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Complete Characterization of Multistep Methods

with an Interval of Periodicity

for Solving y"=f[x,y)

By Rolf Jeltsch

Abstract.   Linear multistep methods for the second order differential equation y" =
2

— X y, X real, are said to have an interval of periodicity if for a fixed X. and a step-

size sufficiently small the numerical solution neither explodes nor decays.  We give

a very simple necessary and sufficient condition under which a linear multistep method

has an interval of periodicity.   This condition is then applied to multistep methods with

an optimal error order.

1.  Introduction.  To solve numerically the initial value problem

(i) y"=fix,y),   yi0) = v,   /(0) = t/,

one uses linear multistep methods of the form

k k

(2) Z «¡yn+j = ft2 Z ßjf(xn+j> yn+¡)'       « = 0, 1, 2, ... .
7=0 1=0

Here A is the stepsize, and xn= nh, n = 0, 1,2, ... .   yn will be an approximation

to the exact solution/(x) of (1) at x = xn.  The methods can be characterized by the

polynomials

(3) P(f):= Z «/f7.      "ft)" Z W-
j=0 t=o

We shall always assume that the methods satisfy the following hypotheses:

(i) ct., ̂ -are real for/= 0, 1, . . . , k and ak =t 0, \a0\ + \ß0 I ¥= 0, Zf=0\fy\¥= 0.

(ii)  p(f) and a(f ) have no common roots.

Henrici [2] has proved that the following two conditions are necessary and sufficient

for convergence.

(iii)  Condition of consistency:

(4) P(l) = p'(l) = 0,     p"(l) = 2o(l).

(iv) Condition of stability: Let f • be the roots of p(f) . Then If-1< 1 ; and if

If-1=1, then its multiplicity does not exceed 2.

From (iii) and (iv) follows that 1 is a root of p(f) of exact multiplicity 2. This

root is called principal root and is denoted by f, = f 2 = 1.

Consider the test equation
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(5) y"=-r.2y,    X6R,    x^o,

which has the nontrivial solutions

yix) = CxeiKx + C2e~iXx:     \CX I 4- \C21 + 0.

Applying (2) to (5) leads to

(6) [PÍE) + H2aiE)]yn =0,       n = 0, 1, 2, ... .

Here E is the shift operator Eyn = yn + x and H := AX.    (6) is a difference equation

with constant coefficients.   If

(7) <*>(f, H) = P(f) + H2oit)

is of degree k in f and has only simple roots f AH) with / = 1, 2, . . . , k, then the

general solution of (6) has the form

(8) yn = 2. WO-
/=i

Here f.(/0 are branches of the algebraic function f(//) given by

(9) <->(f(/7),//) = 0.

Hence, f-(0) are the roots of p(f).  For brevity we shall use the notation f;(0) = f..

The exact solution of (5) neither decays nor explodes, as x tends to infinity, but

oscillates. One would like to have a similar behavior for the numerical solution as n

tends to infinity while A is kept fixed.   Lambert and Watson [4] have, therefore, in-

troduced the notion of an interval of periodicity.

Definition.   A method of type (2) satisfying (i)—(iv) is said to have an interval of

periodicity (0, H2) if for all H2 G (0, H2) one has

(10) lf/(#)l=l     for/= 1,2, . . . ,k.

Lambert and Watson [4] have used a somewhat different definition. However, from

their article it follows that the definitions are equivalent. It has been seen in [4] that

a method with an interval of periodicity has to be symmetric, that is,

(11) «*-/ = aj,     ßk-j = ßj,    1 = 0, 1, . . . , k.

Moreover, if the principal root is the only double root of p(f) of modulus one then

this necessary condition is also sufficient.  In this note we first give a necessary and

sufficient condition for a method to have an interval of periodicity which covers all

cases.  This result is then used to consider methods with optimal error order.  A

method is said to have error order p if

(12) PiE)zix) - aiE)z"ix) = 0(A" + 2)

for all sufficiently smooth functions z(x).  In [2] it has been shown that for a conver-

gent method of form (2) one has p < k + 2.  If p = k + 2, then the method is called

optimal.   We shall show that these optimal methods have no interval of periodicity

whenever f = - 1 is an essential root.  It should be noted that the roots of p(f) and

a(f ) have to occur in pairs of conjugate complex numbers.  Moreover, a symmetric
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method cannot have an odd step number k since (11) would imply p(- 1) = a(- 1) =

0 and thus (ii) is violated.  For further properties of methods with an interval of

periodicity and numerical applications we refer to the article by Lambert and Watson

[41.
2.  Statement of the Results.  In the following we shall always assume that the

method is symmetric.   Hence from (11) follows that

(13) P(f) = f*p(l/f).

Thus,if f * is a root of p, then 1/f* is a root, too.  Hence, the condition of stability

(iv) implies that

(14) lf/l=l     for/=1,2,_k.

