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Some Interior Estimates for

Semidiscrete Galerkin Approximations

for Parabolic Equations

By Vidar Thomée

Abstract.    Consider a solution u of the parabolic equation

ut + Au = f    in    SI X [0, T],

where A is a second order elliptic differential operator.   Let {Sn; h small} denote a

family of finite element subspaces of H (O) which permits approximation of a smooth

function to order 0(7i ).   Let iîQ C ÎÎ and assume that un: [0, T] -» Sn is an approxi-

mate solution which satisfies the semidiscrete interior equation

(uht, x) + A(uh, x) = (f, x) Vx e s°(n0) = {xesn, suPP x c n0},

where A( ■ , ■ ) denotes the bilinear form on H (SI) associated with A.   It is shown

that if the finite element spaces are based on uniform partitions in a specific sense

in fig, then difference quotients of un may be used to approximate derivatives of u

in the interior of í2q to order 0(hr) provided certain weak global error estimates

for uh - u to this order are available.   This generalizes results proved for elliptic

problems by Nitsche and Schatz [9] and Bramble, Nitsche and Schatz [I].

1.  Introduction.  Let A be a second order elliptic differential operator in a

smooth domain £2 C RN and let m be a solution of

(1.1) Au=f   in    Í2,

with some boundary condition on 9Í2.   Let {Sh; h small} denote a family of finite

element subspaces of H1 (Í2) which permits approximation of a smooth function to

order 0(hr) in L2 or L^, say.  Let no C Í2 and assume that 77,, E Sh is an approxi-

mate solution of (1.1) which satisfies the interior equation

A(uh, x) = (f, x)    VX G SX(Í20) = {X e Sh; supp X C íí0},

where A( ■ , • ) denotes the bilinear form on /Y'(Í2) associated with the operator A.

It was then proved in Nitsche and Schatz [9], Bramble, Nitsche and Schatz [1] that

if the finite element spaces are based on uniform partitions in a specific sense in the

interior domain £20, then difference quotients of u may be used to approximate deriv-

atives of u in the interior of Q,0 to order 0Qir)- More precisely, it was shown in [1]

that if Qh is a finite difference operator approximating £>a(|a| = m) with accuracy r,

if Í22 CC Í2j C Í20 and if w is sufficiently smooth, then for each p,
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(1 2) \Qh»h - Dau\n7 < Chr\\u\\m +r+NQM l + Q\un - 77lLp,n x,

N0 = [N/2] + 1.

Combined with known global error estimates for uh this yields uniform interior esti-

mates for approximations to arbitrary derivatives.  Here and below we denote for Çix

c n,

I- L,n, =11 " "wSKn,)    and    11'IU.n, =",llfr'"(n1),

with m and £lx suppressed when m = 0 or Í2, = £2, respectively, and where for 777 >

0 with ( ■ , • )  the inner product in Z,2(f2),

\M\h-»>(six)=       ™P
(«, Y3)

v&c%(six) IMIHn,(i2l)

The purpose of the present paper is to derive similar results for the «solution u

of a parabolic equation (ut = du/dt)

(1.3) ut+Au=f   in    £2 x [0,71,

and an approximate solution uh : [0, 7"] —► Sh satisfying the semidiscrete interior

equation

(uhtt,x) + A(uh,x) = if,x)    WXES°h(n0).

These results are stated and proved in Section 4.  Our first main result (Theorem 4.1

below) shows that similarly to (1.2) above, if the initial-values satisfy, with A0( • , • )

some elliptic bilinear form on Hl(£l),

Ao(uh(0) - 17(0), x) = 0     Vx G S»(Í20),

then for t E [0,7], and with eh = un - u,

(1.4) Iß,»«,»« - Dauit)\n2 < C{hrB(u) + Rieh)},

where B(u) depends on a number of derivatives of u in £2, x [0, t] and Rieh) con-

sists of weak norms on this set of the error; with p, q arbitrary numbers,

R(eH) = l|eA(0)||_Piiil + (i\i\\eh\\2 + Ä»|kMl|2)<fr)H.

In our second main result (Theorem 4.2) we show that if we are content with an esti-

mate for time bounded away from zero, then an error estimate analogous to (1.4)

holds, with Biu) and Rieh) now only depending on u and eh over a short interval

preceding t and without any restriction on the initial-values.  The first of these two

results may be thought of as interior in space only whereas the second is then interior

with respect to both space and time.  In the same way as for the elliptic problem

quoted above, these estimates may be combined with known estimates for eh to

yield spatially interior uniform Oihr) bounds for Qnun - Dau.  Several such error esti-

mates are available in the literature, cf. e.g. [3], [5], [6], [7], [10], [11], and further
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estimates, specially tailored to the present situation, are derived in Section 5 below.

An estimate for Qhun - Dau of the type just described was obtained in Bramble,

Schatz, Thomée and Wahlbin [2] as a part of a rather general theory treating the

homogeneous case (f = 0) of the equation (1.3) under Dirichlet boundary conditions,

with A selfadjoint, nonnegative and time-independent.

This particular estimate was derived using the corresponding known estimates in

the elliptic case quoted above, by considering uh as an approximate solution of a non-

homogeneous elliptic problem with ut as a right-hand side, first trading difference

quotients in space for time derivatives and then applying global error estimates for

time derivatives.  These global estimates were obtained by a method using spectral

representations and allowing for considerable generality in treating the approximation

of the boundary conditions.  We shall review the framework of these estimates in

Section 5 below.  The constant in the resulting 0(hr) estimate for Qhuh - Dau  here

behaves like a negative power of t and the estimate, therefore, is not valid uniformly

for small t.   Also, since it uses global error estimates in space for the time derivatives,

restrictive regularity assumptions have to be imposed on the solution which are global

in space.  The technique of estimating Qhuh - Dau  in terms of time derivatives of

eh generalizes to the nonhomogeneous equation as stated in Theorem 4.3.

Besides being valid for the nonhomogeneous equation the error estimates of the

present paper differ from the corresponding ones of [2] in that they require severe

regularity assumptions only in a neighborhood of the domain over which the error is

sought, and one of the estimates is uniform down to t = 0.  They will be derived by

the energy method, using the parabolic character directly rather than considering ut

as an inhomogeneity in an elliptic equation.  This method of proof will allow us to

treat without complications operators which are nonselfadjoint and which depend on

time.  The major step is to derive a spatially interior estimate for the semidiscrete

parabolic equation corresponding to the following estimate for the continuous problem,

namely

ll"(0IU,n2<c|||U(0)||m,ni +(/0(IL7ll2M_1,ni +||77||2ni)ifr)/j.

