx\x -y, nhx)

\x-y\s

(x-y- V\x) + irx(y), nx\x - y, nx)

\x-y\5

(x-y- \¡i~x(x) + i/T'QO, nx)jx -y, nhx - nx)

\x-y\5

can be bounded above by

Chk+x\x-y\2     Chk\x-y\Chk+x\x-y\ hk+x
+-— <C

\x-y\5 \x-y\5 \x-y\3'

and the error due to the substitution of i/>-1(*) to x is bounded by

Chk+x\\q\\HXi2(Txlxx, which completes the estimation of the error!in //1/2(r)/R.  D

The error in L2(T)jR will be given by the following theorem.

Theorem 11-2.  Let s<m.   We have the following error estimate

,«-^,r»,R<C{''t"2,*-|*,»;"'<r,+ "-*»'«? -1(r)

+ hm+s+x\\q\\       ., +hk+x\\q\\    ... }•
//m + 1(D/R H1/2(r)/R

Proof.   We shall need

Lemma II-5. Let q be the solution of

Find q G #1/2(r)/R such that

aiq,q') = ig,q) _1/2 1/2 ,   V<?' ZHXI\Y)IR,
H~XI2(.T)X(HXI2CT)/R)

then,

t > n     c- F Hi(r\ *>a G fí'+1ín/R    and     \\a\
íTs+1(r)/R H%(T)

Vs>0,   ^G//g(r)=*í7G//í+1(r)/R   and    l-7-.J+1,.   „<C|1^11,

Proof of Lemma II-5.  Let u be the solution of

Find u G iHxiïl)/R) x W0(_T) such that

Au = 0    in Í2 and Í2C,

du/dn=gGH-x'2ir).

Then, the classical regularity theorems tell us that

gGH°0iD =*«llnt 6.ff*+3/2(i2)/R   and    t,lext G//f+3/2(i2c),

hence <7 = [u] G//i+* (T)/R.  The closed graph theorem applied to the mappings

—► q ends the proof of this lemma.  D

Proof of Theorem H-2.  We shall use a classical duality argument.  We have

h-qhn   _. =     sup     -—-,
H  *(D/R      ^(r)     M

«0vr>
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but

(g,q~ qh) = aiq - qh, Jg),

where / is the mapping du/dn —*■ [u], defined according to Proposition 1-2.

Then, Lemma II-5 tells us that ll"/S'll//i+i/r);R < Cll^ll ,._• ,»,., so that

^q-qj   _. <C     sup
Hq-qh< Js)\

g^H0(i)       //i+1(r)/R

Now, we have

aiq - qh< JS) = a(l - Qh- JS ~ nhJS) + aiq - qh, -V¿),

where Wh is the Vh interpolation operator.  Therefore,

ILfr--V*l   ... <Chs+xl2\\Jg\\
*     /i1/2(r)/R H*+1(r)/R

so that

\aiq-qh,Jg-l\hJg)\ „
sup     -—-<Chs+xl2\\q-qh\\     .

„e^.n       Mf-   .+ , «1/2(r)/R

It remains to estimate the second term

aiq - qh, X\hJg) = ig, WhJg) - aiqh, WhJg) = (g, Y\hJg) - (gh, TlhJg)

- ¿ Jr Jr foto -ííh(y)Wg(x) - VKy))

dnxdny \\x -y\)    dnhxdnhy \^~xix) - ^~xiy)

■ Ji^-xix))Ji^-x(y))\dyxdyy.

The last term can be studied in the same way as for the proof of Theorem II-l.  This

study leads to the estimate Chk+X H-/ll//i/2(r)/RH-tellwi/2(r),R.  As for the differ-

ence (g, îlhJg) - (gh, nnJg), it can be bounded above by II g -gh U//-1-1^) "

ll/gll//i+i(r)/R, which gives

■*-«..-W>l<atT,k, tu-fel^,   .
.S„*„,r,   "*V+.<r„R "     <r)'R "°     ,n

and ends the proof of Theorem II-2.  D

The L2 estimate announced in Theorem II-l can be obtained by choosing s = 0.

