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Limiting Precision in Differential Equation Solvers. II:

Sources of Trouble and Starting a Code*

By L. F. Shampine

Abstract.   The reasons a class of codes for solving ordinary differential equations

might want to use an extremely small step size are investigated.   For this class the

likelihood of precision difficulties is evaluated and remedies examined.   The investi-

gation suggests a way of selecting automatically an initial step size which should be

reliably on scale.

1. Introduction.  In [1] we considered a machine dependent limit on the step

size and one on the local error tolerance when solving ordinary differential equations.

The second limit can be stated simply as that it makes no sense to ask for an answer

more accurate than the correctly rounded value in the precision being used.  Two

kinds of remedy are possible.  One is just to ask for less accuracy, which is not an

unreasonable action since the difficulty often arises by accident.  The other is to

augment the precision either by increasing the word length or by additional algo-

rithmic devices.  The latter are the more interesting and may be the only practical

option.   Some references to such devices were given in [1].   In this paper we shall

examine the other machine dependent limit which is on the step size.  We shall first

investigate why too small a step size should appear necessary.  It turns out that the

situation must occur much less frequently than one might expect.  This investigation

is of fundamental importance to understanding practical computation.  After isolating

the main source of difficulty, we shall show that a change in one's point of view

avoids the difficulty.  This observation is of considerable value in those situations for

which the niceties of error control yield precedence to computing (nearly) always a

reasonable solution.   Lastly, we apply the techniques developed to the question of

providing a highly reliable automatic choice of an initial step size.

2. Assumptions.  The problem to be solved is

y'i=fi(^yl, ■ ■ ■ ,yN)<    yi(a) = Ai>

(D '•

y'N = ín(x< y i' • • • » yN)>   .M«) = an-

The numerical method employed is assumed capable of integrating correctly a prob-
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lern with each f¡ constant.  Only codes based on the control of the error per step are

studied.  Most of the best codes satisfy these assumptions [2].  In controlling the

error, one forms an estimate le¡ of the local truncation error in the ith solution com-

ponent on the step from xn to xn +. = xn + A and insists that

Here the w¡ are weights and e the error tolerance, all of which the user supplies.  For

convenience we shall write expressions like the preceding as II le II w < e.  We remark

that similar results can be obtained using norms other than the Euclidean.  We shall

assume that the estimator of the local error has the (vector) form

/e=/!Z amf(xm'zl,m'- ■ ■ ' zN,m)'
m

where we shall abbreviate

-m = l(xm' zl,m' ■ ■ ■ ' zN,m)

in the future.  The arguments of the function fm are specified by the estimator and

may, or may not, represent previously computed solution values.  We shall assume the

estimator is asymptotically correct [3].   As an example, if we are using Euler's meth-

od, a standard error estimator is

(2)      le = ihl2)[fixn + x,yx<n+x,.. . ,yNt„+l) ~fixn, yl>n,.. . ,yN¡„)].

Another obvious class of examples with fixed constants am consists of typical esti-

mators for Runge-Kutta methods [3].   In the case of methods with memory, e.g. the

Adams methods, the am may depend on the mesh spacing, see for example [4,

Chapters 4, 6]. In such a case we shall presume that matters have been arranged so

that the ctm are uniformly bounded, as they have been in the DE/STEP, INTRP suite

of codes.  The form of error estimator postulated includes all the common procedures,

and we shall need no further details of the estimator.

3.  Sources of Difficulty with the Precision.   The usual reasons cited for needing

a very small step size are:

(i) a lack of smoothness of the equation, including possible discontinuities,

(h)  requesting an error control relative to a solution component passing through

zero,

(ni)  a solution component changing very rapidly, including approach to a sin-

gularity.

We shall consider each situation in turn.

When using an error per step control we think (i) rarely leads to a step size too

small.  The test to be passed is

(3) IAI Zam/rr,
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If the functions are merely continuous, our hypotheses imply that II2 cvm/m Il w —► 0

as lAl —► 0 so that the estimated local error is o(A).  Even with a jump discontinuity

present the estimate is 0(A).  Clearly, the step size need not be much smaller than the

tolerance except in extraordinary cases.  If one takes into account roundoff errors in

the formation of the estimate, the situation is not quite so nice, but in all cases one

finds a lack of smoothness is not a likely source of failure.