This result will be shown in Section 3 below.  One of the tools in deriving it is a

super-approximation result for the approximating spaces which is based on the fol-

lowing super-approximation property assumed in [1] and [9]:   for w E Cq(£Ix),

(1.5) inf      licü/7-xllm, <Ch\\U\\lsll    ^UESh.
xes^(six)

The result we shall need (Lemma 2.4 below) is essentially that if P:  //1(£21) —* Sh

denotes the elliptic projection over £2, with respect to A( • , • ), without boundary

conditions, then

fl6) ¥     .^("iO-Xllin, <CÄ||i/||ni.
v ' ' xesjjin,)

Notice that the norm on the right in (1.6) is weaker than that in (1.5).
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As indicated above, Section 5 is devoted to deriving, within the framework of

the nonhomogeneous analogue of the theory developed in [2] the global 0(hr) esti-

mates needed for appraising to this order the terms in eh in the results of Section 4.

The first such result, Theorem 5.1, corresponding to the situation of Theorem 4.1,

estimates the term Rieh) in (1.4) with uhi0) chosen as the elliptic projection of 77(0)

and under certain regularity assumptions on 77 in £2,  x [0, f].  In Theorem 5.2 we

then show, using the results of [2] that if, as in Theorem 4.2, we are content with

error estimates for t bounded away from zero, then those regularity assumptions only

have to be made for the time immediately preceding t.   We shall also see that in this

case we have considerable freedom in the choice of the discrete initial-values.   For

completeness we finally deduce in Theorem 5.3 the global estimates for the time

derivatives of the error needed to generalize the argument of [2] to the nonhomogene-

ous equation for time bounded away from zero.  Again, this method uses more than

necessary regularity, globally in space.

Throughout this paper C will denote different positive constants, independent of

h, t and the functions involved.

2.  Interior Approximation Properties and Elliptic Estimates.  In this section   we

shall first briefly recall the local regularity assumptions on the finite element spaces

Sh employed in Nitsche and Schatz [9] and Bramble, Nitsche and Schatz [1], and re-

view some of the interior estimates of these papers which will be needed below.  We

shall then introduce a local elliptic projection which when applied to the exact solu-

tion of the parabolic problem will be shown in Section 4, as a major step towards

our final results, to yield a function in Sn close to the semidiscrete solution.  We shall

finally show a super-approximation result for the local elliptic projection of a localiza-

tion of a function in Sn.

We begin with the assumptions on {Sh} and postulate first that for some interior

subdomain £20 of £2, the functions in Sh are piecewise polynomials on a uniform

partition.   In order to make this more precise, let Qx, . . . , Q¡ be disjoint bounded

domains in RN such that their translates Œ = Q, + v, j = 1,. . . , /, v € ZN, are dis-

joint and their closures cover RN.  Let r be an integer > 2 and let i//,, . . . , \pk be

continuous functions with compact supports which reduce to polynomials on the sets

Œ  and which are such that for each QJ the set of restrictions to QJ of {i//i( • - a);

s = 1,... , k, ex E ZN} contains all polynomials of degree less than r.   We shall assume

then  that  SA(Í2„), the set of restrictions to £20 of the functions in Sh, is spanned

by the translates of the i//;-, scaled to mesh-size h, or x E ShiQ,0) if and only if it can

be written in the form

X(x) = X aja \¡)j(h ~lx -a)    for   xG£20.

We note that as a consequence of this assumption, if £2j CC £20, then for small

h any finite difference quotient with step-size h of a function in 5h(£20) is in ^(£2,).

Further, for any Çlh C £20 which is a mesh-domain (the interior of the closure of a

union of some sets hQJ) we have the inverse estimate (clearly 5h(£20) C HliSl0))
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(a) llxlli,nh   <Ch-i\\x\\nh     Vxe5,(£20).

We shall make the following two local approximability assumptions, where for

£2, C £20,

S°(fti)= {xe5ft;suppxC£21},

and where £22 CC £2, C £20.  The first assumption concerns the possibility of approx-

imating functions with compact support in £2, by functions in S0,(£2,):

(b) If 1 < / < r and if w E Hl(U,x) and vanishes outside £22, then

mf      llw-xlli.n^C/r'-'lMI,^
xesg(n,)

The second assumption is essential in order to be able to localize functions in Sh:

(c) If co G C°°(ßx) with supp Veo C £22, then for UESh(nx),

inf llcoí/-xlllí2. <C||i71ln
xes„(íii)

X = ui(7 in Í2 i\ü2

For a more detailed discussion of these properties we refer to [9] and [1].  It is in

fact only the properties (a) and (c) which will be used explicitly below; the others

are made in order to permit application of the elliptic interior estimates of [9] and [1].

In these papers, the latter property was stated only for co E C0°°(£2j) and in the form

(2.1) inf      llw«/-Xlli,o1<C»«ölli,n1.
xesjjí«!)

which then implies the estimate in (c) in view of (a).  In the examples discussed in

[9] and [1] one finds easily that (2.1) is valid for the more general co used in (c).  In

many cases, an interpolant of cotV may be used to show (c).

Let now A be the elliptic operator

j,k=i *xj \'k3*k/      /tí    >3*/

where we assume that the coefficients are in C°°(£2 x [0, T]) and (a-fc) is uniformly

positive definite in £2 x [0, T].  We introduce the corresponding bilinear form

ai      ^      au ï       r     /  v^ bv    dw        v-       9u      1. \ A
Aiv, w) = Ait; v, w) = J Y.   ajk 3— T- +  Z «/ Z-w + aovw) dx-

\j,k=l axk   oxj /=1        oxj j

We shall quote some interior estimates for discrete elliptic equations which we

shall need.  We shall always assume that our above assumptions on Sh hold in £20 CC

£2, although the full force of these are not required in each instance.  Notice in partic-

ular that the constants below are independent of t.

Lemma 2.1.   Let £2, c £20 and assume that wh E Sh satisfies

Ait;wh,x) = 0   \/XES°inx).
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777e77 for any £22 CC £2,,

IKH1,n2<CIKIIni.

Proof.     See [9, Lemma 5.2].

In the next lemma we denote by 9^ the forward difference quotient

K = dVi ' ■ • dlNN   with    \jMx) = h~l(w(x + hej) - w(x)),

where e. is the /th unit vector in RN.

Lemma 2.2.   Let £2, C £20 and assume that wn E Sh satisfies

A(t;wh-w,x) = 0    VxeS^).

777^77 for any £22 CC £2, and p > 0, \a\ = m,

(2.2) \K(wh-w)\\ili<C{hr\\w\\r+miSil + l|wA-w|Lp,ni},

and with N0 = [N/2] + 1,

(2.3) l32K-w)|n2 <C{r/\\w\\r+m+NotSll + \\wh-w\\_PinA.

Further, for the time derivative of the error,

(2.4)       KK -Hlb2 <c{/7r(lNUm,Ul + IKiir+w>Iïl)

+ IK -w|Lp_ni    + \\(W„ - w)rll_Pic7l}.