Finally, we must not forget that our first problem was to find the solution of

Problem (P).  In that respect, the following theorem is the more interesting.
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Theorem II-3.   Let u be the solution of Problem (P) satisfying /r q(x)dyx = 0,

and let uh be defined by

where qh is the solution of Problem (Qh) satisfying frfj qh(x)dyhx = 0. Let us as-

sume that 35 > 0: d(y, T)> 8, then, for sufficiently small h, e.g. for h such that

diy, T)
sup diz, T) < ——-,

rer„ 2

we have the following error estimate

+ h2m+x\\q\\   m + x +hk+x\\q\\    xl2 },
Hm + X(r)/R «1/2(r)/R

where

1 rn

A. ¿2 + n

1    when y G Çl,

eiy,T)     £0 d2+n(y, T)     (o    when y Gil,0.

Proof.   We have

"0) - "»00 = - j- Jr [q(x) - qh(x)J(rl(x))] ^-  (——\ dyx
4it   L dnx   yx -y\¡

-j-iT«h(x)J(rlix)) 7^(7-^-^(7^—,)r7*-
4n    r (dnx\\x-y\J    dnhx \ I ̂  x ix) - y 1/ \

Now, since

Jr [qix) - qhix)J(^-x(x))] dyx =^qdy-{     qh dyh = 0,
h

we have

$r[qix) - qhix)Ji*-xix))} ^- (77^7] ¿7,

=  L fav» - -fnOOAlT'O-))]-(—■—) + —~    dyx.
Jr        ;    WM      W       dn, \lj.-j>l/     mes(r)J     *

On the other hand, we have

9    /     1     \ í-4-n    when y G £2,

l*-.yl/     *     (O whenjGÍ2c,

so that
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Srk(x)-qh(x)Ji4'-1ix))]
d   /   i

dnx \\x-y\ )     x\
dyx

< 1 - tf/ZO
-In

3   /     1
+

4tt

dnr\\x-y\J      mes(r) <(H
when y G Vi,

h m(r)/R o   /     1

dn   \\x-y\ «o(r>
,   when y G HP

Now,

Wq-qhJirl)W   _m <\\q-qh\\   _m + l«.(l-/(f1))!   .„    ,    -
H m(r)/R H m(D/R H m(r)/R

and

3   /     1

dn   \ \x - y I //m(r)

inx, x-y)

|   Ix-71

m j

<c y -
«m(r) ~0 -/' + "0, T)

so that we can proceed to the second term

3 1

<\\qhJ^-x)W   2
L2(T)

dnx \\x-y\ J     dnhx \\^~xix)-y\

3    /

dy3

dnx   \\x-y\J     dnhx\\rlix)-y
2 '

¿2(D

but since

we have

íTqhnr1)dy = í    qHdyh=0,

\\qhJ(4>-x)\\   2       =\\qh\\   2 <Cl.jl.
L'(r) ¿   (T.)/R A   (T)/R

On the other hand,

9    /    1     \

¿V)3«,  \\x-y\J    dnhx \\irl(x)-y\

(nx,x-y)     (nhx,^~x(x)-y)

\x-y\3 \\p~l(x)-y\3

inx, x - y) - inhx, 4/~x(x)-y)

\x-y\

inhx, ii lix)-y)

¿V)

L2(T)

1 1

\x-y\3    \i¡/-xix)-y\3

and this ends the proof of Theorem II-3.  D

Chk+l

l\t)     d3iy, T)



988 J. GIROIRE AND J. C. NEDELEC

The same type of estimate can be obtained for the derivatives.  More specifically,

we have

Theorem 114.    Under the hypotheses of Theorem H-3, we have the following

estimate

l9-^)-3XÖ,)l<_f£_{^»1,.1,.i,lji_i/j(r) + 1,-i».^.^

+*2"+,M_-.<r,/R+**+'l«V'><.>,.t}'

where

1 m i j 1,   when y G SI,

¿-i   j2+\a\+n cea(y, H     „=o d2 + 'a ' +>, T)     ( 0,    w/ien 7 G Í2'