The tests of [2] report the behavior of several kinds of codes which satisfy our

assumptions when confronted with mild, pp. 387-388, and severe, pp. 403-404,

lack of smoothness.  They confirm our prediction that even the most severe lack of

smoothness will not ordinarily cause precision difficulties.  (They also show that an

error per unit step control behaves quite differently in this situation.)

To investigate (ii) we can confine our attention to the case of a single equation

and a zero in the solution at some point xn.  Suppose that at xn the solution yix)

has a zero of order m so that

nm + l
y(x   + A) =-y(m + 1)(x„) + Oihm + 2).
^ "       '     (m + l)\ n)

Assume the method of order p has a local error expansion of the form

y(*n +ft)=yn+i+ hp+l<t>i*n' y(*«)) + o(ap+2).

One wants to pass the test

\iy(x„+h)-yn+l)lyix„+h)\<e.

It is clear that if m < p, this is possible; if m = p, in general this is not possible for

all e; and if m > p, in general this is not possible at all.  Accordingly, if m > p, we

may fairly diagnose the situation as an unreasonable one for the method being used;

and we should hope that a minimum step size test would detect it.   In point of fact,

we think such a difficulty very uncommon in practice.  The author does not recall

ever seeing this difficulty arise due to a zero of high order nor has any of his col-

leagues or associates ever mentioned such an example to him.  What does happen with

some regularity is that one is using a variable order Adams code or backward differen-

tiation code and gets into trouble because of a zero initial value.  This is mainly due

to the coding, and we are going to presume here that the program has some protection

against an "accidentally" small numerical value being used in the error test.  A genuine

difficulty can occur because such codes begin with p = 1, and the author has seen

problems with a double zero at the initial point.  In [5] we considered the handling

of this matter in the starting phase of such codes.  After the start the codes go to

high orders, and zeros are then no particular problem.   Another real possibility is that

the above analysis is not relevant because the solution is not in principle zero; but its

computed representation is, due to underflow.  We do not wish to state the matter

too strongly because of the situations just mentioned, but we do feel that pure relative

error control is not nearly as dangerous as many conceive it to be.  If a difficulty

should arise, one might fairly argue that this whole source of trouble is due to an
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improper match of code and error criterion which can be cured by changing one or

the other.

Lastly, we come to the case of a small step size caused by a rapid change in

some solution component.  This situation can and does occur with some regularity.

One way to view it is that the wrong coordinate system is being used.  In [4, pp. 274-

278] we suggest some alternatives.  If we were to solve (1) with arc length, s, as the

independent variable, a number of advantages would accrue.  In this variable the sys-

tem (1) becomes

dyxlds=fx/S = Fx,

dyNlds = fN/S = FN,

dx/ds =l/S = FN+x,      x(0) = a.

Here S = (1 4- 2*. f?)x/2.  Obviously IF-I < 1, i = 1, 2, . . . , N + 1, for the en-

tire interval in s.  Working in arc length practically does away with the difficulty of a

minimum step size when using an error per step control.   For example, supposing that

we wish to use a pure absolute error control, w¡ = 1 each i, we see from (3) that the

error test will surely be passed if

e e
A<-<

SlaJ     SIoJIFJI

Thus, we can say, a priori, that when using Euler's method with the specified error

estimator in the circumstances postulated, it is never necessary to use a step size

smaller than e.   When using the Fehlberg (4, 5) formulas, a little calculation shows

that it is never necessary to go below 8e.

Another possibility which is less smooth in its behavior but is attractive for one

step methods is at xn to scan the derivatives to find

dy,

dx
max

i dx
max \fiix,yx, . . . ,yN)\.