Proof.    The estimates (2.2) and (2.3) are contained in [9, Theorem 6.1] and

[1, Theorem 1], respectively, and (2.4) follows in the same way as (2.2) using [9,

Theorem 5.2] and the fact that

A(t; (wh - w)v x) = -A\t; wn - w, X)    VX E ^(£2,),

with A' the bilinear form obtained from A by time-differentiation of the coefficients.

When A is independent of t, (2.4) is of course an immediate consequence of (2.2)

and the first and third terms on the right may then be omitted.

We shall have reason to work below with a local elliptic projection corresponding

to a Neumann problem on a subdomain £2t of £20 which we may assume to be smooth.

For this purpose we denote

Ani(t;v,w)=fn   (   £   a
1 \/,*=i

9u    dw
+ vw   dx.

'k 9xt   9x
k

Note that this modified symmetric bilinear form is /7rl(£21)-elliptic, uniformly in   t,

so that

||u||2ini <CAni(t;v, v)    VvEH1(ïlx),0<t<T.

We then define Pn, (r):  Hl (fi ! ) -* Sh (£2, ) by

(2.5) Ani(t;w-Pnxit)w, x) = 0     VxG5„(£2,).
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It is well known that

(2.6) ||(7 - Pny(t))w\\/¡n ] < Chl -i\\w\\, >ni,      - ir - 2) </ < 1< / < r,

and similarly for the time derivative, in particular (cf. e.g. Douglas and Dupont [4]),

(2.7) \\((I-Pnx(t))w)t\\ni <Chl(\\w\\ini + KHl|0l),       1 < / <r.

Combining these estimates with Lemma 2.2, we have

Lemma 2.3. Let SIx C £20 and let P =Pn (t) be defined by (2.5).   Then for

£22  CC £2,   Í7776Í \a\ = 777,

K(r-P)M\a2<Chr\\w\\r+miSll,

K(i-P>\si2<chr\\w\\r+m+No¡ni,

and

\\b%((I-P)w)t\\a2 <<*r(IMIr+m,n, + IKIUm.n,).

We conclude this section by establishing our super-approximation estimate for

the elliptic projection defined above of a localization of a function in the subspace.

We emphasize that this estimate shows one degree better approximation than the

corresponding estimates (c) and (2.1).

Lemma 2.4.  Let £2, C £20 and co € Cq(Q.x).   Then for U E Sh(Slx ),

(2-8)      xGS°(n,)        1 '

Proof.     Set for brevity U = Pax(t) (coi/) and A( ■ , • ) = An (t; •, • ).  We

shall prove below that

(79, inf      ll#-Xll1(ni<C7i||t/lln  .
K¿^> x^sl(six)

Let us first show that this implies (2.8).   In fact,

inf      (lltí-xllin. +llu£/-Xlln,)
x&s 5,(n,)

<\\œU-U]\cix+C    inf      I|c7-Xllli2l,
xesgin,)

so that with (2.9) proven it suffices to show

(2.10) \\uU-U\\ni<Ch\\U}\nx-

In order to prove (2.10) we note that duality yields

\\uU-U\\a   <Ch\\uU-U\\lfSl   <ChA(uU-U, uU-U)v\
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and hence by the definition of U as the best approximation of cotV with respect to

A( • , ■ f\ and by (c),

\\coU-U\\n   <Ch     inf       llcot/-xllin, <Ch\\U\\nx-
XGSg(fl,)

In order to show (2.9) we shall only need to show that

(2.11) inf     l!^-Xll1,n1 <C!I^||« Xsu
xes°(six)

For by (2.10) we have

(2.12) ll^llíil\suppco<ll^-wí/llu1<C77ll^n1,

and together (2.11) and (2.12) prove (2.9).

For the purpose of showing (2.11), let £22 and £23 be such that supp   co C £23

CC £22 CC £2j.  We shall then first prove that

(2.13) xe^ni),l^"Xlll-n1<C,l^l>."A«2-

Since U is the elliptic projection of a function vanishing on £2,\£22, we shall be able

to estimate its norm in //"1(£21\£22) by a norm in L2.  In order, however, to be able

to apply the interior estimate of Lemma  2.1 we  shall first shift the problem into the

interior of £2j by showing below that

(2-14) lloll1,n1\ña<Cllüll1,naXñ3.

We now note that by the definition of U we have

A(U, x) = A(uU, x) = 0     VX E 5°(£2,\supp co),

so that Lemma 2.1 yields

(2-15) llüBi.n2\ñ3<CIIWIo1\.»ppW-

Together, (2.13), (2.14) and (2.15) imply (2.11) and thus complete the proof of (2.9)

and hence of the lemma.

It remains to show (2.13) and (2.14).  In order to show (2.13), let co, G C%(Çlx)

with co, = 1 in a neighborhood of £22.  Then

inf      \rU-X\\ua1<\\(l-^iW\\i,a1+      inf      llw^-xHi,«,,-
xes5i("i) xesjjcn,)

Since supp(l - co,) C £21\£22 we have for the first term,

ii(i-«i$ii,ni<ni£7ii1>ni\ñ2 •

For the second term, letting £24 be such that supp Vcoj C £24 CC £2j\£22 we obtain,

using in the last step (c) applied to £2,\£22,
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inf      Iko^-xll,,^ inf llw.fy-xll.n.
x&^rn,) xesh(six)

X=u>iÍ7in Í2i\n4

inf   _ llco1í/-xll1,ííA=2<C|PnAñ
XeSh(Slx\Sl2)

X =U]5 in (Ííi\fi2)\íi4

Together these estimates show (2.13).

We finally turn to (2.14).  Let <¿> G C°°(£2,) with \p = 1 in a neighborhood of

£2,\£22 in £2, and $ = 0 in a neighborhood of £23.   Let also £2S be such that

supp W C £2S CC £22\£23.  We have

(2 16)       "^.Oi\na < l^'loi < C^' ^

= c|2(f7, ^2f7) + [¿fotf, <pU)-A(U, y2U)]\ .

Here, for x C 5"ft(Í21 ) with x = f2 U outside £25 we have

A(U, *2U)=A(U, *2U-x)<Qñ\iniXnyU~x\\usi2\ñr

so that by (c),

A(U, <p2U) < Cmxs% x5 inf H^Vj- xll1>n2\ñ3
XGS:ft(í22\n3)

(2-17) x=^2ry in (n2\ñ3)\n5

Further, by an easy calculation,

(2 18) iifyU,vU)-A(U,<P2U)\ =

<

/    X      i* ^ 172 dxJSl s  '—' u/fc  ->„    a„•XT* fk^idxk

CIM|2upP(VV)<C»^î,n2\n3

Together, (2.16), (2.17) and (2.18) yield (2.14).

The proof of Lemma 2.4 is now complete.