Proof.   The proof is the same as that of Theorem II-3.  D

Remark.   For the two-dimensional case, the same techniques give the same

results.  D

III.  A Few Numerical Remarks.

1. Condition Number for the Matrix ah.  For h small enough, we have

Hll\Th)IR Hl'2(rh)/R

If we choose qh such that fah qh dyh = 0, we get, according to Lemma II-l,

Now, since qh belongs to Vh, we have [15]

11-7„II <-^ll'-Jl   2        ■
-i1/2(r„)    VA        a2(-V

so that

£ (rh> Ä        ¿ (rft)

which shows that the eigenvalues X of the matrix ah are bounded above and below by

a < X < ß/h, so that the condition number of ah is of OQi~x) order.

2. Computation of the Elements of ah Near the Diagonal.   To compute these

elements, we have to integrate a function with a singularity of order 1/lx ~y\.  When

k and m are not too high, we can use primitives.  In that case, the following theorem

is of some interest.

Theorem LTI-1.   Let us assume that, when \x - y I < Ch we define in the kernel

ofah, i.e. in

(nhx> nhy)     2(x~y' nhx)(x - y. nhy)

\x-y\3 \x-y\5
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nhx and nh   as the normals to Th in x and y, respectively (instead of using interpo-

lates of order k of nx and n ).

Then, the estimate of Theorem II-l remains valid.

Proof.  We only have to estimate

(nx - nhx, n) jx - y, nx - nhx)jx - y, nv)
-——   and   -:-,

\x-y\3 \x-y\5

when \x -y\ < Ch.   Let us examine the first term.  We have n   - nx + 0(x -y),

so that

inx - nhx, ny) = inx - nhx, nx) + (nx - nhx, Oix -y)).

But

Knx-nhx,Oix-y))\<Chk.   Ch = Chk+x,

so that it remains to estimate inx - nhx, nx).

Let (*., x2) be the two components of x.   We get

= 3(i// ° <Pih)/dxi A 3Q o *ih)¡dx2 =        1 /aO ° *-,-/,) A °il">*ih)\

"* ~ I3(* ° *ih)ltxx A3(* o *in)/dx21     /(* ° <Pth) \     àxx dx2     j '

and

1     faih_ A ton
nx     Jipih) \dxx       dx2

According to Lemma II-4, the error on / is of order k + 1.  We have now to

estimate terms like

/3Q o vfo) A idjjj ° <ft„)      3^»\   3(^ ° ^») A dj4> ° Vih)

\      dxx \     dx2 ox2 /'       bxx dx2

Such terms have been shown to be of order k + 1 in [14, p. 67] by using the fact

that \p is the orthogonal projection onto T, so that we obtain

inx-nhx,ny)<Chk+x.

For the second term, it is much easier.  We have

\ix -y, nx - nhxXx -y, ny)\     Chk\x -y\ \x -y\2      Chk+X

\x-y\5 \x-y\5 \x-y\3

since ix -y, ny) = 0(lx -jH2).

However, the involved primitives are difficult to compute, so that we are led to

the use of numerical integration. The kernel being singular near the diagonal, we use

extrapolation to the limit techniques [12] which give excellent results.

Finally, for more details on the numerical aspects and results of the method

described in this paper, we refer to [5].

Conclusion.  We have shown how to use a double layer potential to solve the

Neumann problem without introducing Cauchy type integrals.
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Thanks to the variational formulation thus obtained, we have been able to

prove error estimates.  We have seen that the error on the jump of the solution through

T is optimal when k = m, whereas the error on the solution, far enough from T, is

optimal when k = 2m.  As for the condition number of the matrix, it is of order
OQTx).

These results can be compared with those obtained by J. C. Nedelec [14] for

the Dirichlet problem, by the use of a single layer potential.  There, the error on the

jump of du/dn through V was optimal for k = m + 1, and the condition number of

the matrix was of the same order OQi~x).  However, the smallest eigenvalue of the

matrix was only of order OQi), so that the coercivity of ah was very sensitive to numer-

ical errors.  This last fact appeared in the numerical experiments of M. Djaoua [3].
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