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A "Sinc-Galerkin" Method of

Solution of Boundary Value Problems

By Frank Stenger**

Abstract.   This paper illustrates the application of a "Sinc-Galerkin" method to the

approximate solution of linear and nonlinear second order ordinary differential

equations, and to the approximate solution of some linear elliptic and parabolic

partial differential equations in the plane.   The method is based on approximating

functions and their derivatives by use of the Whittaker cardinal function.   The DE

is reduced to a system of algebraic equations via new accurate explicit approximations

of the inner products, the evaluation of which does not require any numerical

integration.   Using n function evaluations, the error in the final approximation

to the solution of the DE is 0(e~cn        ), where c is independent of n, and d

denotes the dimension of the region on which the DE is defined.   This rate of

convergence is optimal in the class of «-point methods which assume that the

solution is analytic in the interior of the interval, and which ignore possible

singularities of the solution at the endpoints of the interval.

1.  Introduction and Summary.  The function sinc(x) is defined on the real line

sin(7Tx)

by

(1.1) sinc(x)
TTX

The Whittaker cardinal function of an arbitrary function / is defined for any h > 0 by

G-2) Çif, h, x) =   £   f(kh)sinc |~* ~ kh 1,      h > 0,
k=—<*> L -I

whenever this series converges.

The approximation of/using a finite number of terms of (1.2) has been

extensively studied.   The paper [8] contains a review of the properties of C(f, h, x),

which were discovered by E. T. Whittaker [16], J. M. Whittaker [17], Hartly [5],

Nyquist [9] and Shannon [12].   In [13] new approximations are derived by means

of Cif, h, x), for interpolating, integrating and approximating the Fourier (over (-°°,

°°) only) and Hubert transforms over (-°°, °°), (0, °°) and (-1,1).   In [7] the function

C(f, h, x) is used to obtain formulas for approximating the derivatives of functions

over (-<», °°), (0, °°) and (-1, 1).

In the present paper we use the results of [13] for solving second order
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86 FRANK STENGER

ordinary and partial differential equation boundary value problems.   For purposes

of explanation of the procedure, we consider the following situation. Let d > 0,

let Vd denote the region {z = x + iy: \y | < d} in the complex plane and let 0 be a

conformai map of a simply-connected domain V onto Vd, such that 0(a) = — °° and

0(6) = °°, where a and b ( =£ a) are boundary points of V-  Let \p denote the inverse

of 0, set T = 0((-°°, °°)) and xk = \pikh), k = 0±l,±2, ..., where h > 0.

A
-a

(1.3)

Figure 1.1.   The domains V and Vd

We seek an approximate solution of the linear boundary value problem

KfXx) = f"(x) + P(x)f(x) + p(x)f(x) - a(x) = 0,    x G I\

fia) = fib) = 0,

on T.  To this end, we assume that p, v and a are analytic in V, and that (1.3) has a

unique solution / on V, which is analytic in V-  We furthermore assume that

(1.4)

(1.5)

(1.6)

(1.7)

and

(1.8)

JdV
0(Z)

<oo;

JbO        0'(z)
<

hv |   0'(z) |

J 0(0
0'(z)

dz\<°°;

\fix)\<Ce-a^x)l    onT,

where C and a axe positive constants, and where dV denotes the boundary of V■

Notice that the above assumptions allow/to have singularities at a and b.

We approximate /on T by

(1.9)

where

jV

f(x)=fN(x)=   £   fkS(k, h) o 0(x),
fc=-A'
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The general Galerkin method enables us to determine the fk = f(xk) by solving the

linear system of equations {LfN, Sik, h) ° 0) = 0, k = -N, -N + 1, . . . , N.  We

choose instead to obtain an approximate solution of the system

(1.11) iLif), Sik, h) ° 0) = 0,       k = -N,-N+l,...,N,

where the inner product in (1.11) is defined by

(L12) iu,v)=   (gix)uixMx)dx,

where g plays the role of a weight function.   For the case of second order problems,

it is convenient to take

1
(1.13) gix)

0'(x)

Let us use the notation

( 1    if / = *, 0 if/ = *,

(0   if/ ±k, \ (-\\k-j

(1.14)
rr2

5(2)

-2(-l)k~'

(k-j)2

(-If
k-j     '

if/-*;

if j¥=k.

if/**,

With this notation, we obtain the following approximate explicit expressions for the

inner products in (1.11):

(1.15)

fIs(x)v(x)S(k, h) ° 0(x)dx s h -jr* ;

c gkH
Jrg(x)p(x)f(x)S(k, h) o 0(x)dx ^h-^-fk;

frg(xUx)f (x)S(k, h) o 0(x)dx

0; >*- h/L/i\ 0;   5*/ +{yg)< h j'

r gkf'k
ig(x)f"(x)S(k, h) o 0(x)dx = h ——

j=-N      ( *7 '
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where g   = g(xk), etc. These explicit expressions make "collocation" and "Galerkin"

synonymous for this method.  The choice h = (nd/aN)V2 and g(x) = 1/0'(x) yields

0(Nl/'e-^'ndaN'> 2) accuracy for each of the approximations in (1.15).