3.  Interior Estimates for the Semidiscrete Problem.   In this section we shall

first derive, in Lemma 3.1, a discrete interior version of the energy type inequality

(3.1) IWOII2 + /„'NI2 dr < cjlK0)||2 + J0Vllli dr\,

valid for a solution u of the continuous equation (1.1), vanishing on 9£2.  We shall

then apply this inequality to difference quotients to obtain our basic a priori interior

estimate, which is given in Lemma 3.3 below.  The proof of the discrete interior

counterpart of (3.1) will depend on the super-approximation property, described in

Lemma 2.4, of the projection P^' (t) defined by (2.5), with £2', a subdomain of £20.
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We define for U:   [0, T] —*■ Sh(Sl0),

(LhU)(x) = (Ut,x)+A(t;U,x)    for    X e Sh(Sl0),

and set for £2, C £20,

\(LhU)(x)\
"¿Ä.-/,n, =       S0UP     -m-,      / = 0,1.

xesg(iîi)   "XU/,«,

We have then

Lemma 3.1.   Let £22 CC £2, C £20 and let q be an arbitrary number.   We then

have for U:   [0, T] ~* Sh(Çl0),

mmh2 +Jollt/||i. "2dr

<c|||i/(0)H2ni +/f0[ll^l2ni +h«\\Ut\\l1 +||LAt/ll2I)_1,fll]drl.

Proof.     We shall first show this result for q = 2.   We shall then derive in

Lemma 3.2 an estimate for Ut which will allow us to improve the result to the case

of a general q.

Let £22 CC £2] CC £2,, take co G C0°°(£2j) with co = 1 on £22 and let P =

Pa'At) be the projection defined above with respect to A(- , • ) = An> it; • , ' ).

Then using the definition of LhU we have for any x G Sh0(Sl'x),

iUt,œ2lf) + A(U, co2 CO

= iUt, co2í/- x) + AiU, Picj2U) -x) + (LhU)(x) + A(U, x) ~ A(t; U, X)

or

l_d_

2dt
lco/7112 + 2(cot7, cot/)

< \A(uU, uU)-A(U, co2 ¿7)1 + ||t/f||iilllco2t/-xllii;

+ \\U\\ïtSl.\\P(oi2U)-X\\i,a\ +(11^^11/.,-i,n, + Cllt/llni)llxlli,ni

Here we find easily

\A(uU, ojU)-A(U, oj2U)\
9co   9co    n

■   ajk -— -— U¿ dx
i jk   '   9x.   bxkLZ «CIIMIJi,.

and choosing x as in Lemma 2.4, we have

||í7f||nil|co2í/-xllnl +\\UUl,n\\\P("2u)-x\\l,n'x

<Oi||£rnini(l|£/íllíll+IMI1 ,«',)• '

Further,
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\\x\\Un'x< ißVU) - Xll,,n-, + llñ"2£/)H. ,n ',

< CXh\\U\\ai + ..«•¿ülli.ni) < allein,  + 2(cot/, co£/)*).

Together, these estimates yield

— ||coi/||2 4- 2A(uU, cot/)
dt

< c\\\U\\hx + Allein, Hülln, +h\\U]\Xin'x\\U]\nx

+ (ItfA.-i.n, + litVIIni)(2(coc/, cot/)* + IMIni)J.

Using the inverse estimate (a) on the third term on the right, we obtain easily

d

dT
llco.7112 +A(ùiU, coí7)<c|||«71l2il + Ä2!!^, + ll/^c^.^l.

Integration over (0, t) now completes the proof for q = 2.

For the purpose of further estimating the term in Ut above we shall now prove

Lemma 3.2.   Let £22 CC £2, C £20 and let q be an arbitrary number.   We then

have for U:   [0, T] — S„(£20),

<c{||f7(0)||2ií2i +/Ó(llt/Hi>ni +^11«, +ll¿/i^,o,íí1)^}-

»oo/    With the notation of the proof of Lemma 3.1, we have now for x G

(i/f, co2L7f)+I((7, co2t/f)

= (t/„ co2t/f - x) + A(U, P(co2Ut) -x) + (LnU)(x) + <A(U, x) - ¿(r, t7, x)).

Hence

||cot/fl!2 + A(uU, cot/f) < |2(cot/, uUt)-A(U, co2i/f)|

+ Iltr'í||nil|w2í7f-xllni +IIDHifn,lÄ«a^)-Xlli,ni

+ (lti^U,o,n, +CII^.,ni)llxllnl.

We find here

\A(uU, uUt)-A(U, co2£/7)|

"i/ffc Ly    9x; 9Xfc    9x;. \ '   bxk    JA      I

C||cot/f|| ilt/Vn, < Va ||coc/f||2 +C||i71l2)ni.
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Further, choosing x by Lemma 2.4,

||t/f||nillco2t/f-xllni +\\U\\unxUP("2ut)-X\\i,six

and

<C>7||t/f||ni(||t/f||ni   +11^1, >fll)

llxllni < llco2^ - xllni + H«2 ̂r" < C(A||t/f||ni + \\uUt\\

Hence, since

we obtain

1    d
U(cot/, uUt) - j jfA(coU, cot7)| < Cl|t7||2ni,

llcot/f||2 + £■ £-A(uU, cotT)
1 2 dt

< l-\\coUt\\2 + cjlltJll2^ +h\\Ut\\&1 +*IIÜH,,o1ll^llo,

or by obvious estimates

d
WcoUt\\2 +

dt
A(uU, cotT) < cj||t/l|2jni + /7||t/f||22i + \\LhU\\lotnx} ■

By integration over (0, t) we obtain

Jjl^H2n2^ + llt71l2in2

c{lli/(0)||2>ni + J"jllt/ll2;i2l +h\\Ut\\hx +II¿71^1I27i,o,í71]^}.<

that is, the desired estimate with q = 1.  Repeated application of this estimate, using

a sequence of intermediate domains, allows us to increase the power of h to any order,

and thus completes the proof of the lemma.

We may now complete the proof of Lemma 3.1.  Let £22 CC £2j CC £2', CC £2,

and note that by the inverse estimate (a),

*llü||li0i<C||ü||0l

and

h\\Lh^h,o,si'x<C\\LhU]\h,_unx-

We may, therefore, conclude from Lemma 3.2 that

<

<

c|/72||t/(0)||2in.  +)rtQ[h2\\U\\2^+hi\\Ut\\li +h2\\LhU\\l0^x]dr}

c{llt/(0)||2ni +j>t/}|2ni +hHUt\\2li+\\LhU]\2h^Unx]dr\.
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The desired result is now a consequence of the case q = 2 of Lemma 3.1 which we

have already established.

We can now state and prove our main a priori interior estimate for the semidis-

crete problem.

Lemma 3.3.   Let £22 CC £2, C £20 and let q be arbitrary.  Assume that U: [0, T]

—► Sh(Sl0) satisfies

(LhU) (x) = (Ut, x) + A(t; U, X) = (F, x)      Vx G S,°(£20), U(0) = V.