If we were to introduce y, as the new independent variable at this point and so solve

dyx     fxjx,yx,... ,yN)
~T~ = 77-r = Fxix,yx,..., yN),
dyt     fjix,yx,...,yN)

= F¡ix,yx, . . . ,yN),
dx

dy¡    f,ix,yx,...,yN)

dyN_fN(x'yi'- ■ ■ ■»%)

dy¡    fj(x,yx-,yN)
= FNix,yx, . . . ,yN),
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we would have the magnitude of each F¡ roughly bounded by 1 for a short distance.

It is easy to see that if some slope is much larger than the rest, this change of variables

does approximately what arc length does.

The interchange of independent and dependent variables shows a little more

clearly than with arc length what is happening.   If, say, dyJdx is very large, we ex-

pect (though it is not necessarily true) that a small step size in x will be needed.

With the interchange of variables, dx/dy, is very small and we expect that a large step

in y, is possible.  The efficiency of these transformations seems unpredictable and our

experiments over many years have not detected any significant advantage.  Thus, we

emphasize that the important point here is that the behavior with respect to machine

precision is altered, not that the problem is solved more cheaply.  There is one pos-

sibility for increased efficiency.  When using arc length one can reasonably expect his

mesh to suffer much less distortion in the presence of near discontinuities of the solu-

tion.  Some implementations of the Adams methods, e.g. [4], compute the coeffi-

cients of the integration formulas so as to account for variable step size.  The over-

head of doing this is significant and because it can be reduced by taking advantage of

steps of the same size, the selection of the step size is biased towards a constant value.

Reducing the mesh distortion by transformation could reduce the overhead in such

codes by making constant step size more likely to be acceptable.  A more important

implication is that backward differentiation formulas with interpolatory step size

changing can become unstable in the presence of extreme mesh distortion.  Also, being

essentially a fixed step procedure, other aspects of the basic algorithms and the over-

head are adversely affected.  In [6] an example of a photocatalyzed reaction is given

which causes the GEAR package to fail, this justifying the use of a more sophisticated

step size changing procedure in EPISODE. With arc length as an independent variable,

GEAR will integrate this problem efficiently.

An interesting example of the situation at hand appears in a paper [7] describ-

ing the numerical solution of a model of a cavitating bubble.   The authors describe in

some detail the cusp-like behavior of the solution at certain points where the bubble

bounces back.  They employ a variety of techniques for coping with the difficulty of

machine precision.  At this author's suggestion the integration was tried with arc

length as an independent variable and the integration proceeded without novelty.  We

have also solved their problem using STEP, an Adams code, with arc length as the

independent variable and RKF45, a Runge-Kutta code, using interchange of depen-

dent and independent variables.  Both codes have a machine dependent minimum

step size as specified in [1] and because of it will not pass the first cusp when given

the original problem.  They integrate the problem easily with the changes described.

The changes of variable specified get around the difficulty of a rapidly changing

solution but we have not been entirely fair with the reader.  The mathematical prob-

lems being solved are identical, but the computational problems are not.  The essential

difference is that the usual scheme allows no error in the independent variable x

whereas the changes of variable do permit errors in x.  Thus, when solving a single

equation with a pure absolute error tolerance e., we are saying that at a given point
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xn we shah be satisfied with any approximate solution yn such that \yn - yixn)\ <

Cj.  When going to arc length we must specify a reasonable tolerance e2 on the vari-

able x.  Thus, we shall be satisfied with any pair xn, yn such that lx„ - x(s„)l < e2,

\yn — yixisn))\ < e..   After such a change of variables, the code has an extra bit of

freedom which one might regard as the reason it can perform better.  We think of this

freedom as being much the same as allowing some absolute error near a zero of the

solution when the integration is basically intended to have a relative error control.  It

is not our intent to describe these changes of variable as a panacea for precision dif-

ficulties, but they do furnish a valuable alternative provided the user understands how

he is altering the problem.  In contexts like simulation it may be appropriate to re-

gard the integration as a "black box" which produces reasonable approximations

very reliably.  Such a black box can be written pretty easily by insisting some relative

accuracy be used to avoid the first machine dependent limit of [1], using moderate

error tolerances, using error per step control to cope with the difficulties described

earlier in this paper, and interchanging dependent and independent variables as just

described.  (We comment that the last action also makes it easy to terminate the in-

tegration at a given value of any dependent variable which is itself a valuable feature.)