Assume that there are 2d double roots of modulus 1, each counted twice.  We num-

ber these roots so that f. = f2 = 1, f3 = f4, f5 = f6, . . . , f2d_. = f2d.  These

roots are called essential roots.   The roots f- with 2d <j < k are all simple.  Follow-

ing Henrici [2], we associate with each essential root the growthparameter

2a(f;)
(15) M,:= -,       j =1,2,...,2d.

'     f/p"(f,)

Theorem 1. Assume that the method given by (2) satisfies (i)—(iv) and is symme-

tric.   Then the method has an interval of periodicity if and only if all growthparam-

eters are positive.

Remarks.   1. The condition of consistency implies that p. = 1.

2. From (13) and (14) follows that the growthparameter belonging to conjugate

complex roots are equal and, thus, p. = p,.  Hence, a method has an interval of

periodicity if and only if

(16) Py+i > °     for those; = 1, 2, . . . , d - 1 with Imf2/+, > 0.

3. It is possible to give a similar theory for linear multistep method of the form

k k

(n) Z V"+j = nZ ßjfi*n +j, yn +j)
1=0 /=0

to solve the initial value problem y = fix, y), yiO) = 17.  However, for these methods

to have an interval of periodicity the growthparameter does not come into play.  In

fact, a convergent method of form (17) which satisfies (i), (ii) has an interval of

periodicity if and only if

«*-/ = <*f>    ßk-j = -ßj,    i = 0,l,...,k,

see Jeltsch [3].

In order to apply Theorem 1 to optimal methods we shall need the following

theorem due to Henrici [2, p. 326].

Theorem 2.  Assume that the method given by (2) satisfies (i)—(iv), is optimal

and f2d_. = f2d = - 1 is an essential root.   Then
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(18) P2d<-1/15.

On combining Theorems 1 and 2, we find

Theorem 3. Assume that the method given by (2) satisfies (i)-(iv), is optimal

and has the essential root f = - 1.  Then the method has no interval of periodicity.

Sometimes it is more convenient to use the variable z defined by

(i9) z = ̂ l,  r-I±i.
f+1 l-z

This transformation maps the unit disk of the f-plane onto the left-hand plane

Re z < 0.  Let

(20) riz):=il-z)kp(^j

and

(21) s(z):=(l-z)*o
1 +z

Conversely, one has

(22) p(f)=(^)*Kz).

A similar formula holds for a(f).  From (19) it follows immediately that r(z) is an

even polynomial.  The same is true for s{z).  Let us consider

R(r) = a, + axr + . . . + ak/2rk/2:= rirx'2),

(23)
Sir) = b0 + bxT + . . . + bk/2rk'2:= sir1/2).

Theorem 1 can be expressed in terms of /.(r) and 5(r).

Corollary. Assume that the method given by (2) satisfies (i)—(iv) and is

symmetric.  Let t¡,j = 1, 2, . . . , 6, be the double roots of Rir).  Then the method

has an interval of periodicity if and only if

(24a) R'Xr^/Si^) < 0     for j = 1,2, ... ,3,

and

(24b) ak/2-i/bk/2 > 0     ifak/2 = 0.

Remark 4. The corollary may be sometimes more convenient because -R(r) is

a polynomial of degree k/2, at most, while p(r) has degree k.   Moreover, all roots of

Rir) are real and nonpositive.  Thus, the condition (24) can be checked using real

numbers only.

Before we proceed with the proofs we shall give some examples.  Lambert and

Watson [4] introduced the following examples

(25) P(f) = (f - l)2(f2 - f 4- I)2,     a(f) = Jiff« + f2),

(26) P(f) = p(f), â(f)=^(fs4-f).
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Both methods have error order 2, are symmetric and satisfy (i)—(iv).  p(f) has double

roots at 1, e'*'3 and e~lir'3. Because of Remark 1 and Remark 2 we have to calculate

the growthparameter p3 belonging to e'n'3 only. One easily finds p"(e    3) =

- 6ei4n/3, aieil,/3) = - 1/2 and p3 = 1/6 > 0.  Hence, (16) is satisfied and thus the

method has an interval of periodicity.  In the example (26), however, one finds

Ôieinl3) = 1/2 and p3 = -1/6 < 0.   Thus, the method given by (26) has no interval

of periodicity.  In order to apply the corollary one determines the polynomials R, R

and S.   By a simple calculation one finds

(27) Rir) = 4r(3r 4- l)2,       S(t) = r3 - r2 - r 4- 1,

(28) R(T) = R(t), S(t) = -t3 -5t2 + 5t+ I.

In both examples one has 5 = 1 and r. = - 1/3.  From R"(tx) = R"(tx) = - 24,

S(tx) = 32/27 and S(t.) = - 2/27 one finds by the corollary exactly the same re-

sults for the methods (25), (26) as we have found before. As an illustration to

Theorem 3, consider the following family of optimal four step methods given in [4].