Then for any m > 0,

E na,Wii2n2

c\  E   Il9^l2n1+/iril^|2í2l+^l|t/íll2n]+   E   H3Äi,n1'U}.

|a|<m

Proof.     For m = 0 this is contained in Lemma 3.1.   In order to apply Lemma

3.1 to 9£t/ for |a| = 777 > 0, let £22 CC £2', CC £2, and notice that for x G Sh°(ü'x)

and small h,

(Lh(bahlf))(x) = (dahUt, x) + A(t; ZahU, x) = (3£F, X) + R„a\

where (with E^v = v( ■ + ah))

J"i ß<a\       y (j,k=l °xj dxk

+ l 3*" V*"""^ ̂ X + K-\EZ-% i/xj dx.

We find immediately

\Rha)\<C   E  H3£i/ll1.nillxlli,ni,
\ß\<\a\ '    » '    »

so that

IM3^lk-i,ni<c(||32f1Llfni+    E   lOTIi,«,)-

Noticing that

A,, + 2|a|l|3^fll¿i <C/7"||t/f||2,1

and

E W&i <   E   H3M,ni,
|a|<"i |a|<m —1

we now obtain by application of Lemma 3.1 to d^U for |a| < m, with q  replaced by
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q + 2|a| and £2j by £2',,

E \\Kml2+ ¡\\Ku\\2unidr'\
laKm l J

<c\   E  ll3^ll2ni+Jor    E     HSÄ^ln.+Ä'll^lln,
(laKm .L|a|<m-1

+   E     KPM2-i,six]  drl.
la Km -J        )

By iteration of this inequality we may further reduce the first term of the

integrand on the right (using intermediate sets £2', with £22 CC £2', CC £2,) to obtain

E  H3Ä,

c\   E  H3^||2n 1+f0[llt71l2,n1+^ll^ll2n1+   E   H3^l2_1(nildr|
(laKm L |a|<m J       \

laKm

The result now follows by a final application of Lemma 3.1 (again using an intermedi-

ate set between £22 and £2,).

We shall complete this section by deriving a version of the above inequality

valid for t bounded away from zero, and with the bound on the right using only func-

tion values over a short interval preceding t.

Lemma 3.4. Let £22 CC £2, C £20 and let q be arbitrary.  Assume that U:

[0, T] —> Sh(Q,0) satisfies

(LhU) (x) = (Ut, x) + A(t; U, X) = (F, x)   Vx S S„°(£20).

777e77 for0<8 < t<T and any m> 0,

E \Ku(mi2 < c/'f_5 ïuuul, + h«\\ut\\2li + E 113**111,,«. I dr.
|a|<m L laKm J

Proof.     LetipEC1 be such that ^r) = 1 for r > 0, $(t) = 0 for r < - 5/2

and set ip0(t) = i/^t - t).  We have at time r,

Lh(f0U) (X) = ^(¿7,^0 (X) + *'o(U, x) = (P0F + ¿0U, x)      Vx  C 5°(£20).

Application of Lemma 3.3 hence gives

E \KU(mi2
laKm

<cf; E        ii3^i2n1+wfii2«1 + E H3Síiiii,ni
' i ̂ . I <r ,-,, ., „ / ni       i    r\ \ UK'm

rfT.
|aKmax(m-l,0) laKm

The desired result now follows by an easy induction over m.

4. The Basic Interior Error Estimates. In this section we shall show the basic

results of this paper, the interior maximum-norm estimates for the error in approxi-

mating a derivative of the exact solution of the parabolic equation by an appropriate
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finite difference quotient of the semidiscrete solution.  The first such estimate below,

Theorem 4.1, is interior with respect to the space variables but uniform for t in [0, T]

whereas the second result, Theorem 4.2, is interior in both space and time, thus valid

for t bounded away from zero.  Both error estimates contain one term which is 0(hr)

under the appropriate local regularity assumptions and one term containing weak norms

of the error in a larger domain.  In our applications in Section 5 these latter terms

will be majorized by global error bounds.  For comparison, we shall finally state in

Theorem 4.3 an interior in space estimate derived by a technique used in [2].  The

error bound now contains time derivatives of the error.

We shall assume throughout this section without explicit mention that [Sh }

satisfies the regularity assumptions of Section 2 in the interior domain £20.  We shall

consider the interior equations

(4.1) Lu=ut+Au=f    in    £20 x [0, T],

and with uh: [0, T] ~* Sh,

(4.2) (Lhuh) (x) = (uhit, x) + A(t; uh,X) = (f, x)    Vx C Sft°(£20),

respectively.

We shall begin by deriving an interior L2-estimate for difference quotients of the

error.

Lemma 4.1. Assume that u and uh are solutions o/(4.1) and (4.2), respectively,

and that vn = uh(0) and v = u(0) satisfy the interior equation

(4-3) A0(vh-v,x) = 0      VXG5,°(£20),

where A0( ■ , • ) is a bilinear form corresponding to a second order elliptic differential

operator with smooth coefficients.   Let £22 CC £2, C £20 and let p, q be arbitrary

and m positive.   Then for eh = u„ — u,

(4-4) E   K^(mn2<c{hrBr+mn(t;u)+Rn(t;eh)\,
laKm " ' ' j

where

and

Bs,six(t,u)=     sup \Hr)\\s,nx + (/jKt^, drY

(4.5)      Rai(t; eh) = \\e„(0)\\_p>ai + (f0(lleft||22] + h^We.J2^ )rfr)*

Proof.     Let P = Pn (t) denote the projection used in Section 2 with respect

to A( ■ , ■ ), and set 6 = uh - Pu  and p = (I - P)u.   We then have

(Lh6) (x) = [pt +Efl/ ^  + 00 - l)p, xj       Vx G S°(£2,),
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so that noticing that 0 G 5ft(£20) and letting £22 CC £2', CC £2, we may apply Lemma

3.3 to obtain

Z  119^
laKm

<C    E  119^(0)1!^ +/o[llö|l2ni + hf\\Btfa.
(laKm ' L

+   E   (\Kp\\2n[ + iKp^^drl .
|aKm\ '-»       \

Consider first the term with 0(0) = vh - Pv.  We have for |a| < m, applying

Lemma 2.2 to eh(0) and Lemma 2.3 to p(0),

H3Sfl(0)llni<ll3/,^(0)llni + H3gp(0)||ni

<c{/7r|l"(0)IUm,ni +||eft(0)||_p>ííl(,

which is bounded by the right side of (4.4).

Further, assuming as we may, that c? > 2, we have

f0PII2ni +Ä,llfl,H?li]dr

<Ç^[IMK, + hq\\ehit\\2nx + \\p\\2six + ^HMn,] dr.

Hexe, the terms containing eh axe bounded by C ■ Rn At; eh)2 and by (2.6) and (2.7)

we have

JOfllPlln. +h2\\Pt\\nx)dr<Ch2rf10(\\u\\lni + \\ut\\2r_x^)dr.