Our investigation says that such a code could be very robust indeed by present stan-

dards.

4.  Starting a Code.  We can make an interesting application of these ideas to

the important problem of the automatic selection of the initial step size.  In [5] we

tried to approximate a suitable value.   Although the approximation is crude quantita-

tively, it does exhibit many desirable qualitative properties.  As far as reliability is

concerned, the important thing is to choose a step size small enough.  Sedgwick [8],

in fact, starts every integration with the smallest step size permissible in the precision

used and works up from there.  This is obviously inefficient and there is some danger

that in one's eagerness to increase the step size rapidly he will permit a growth rate

so large that he skips over the phenomena which were the justification for starting with

a step size so small in the first place.   Furthermore, there is the worry that the initial

step size is too small for the error estimator (and other algorithms) to be rehable.  The

idea is a good one, we just think it a bit extreme.   It was not described as such but

we have already derived in this paper a suitable procedure when the problem has been

formulated in terms of arc length.  We can choose an initial step size that we are

certain will succeed and which is comparable in size to the tolerance specified.  This

is most satisfactory.  Our proposal is to use either of the two changes of variables

to take a step which we can be sure will succeed.  Then we see how far we advanced

in the original independent variable and use this quantity to initiate the integration

of the original problem.   The reason for, in effect, repeating the first step is that in

the new variables we must specify a tolerance on the computation of the old inde-

pendent variable.  Thus, on our return to the original variables we are not certain

that the step size we deduced will succeed.   However, it is very likely indeed that

we shall be on scale.  This is especially true if our trial step uses a low order method.

For this reason and that of extreme convenience we explore a procedure based on
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Euler's method.  We point out to the reader that the important Adams codes and

backward differentiation codes actually do start with Euler's method so the resulting

initial step size should not be absurdly inefficient.

If we were to go to arc length and take a step of length As, the error test

would be Wle\\w < e.  A reasonable weight for x is to make its error relative to the

distance to the first output point b so as to account for the scale of the independent

variable.   From (2) and the fact that each lFfl < 1 we find that the test will surely

be passed if

lAslllellw<e,

where e is the vector of N + 1 components each of which is 1.   Using I As I = e/ Il e II w,

we shall not actually need to form the error estimate.  Furthermore, we wish only

to advance the variable x so that we just need to compute

x. = a 4- AsFN+xia, yxia), . . . ,yNia));

hence

As e
(4) A=x, -a = — =

where

S       \\e\\wS'

/ -V \l/2

s=    1 + Z ftHa,yxia),...,yNia))\

Notice the extremely simple and cheap computation involved here; we scarcely need

more than the initial slopes.

For small e and steep slopes one might well find the A of (4) to be smaller

than the machine dependent minimum step size and in taking the larger value he

does what Sedgwick has suggested.  Ordinarily though, this scheme will result in

step sizes which are not small compared to the machine precision.  It seems to us

to be about as reliable as Sedgwick's idea without being nearly so expensive.   Indeed,

the optimal step size when using Euler's method is 0(>/e). Clearly, (4) is conservative,

as we wish it to be, but it is not ridiculously so.  It is especially attractive for "black

boxes" used at crude tolerances—a situation by no means uncommon.  With codes

starting at high orders and particularly at stringent tolerances, one might well prefer

an approximate initial step size selected as in [5].  The decision mainly rests on how

much one is willing to pay for enhanced reliability and what kind of cost might be

expected in the working environment.

5.  Conclusions.  In our examination of the reasons for precision difficulties

in a popular kind of code for solving ordinary differential equations, we found that

this kind of code is surprisingly robust.   In each case we have suggested some pos-

sibilities to the user of the code for avoiding such difficulties.  The study has sug-

gested a way of automatically selecting an initial step size which appears to be highly
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reliable and not too inefficient.  In conjunction with [1] the results of our investi-

gation will be helpful to those needing to write unusually robust software for un-

sophisticated users or as low level parts of more complicated software.
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