(29a) p(f) = (f - l)2(f2 - 2f cos 0 4- 1),

(29b) /.4 = 0o = (9 + cos0)/12O,     03 = /.. =(13-3cos0)/15,

j32 = (7 - 97 cos 0)/6O.

p(f) has the roots 1, 1 and e±/0.  Hence, the method (29) satisfies (i)-(iv) for 0 G

(0, 7r].  According to Theorem 1, the method has an interval of periodicity for

0 E (0, 7r), since e*'* are simple roots, but has no interval of periodicity for 0 =

Tt, since — 1 is an essential root.   This result is confirmed by the results in [4].

Lambert and Watson have computed the length of the interval of periodicity and

found

„ 1 4- cos 0
r2Hi = 60
0 11 4- 9 cos 0 '

One sees very nicely how H0 shrinks as 0 approaches 7r.

3.  Proof of the Results.

Proof of Theorem 1.  We have to show that If •(#)! = 1 for H2 6 (0, H2) if

and only if (16) holds.  Consider first a nonessential branch f;.(//), that is f (0) is a

simple root of p(f) .  Observe that (11) implies

4»(f,//) = ffc<I»(r1,//).

Hence, if f;(//) is a branch of f(//), then 1/fjiH) is a branch too.  Assume this

branch is f,-(//); then one has for some H, H > 0,

(30) f,.(70 = 1/f-iH)     for H 6 [0, H].

From lf;.(0)l = 1 and (30), it follows that

f,.(0) = l/fy(0) = f,(0).
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Assume that i ¥= j. Hence, two different branches, ff(Ä) and f AH), have the same

value at H = 0. Hence, f(0) is a double root of p. This is a contradiction to our

initial assumption that f.-(0) be a nonessential root.  Thus

(31) f,iH) = 1/FyCff)     forHE[0,H)

for some H> 0, sufficiently small. We have, therefore, that the condition (10) is

satisfied by all nonessential roots independently whether (16) holds or not.  We con-

sider now the essential branches ÇAH),j = 1,2,3, ... ,2d.    f (0) is a double root

of p(f); and hence, the branch f..(//) can be expanded into a convergent series in

powers of t?1'2, where r\ := H2, see Ahlfors [1, p. 226].  Hence, f.(//) is analytic

in a neighborhood of H = 0.  Here we allow H to be a complex variable. Through

implicit differentiation one finds

dH H=0 P  (f;)

Hence, each map H -*• ¡¡AH) can be inverted in a neighborhood of f... One finds from

(7) and (9) explicitly

„2 _ fr>V- - ^H ~m- o($y

Thus, the branch f;.(/0 satisfies lf;.(//)l = 1 for H E [0, H'] if and only if the func-

tion

*/(*):=/&/«*)

maps a sufficiently small interval (- r, r), r> 0, onto an interval [0, //"]. gfö) is

a real valued function of a real variable 0 with a root at 0 = 0 of exact multiplicity

2.  Hence, gA<t>) is positive in a neighborhood of 0 = 0 if and only if g" (0) > 0.

However, an easy calculation reveals that

Sfp"«j) = 2_

f) P,
g"i0) = —^

Proof of Corollary 1.  Combining (22) and (23) leads to

(32) P(f) = (£Í!) V),

where

(33) T =

f +
t)!

Similarly, one has

<34) a(f) = ('^i)k5(r).
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We obtain from letting f -*■ - 1 in (32)

(35) ak/2 = pi- 1).

Hence, if f = - 1 is not an essential root, then 7?(r) has exact degree k/2.  To treat

the case where f = - 1 is an essential root we differentiate (32) and obtain

2V(0 = *(*--) G + i)k~2RiT)

,_ +8(/cf-f-fc + 2)(f + l)k-*R'iT)
(36)

4- 16(f - l)2(f 4- l)k~6R"iT).

Again, let f -*• - 1 in (36).  This gives

(37) ak/2_. = 2p"(- 1) # 0.

Hence, if f = - 1 is an essential root, then Rir) has exact degree k/2 - 1.  The trans-

formation (33) maps the unit chele If I = 1 onto the negative real line.  In particular,

f = 1 is mapped onto r = 0.  Hence, p(f ) has a double root at f = 1 if and only if

Rir) has a simple root at t = 0.  A pah of roots f •, f ■ of p(f ) which are different

from ± 1 are mapped onto the same negative real number t .  T is a simple (double)

root of ¿R(t) if and only if f-, f • have been simple (double) roots.  Hence, there is

a one-to-one correspondence between pairs of essential roots f •, f • different from

± 1 and the double roots t¡, i = 1,2, ... ,8, of Rir).  Let f■ i= ± 1 and t. be its

corresponding root of Rir).  Then /?(.",■) = R'ít¡) = 0 and we find using (15), (34)

and (36)

G) + l)4S(Tf)       i    Sjr,)

"' ~    BrtfÄVi)   " 8t< R"(Tà '

In the last equality we used If I = 1.  Since rt < 0, we see that p, > 0 is equivalent

to (24a).  If fy. = - 1, we obtain from letting ?-+•-! in (34) that a(- 1) = bk/2.

This together with (15) and (37) gives

LXj = Abk/2^k/2-l-

Hence, p- > 0 is equivalent to (24b).    D
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