Finally, by Lemma 2.3,

J0    £   [ll3ÄPllni+ll3ÄPfll2-i.ni]^
laKm

so that altogether

(4.6) E  H3gö||„   <cW+m>n (f;ii) + Ä„ (i;eÄ)l.
laKm ' J

Since by Lemma 2.3,

E  H3ftP(0lln2<Cri'-|lu(i)IUm,iil <ChrBr+mMi(t;u),
laKm

and since eh = 6 - p the desired result now follows by the triangle inequality.

We are now in a position to establish our first maximum-norm bound for the

error between an arbitrary derivative Dau (|a| = 777) and a corresponding finite difference
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approximation Qnun.  Thus, let Qh be defined, with finitely many constants qß    by

Qhwix) =     Z    qßydßh w(x - yh).
W\ = m,y

We say that Qh approximates Da with order of accuracy r if

(4.7) \Qh^-Da^a2<Chr\w\r+mni    if   £22CC£2r

We then have

Theorem 4.1.  Assume that u, uh, v = «(0) and vh = uhiO) satisfy (4.1), (4.2)

and (4.3) and let Qh be a finite difference operator approximating Da (|a| = m) with

order of accuracy r.  Let £22 CC £2, C £20 and let p, q be arbitrary.   Then with the

notation of Lemma 4.1 we have for 0 < t < T (tV0 = [N/2] + 1),

|ß,u,(f) - #"77(7)1 < C{h'Br+m+NoSli(t; u) + Rnxit, eh)\.

Proof.    Let £2!, and £2; be such that £22 CC £2j CC £2', CC £2,.  We have by

the form of Qh and since uh - u = 6 - p,

\Qhuhit) - Dauit)\n2    <C   Z (Ke(t)\ + W)l) + \(Qh ~D«)u(t)\n2.
\a\=m

Here by (4.7),

\(Qn -Da)u(t)\n2 < Chr\u(t)\r+m¡cll < ChrBr+m+Notiïl(t; u).

Using the discrete Sobólev inequality,

Mn; <C E   H3gxlln!    Vxe^(£2,),
\ß\<N0

we have by (4.6),

E   W)lnï   <  C      E      Il9^(7)||n;
laKm laKm+ATg

<   c{hrBr+m+N0,Slx(t' ") + RSlx(f' ^)|-

Since finally by Lemma 2.3,

E   l3ÏP(0ln", <C77rIWOIUm+iVo,n1 <ChrBr+m+NQ<niit;u),
laKm

the proof is complete.

We shall now deduce an estimate which is interior also with respect to time.

The result is now independent of the choice of the initial data and the low order

norms of eh in the error bound are taken only over a short interval preceding the time

at which the estimate for Qhuh - Dau is given.

Theorem 4.2.   Assume that u and uh satisfy (4.1) and (4.2), respectively, and

let Qn be a finite difference operator approximating Da i\a\ = m) with order of ac-

curacy r.   Let £22 CC £2X C £20 and let p, q be arbitrary.   Then for 0 < 5 < t < T,
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with eh = uh - u,

\Qhu„(t) - D«uit)\n2 < C{h'Br+m+NOini(t - S, t; «) + *«,(.*- 5, t; eh)\,

where

Bsit -8,t;u)=     sup     ||«(T)||J>n   + (Jî_,ll«ill3_lin1 drf
t—Ô ^ 7"*i f V '

and

(4.8) Rni(f-5, f;efc)- (n.gOk/.Hn, + ^m«^)*)*

/'roo/.    First, we prove in exactly the same way as in Lemma 4.1, using only

Lemma 3.4 instead of Lemma 3.3, that for  m > 0,

E   1192 eft(f)lln2 < C \hrBr+mUl(t - 5, 7; «) + R^Jf - 8, t; eh)\.
laKm " *

The proof is then completed as in Theorem 4.1.

We shall now state, for comparison, the result obtained by the technique used

for the homogeneous equation in [2], consisting essentially in considering the time

derivative in the parabolic equation as a forcing term in an elliptic equation.  The re-

sult thus derived is weaker than the ones just proved in that the error bound now con-

tains derivatives of eh with respect to time.  In our applications in Section 5 this will

require stronger regularity properties of u than our previous results.  In order to make

the reference to the proof in [2] simple we shall therefore content ourselves with

formulating the result in the generality concerning the operator A employed in [2],

and in Section 5 below.

Theorem 4.3.   Assume that A is time-independent, selfadjoint and nonnegative

(a0 > 0) and let u and uh be solutions o/(4.1) and (4.2), respectively.  Let Qh be a

finite difference operator approximating Da (|a| = m) with order of accuracy r. Then

if £22 CC £2, C £20 we have for 0 < t < T, with eh = uh - 77,

\Qhuh(t)-Dau(t)\sl2

<c\hr      E      \\D'u(t)\\r+m+No_2in    + E m^ttlln,
'     2Km+N0 2Km+N0 + 2

Proof.     This is proved step by step as [2, Theorem 6.1] with the obvious

modifications due to the fact that the equation may now be nonhomogeneous.

5.   Some Global Error Estimates for a Class of Time-Independent Problems.   In

this section we shall supply the global error estimates needed for bounding the terms

in eh in Theorems 4.1 through 4.3 in the special case of the generalization to non-

homogeneous equations of the theory developed in [2] for homogeneous parabolic

equations.  These estimates will all be of order 0(hr) for sufficiently smooth data, and
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application of the results of Section 4 will thus show this order of interior convergence

of difference quotients of the approximate solution to derivatives of the exact solution.

We shall leave to the reader to combine the regularity requirements of the global esti-

mates below with those of our previous interior results.

Consider thus the initial-boundary value problem

ut + Au = f   in    £2 x [0, 7"],

(5.1) « = 0    on    9£2 x [0, T],

7/(0) = v,

where A is now a selfadjoint, nonnegative second order uniformly elliptic differential

operator with smooth coefficients, independent of time.   Let {Sh} be a family of

finite dimensional subspaces of H1 (£2) and assume that corresponding to each Sh we

are given an approximate solution operator Th:  L2(£2) —► Sh of the corresponding

elliptic problem

.477 = /   in    £2,      u = 0    on    9£2,

such that

(i)  Th is selfadjoint, positive semidefinite on A2(£2) and positive definite on Sh;

and with T = A~l and some r > 2,

(ii)  There is a constant C such that

\\(Th - T)f\\ < Chs+2\\f\\s,     fEHs(ü), 0 < s < r - 2.

Consider now the approximate semidiscrete problem of finding 77, :   [0,7] —►

Sn such that

Thuh t + u„ = Thf   for    t G [0, T"],

(5.2)
uh(0) = vh ESh,

where vh is some approximation of v.  Clearly, since Th is positive definite on Sn, uh

is well defined by (5.2) for t > 0.

If {$h } satisfies certain standard approximation properties and if the elements

of Sh vanish on 9£2, operators satisfying conditions of types (i) and (ii) may be de-

fined by the ordinary Galerkin equation

A(Thfx) = (f,x)     VxGS„;

the semidiscrete equation may then be written

(uhtt,x)+A(uh,x) = (f,x)     VxG5,.

An important feature of the present formulation is that it encompasses also several

different other procedures for dealing with the homogeneous boundary conditions (cf.

[2]).

If in addition to (i) and (ii) we demand that the family {Sh } satisfies the regu-

larity assumptions of Section 2 on the interior subdomain £20 of £2, and that the
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operator Th is such that

(iii) A(Thf x) = (f X)     VXG5,°(£20),

so that the semidiscrete interior equation

(uht, x) + A(uh, x) = (/, X)     VX G S „°(£20)

holds for the solution of (5.2), then the results of Section 4 all apply in the present

context.  The property (iii) is shared by several of the methods referred to above satis-

fying (i) and (ii).

In the first part of this section we shall assume that v EH '(£2) n H2^)  and

use for the initial-values vh of 77, the elliptic projection of v defined by

vh = Pxv = ThAv.

Recall that for 0 < s < r - 2,

(5.3) ||(P, - I)v\\-s = W(Th - T)Av\\_s < Chr\\v\\r_s.

In fact, we have by (ii),

WiTh-T)f\\0<Chr\\f\\r_2,

and hence, since Tn - T is selfadjoint,

sup       Wh - T)f, ¿>|
KT, - T)fUr-2) = ^P(n) |M|r_2 < Ch'WfK

We conclude by interpolation for 0 < 5 < r - 2,

\\(Th-T)f\\_5<Chr\\fi\r_2_s,

from which (5.3) follows for / = Av.

We shall now derive the following global error estimate for the nonhomogeneous

equation.

Lemma 5.1.    Under the above assumptions, we have for eh = uh - u,

(j>7,l|2^),/2 <^r{»U|lm.x(,-l,2) + (Sj^rdrYY

Proof     We notice (cf. [2]) that the error satisfies the equation

Tneht + en=p = (T-Th)Au = (I-Px)u    for    t>0.

This implies immediately

\ £<Theh' eh) + Ik, II2 = (p, eh) < - llpll2 + l- He,||2,

and hence by integration

Jfol|e,||2 dr < (Theh(0), eh(0)) + Jj|p||2 dr.
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o

Here, using the boundedness of T:  /Y_1(£2) —► Hl(Sl), and the property (ii) we have

(5.4) (Thw, w) = (Tw, w) + ((Th - T)w, w) < C\\w\\2_x + Ch2\\w\\2,

and hence in view of (5.3),

(Theh(0),eh(0))<Ch2r\\v\\lax(r_xay

Further, by (ii),

JollPlI2^ =/oll(7,~ ̂ M"!!2^ < Ch^fjul^dr.

Together these estimates prove the lemma.

We shall now consider the boundedness of eh t.

Lemma 5.2.   Under the above assumptions, we have for eh = uh - 77,

( j" Xrii2 drT < c{||ü|12+(/ii|/|12 dTf}-

Proof.     We have for the exact solution

IM2 + \ ^A(u, u) = (f, ut) < [ll/ll2 + [ll«f||2,

and hence

(5.5) $[\\ut\\2 dr < A(v ,v) + ¡^ftf dr <C^\v\\2 + jjl/H2 ^}-

Similarly, with An = T^1 on Sh,

\KJ2 + j £■ (AHuh, uh) = (f, uh>t) < ^||/||2 + l-\\uhJ\\2,

so that

(5-6) /lll"7i,7ll2 dr < (Ahvh, vh) + Jj|/||2 dr.

Here Ahvh = AhThAv = P0Av so that by the boundedness of Th,

(5.7) (Ahvn, v„) = (Av, ThAv) < C\\Av\\2 < C||t;||2.

The result, therefore, follows by (5.5), (5.6), (5.7) and the triangle inequality.

Combination of these results now implies the following estimate suitable for com-

bination with Theorem 4.1.

Theorem 5.1.  Assume that (i) and (ii) hold and let u and uh be the solutions

o/(5.1) and (5.2), respectively, with vh = Pxv.   Then, with p = r - 2, q = 2r in (4.5),

we have for eh = uh - u,

Rsix(f> eh) < lk„(0)|L(r_2) + (fÓ(lk„ll2 + h2r\\eht\\2)drY2

<Cft'{||u||max(r_1>2) + (f>ll2 + \\f\\2)drf}.
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Proof.    We have by (5.3),

lk„(0)||_(,_2) = \\(PX -I)v\\-(r-2) < Chr\\v\\2,

and by Lemmas 5.1 and 5.2,

J0(lk,ll2+/72rlk,>fii2)c/r

< ^2r{lNlmax(r-,,2) + J0(H"II2 + 11/11*)*}.

Together, these estimates prove the theorem.

Combined with Theorem 4.1 we may conclude, under the appropriate assump-

tions, that for £22 CC £2, C £20,

\Qhuh(t)-Dau(t)\il2

<Cfcr{Wm.x(r-l,2) + (f ¡.(II«"2 + ll/ll2)^)'/Z +Br+m + No,nx(t;u)Y

The regularity demands on 77 in order that the right-hand side of this inequality

be finite can also be expressed exclusively in terms of the data / and v of the problem

(cf. e.g. [8]).  In addition to regularity of these functions one then also has to im-

pose compatibility conditions between them and the differential operator at 9£2 for

7 = 0.

We shall now show, using the results of [2] that if we are content with error

estimates for time bounded away from zero, then the regularity demands for a 0(hr)

result reduce considerably.   In such a case, in order to derive the estimate for Qhun

- DPu at time t we shall only have to require strong regularity for a short time pre-

ceding t and the compatibility requirements at 9£2 x {7 = 0} disappear.  We shall

also have more freedom in the choice of approximate initial-values vn ; we need to re-

quire only that v - vh = 0(hr) in some negative norm and that vn is bounded in L2.

As examples, we notice

(5.8) Ik - P0v\\_r + hr\\P0v\\ < Chr\\v\\,

and (cf. [2]),

\\v-Pxv\\_,r_2) + hr\\Pxv\\<Chr\\v\\2.

We begin by recalling the relevant result from [2], the following global error

estimate for the homgeneous equation [2, Theorem 3.3].

Lemma 5.3. Assume that (i) and (ii) hold and that u and uh are the solutions

of (5.1) and (5.2) with / = 0.   Then for I, p nonnegative and arbitrary we have for

eh=uh ~ u (with Dt = 3/3i),

\\Dlteh(t)\\ < C(hrt-r'2-l\\vh\\ + t-Pl2-'\\vh - v\\_p).

We are now in a position to show the following global in space, interior in time

error estimate, which is what is needed for application of Theorem 4.2.
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Theorem 5.2.  Assume that (i) and (ii) hold and let u and un be the solutions

o/(5.1) and (5.2), respectively, with vn arbitrary.   Then with q = 2r in (4.8), we have

for arbitrary p, 0 < 5 < t < T, and eh~uh- u,

Rai(t-8l2,t;eh)< (f|_8/a(|feja + h2'\\ehjñ drf

(5-9) < Ch'UvJ + Hull + h~r\\v - vh\\_p

+ (ff_6(NI2+ 11/11 Vr)'/2 + /¡,II/II</t}.

Proof.   We shall consider a fixed t = r, > 6.   Let <p G C°° be such that ip(t)

= 1 for t > - 3S/4, ip(f) = 0 for t < - 5.  Set </>,(/■) = <¿<f - 7,). We now write

u = ux + u2 + u3 where u, = 77i/>, and 772 is the solution of the homogeneous equa-

tion,

(5.10) Lu2=0    for    7 > 0,772(0) = u.

Since

(5.11) Lux=fx=frx W,    for    i>0,77,(0) = 0,

it follows that 77 3 satisfies

(5.12) ¿i73 =/3 =/(l -<px)-u<p\    for    t > 0, i73(0) = 0.

We notice that fx and /3 vanish for t < 7, - 5 and t>tx~ 36/4, respectively.

Let 77- h, j = 1,2, 3, be the semidiscrete approximations of problems (5.11),

(5.10), (5.12) with uxhi0) = u3hi0) = 0, u2jft(0) = u, and set e/A = «/ft - u¡.

Since   by   linearity    en = un - u = 2;- e¡ h    it   hence    suffices   to   estimate

Rsi i^i ~s/2.ii;«/fc)f/= 1,2, 3, by the right-hand side of (5.9) (with í replaced by tx).

Consider first 77j.  We have by Theorem 5.1, using the definitions of ux and fx,

Rni(tx * 512, tx; ex,h)2 <Rnx(tx; ex<h)2 < cfo\\\ux\\2 + \\fx\\2)dr

<cfttii_s(\\u\\2+\\f\\2)dr.

For 772, the solution of the homogeneous equation, we have by Lemma 5.3,

(5.13) \\D'te2ih(tx)\\<C{hr\\vh\\ + \\v-vh\\_p}   fox   l>0,

so that in particular

Äni(f, -8l2,tx;e2>h)<C{hr\\vh\\ + \\v-vh\\_p}.

For the purpose of dealing with u3, finally, we introduce the solution operators

E(t) and Eh(t) of the initial-value problems for the homogeneous exact and semidis-
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crete equations.   Setting Fh(t) = Eh(t)P0 - E(t), we notice that Lemma 5.3 implies,

by choosing vh = P0v (cf. (5.8)),

\\D\F„(t)v\\ < Chr\\v\\    for    t>8/4.

We observe now that by superposition we may write, for f > tx - 8/2,

ez,h(t) = i\Fh(t-r)f3(r) dr=ft~ *"*Fh(t - r)f3(r)dr

and also

D'te3th(t) = ft ~" '4D't Fh(t - r)f3(r) dr    for    / > 0,

so that for t > tx - 5/2,

\\Dtíe3>h(t)\\<Cfirít01~3S'4W\dT

(5.14) f f .
< Chrft(U/H + ||M||)rfT < Chr(\\v\\ + i[l \\f\\dr).

Here the last step follows by the fact that

^/||77||2   +A(u,u) = (f,u)<\\f\\  Hull
2 dt

implies

^-llwll < 11/11;
dt

and hence for t > 0,

||7/(i)||< NI + P U/H dr.
J o

It follows in particular from (5.14) that

Rn¡(tx - 812, tx;e3A) < C^lkll + ft ||/|| dr},

which completes the proof of the theorem.

For the purpose of deriving finally the error estimates for time derivatives

needed for application of Theorem 4.3 we shall first show the following error bound

for the nonhomogeneous equation.

Lemma 5.5.   Assume that (i) and (ii) hold and that u and uh are the solutions

of the problems (5.1) and (5.2). Let vh=Pxv = Th Av.   Then for eh = uh - u,

IMOIKCÄ^IKOII + i/jM2,,,^,^)^)^}.

Proof     Setting 6 = eh - p, we have by the error equation (cf. Lemma 5.1),

Thet + e = - ThPt.
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After multiplication by dt we obtain by Schwarz's inequality

(Thet, et) + LJL lien2 = - (7>f, et) < l-(ThPt, Pt) + \(Thet, et),

so that after integration, since 0(0) = 0,

mt)\\2<St0(T„pt,Pt)dT.

As in (5.4), (5.3) we obtain, noticing that the elliptic projection commutes with time-

differentiation,

(TnPt,pt)<c{\\pt\\ix +h2\\Pt\\2} <c/72niMfu2max(r_,,2),

implying

l|o(0ll2<C772''/Óll"fl|2nax(r-l,2)^-

This proves the lemma since

||p(/)|| < Ot'||M(0llr-

As a result, we may now establish the following global in space, interior in time

error estimates for time derivatives.

Theorem 5.3.  Assume that (i) and (ii) hold and let u and un be the solutions

of (5.1) and (5.2), respectively, with vh arbitrary.   Then we have for arbitrary nonnega-

tive I, p, 0 < 5 < t < T, and eh = un — u,

\\D'teh(t)\\ < CVJuigi + Hull + h~r\\v - vh\\_p + WD1!«(Oil

+ (f r_6   Ellör"ll2max(r_l,2)^)1/2 +/1»/"^-
/=0 '

Proof.     Consider again a fixed t = tx> 8 and decompose the problem into

problems (5.11), (5.10) and (5.12) as in the proof of Theorem 5.2.  The latter two

problems are treated exactly as before and we obtain by (5.13) and (5.14) for tx >

8>0,l>0,

\\Dlte2<h(tx)\\<C{hr\\vh\\ + \\v-vh\Lp},

and

\\Dlte3th(tx)\\<Chr(\\v\\ +ft\\f\\dr).

It remains to consider ux = uyx.  We notice then that for any /, Dltux and Dtux h

satisfy equations of the form (5.1) and (5.2), respectively, with Dltux h(0) = PxDl^ix(0)

= 0. We may, therefore, apply Lemma 5.4 to obtain

\\D'tex>h(tx)\\ <C/7^||D/fMl(f1)ll+(/o1lK+1"1||max(,_li2)c/r)'/2}

<CÄ',i||/)}M(r1)||+(/);       E  WD}u\\2m!¡x{r_xa)dryÁ\.
' x      /=o '

Together these estimates prove the theorem.
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Clearly, the estimate obtained by combination of Theorems 4.3 and 5.3 con-

sumes more global regularity in space than the estimate derived by Theorems 4.2

and 5.2.
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