Using (1.15) in (1.11), we obtain a linear system of equations for 2/V + 1

numbers fk.  The dominant matrix of the system is [&k2?] (see Eq. (2.47)).  Contrary

to the case of finite difference or finite element methods, which lead to sparse matrices,

the matrix [&kj] is a well-conditioned full symmetric negative definite matrix, with

condition number less than (N + I)2.

The resulting approximation fN in (1.9) satisfies

(1-16) |/(x) -fN(x)\ < C'N^2e-^daN^

for all x G V.  While 77-point finite difference or finite element methods converge at

the rate 0(n~p), where Pis usually 0 or 1, the rate of convergence (1.16) cannot be

improved [15].  That is, there is no basis {\p[N)}k=^N such that1 <l>N(x) =

2k=-_Nck\p(N\x) converges to /faster than the rate (1.16) for all problems of the

type (1.3) satisfying the above analyticity assumptions and the conditions (1.4)—(1.8).

For example, if a = 0, b = 1 in (1.3), it is convenient to take for V the region

(1-17) V= {z=x+iy: |arg[z/(l - z)] |< d}

(see Figure 2.1).  Then 0(z) = log[z/(l - z)], 0'(z) = z-1(l - z)~l and 0(w) =

Vt + lA tanh(w/2).  In this case xk = Vi + lA tanhikh/2), and T = i//((-°°, °°)) = (0, 1).

We could then use the above procedure to solve problems having regular singular points

at 0 and 1, such as

0-18)  /"--g^Tj* /'+   ^2+1    /-*"-'(l-x)"-2=0,      /(0)=/(l) = 0,
x(l -x) x2(l-x)2

or singular perturbation problems, such as

(1.19) er-T^/^T^.    /(0)=/d) = o.

For the problem (1.18) and (1.19) the condition (1.8) reduces to |/(x)| < Cxa(l - x)a

on (0, 1).  If e is small in (1.19), then it may be necessary to take a small in order to

satisfy this condition, resulting in a larger error (see (1.16)).

Nonlinear equations can similarly be handled.   For example, a term such as

Fix, fix), f'ix)) appearing in the equation L(f) = /" + F(x, f, /') = 0 is handled in

(1.11) via the formula

(1.20) L g(x)F\x, f(x), f'(x))S(k, h) ° 0(x) dx a hF(xk, fk, fk) ^- ,
(pk

and the third of (1.15) may now be used to replace f'k by a linear combination of

f-N' f-N+i' ■ ■ • 'JN-

1 We mention that classical finite difference methods or finite element methods are based

on achieving (locally or globally) exactness for polynomials of certain degree.   Such a method can

never converge faster than 0(n~  ) in the presence of singularities.   The basis functions of the

present method are not polynomials; rather, they are entire functions composed with conformai

maps.
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In Section 2 of the paper we derive the approximation formulas (1.15), along

with error bounds, we give a brief description of the matrices [djp] and [SJ2^] ; and

we give explicit derivations of (1.15) for the special intervals (0, 1), (—1, 1), (0, °°)

and (-°°, °°).  In Section 3 we illustrate the application of the previously derived

formulas to the approximate solution of the simple "model" problems/" = -2,f" =/-

/3/x2, ut = uxx and uxx + u     = 1, with appropriate boundary conditions. Typically, a

matrix of order 33 yields 4—5 decimal accuracy in all of these cases.  In Section 4 we
i/2

carry out an error analysis, proving the 0(e~cn   ) rate of convergence referred to above.

The approximate methods of [7], [13] have previously been effectively applied

to the approximate solution of integral equations via Galerkin-type methods in [2],

[10], [11].  In [6] an effective Galerkin-type method is derived in [13] to obtain an

approximate solution to the problem /" = f-f3/x2, /(0) = /(°°) = 0 via the

minimization of a certain nonlinear functional.  In all of these cases the error of an

approximate solution converges at the optimal rate, Oie~cn   ).

2.  Preliminaries and Fundamentals.  In this section we shall recall some known

properties [8] and derive some new properties of Whittaker's cardinal function, which

we shall require in this paper.

Definition 2.1. Let R denote the real line, C the complex plane, and let B(h)

denote the family of all functions defined on C that are entire, such that f EL (R)

and such that

(2.1) \f(z)\<CenWI",      z=x+iyEC,

for some constant C.  Set

(2.2) Si], h)ix) = sine p^-]

and

(2.3) «j? = S««/. D(*) = (£) "5<¿ D(x)\x=k.

In particular, we have

5<o)
°jk

ö/fc

1 if/=*,

0 if/#fc,

0 if/-*,

(2-4) l^T^J1      If/**

§(2) =

*-/

i       if/=*.

" -2(-l)*-/      ,u^
I    (k-j)2



90 FRANK STENGER

Theorem 2.2 [8]. LetfEBQi).  Then f(z) = C(f, h, z). Moreover,

(2.5) f(z) = f^/h g(t)eiztdt   for some g E L2 (- \, |);

(2.6) m=í_fRÚnc^ljf(t)dt.

(2.7) L\f(x)\2dx = h   ¿    \f(kh)\2;
R 7c=-°°

and the sequence {h~VlS(k, h)}°°k=_x is, therefore, a complete orthonormal sequence

in B(h);

(2.8) fEBih)=*f'EBih).

Theorem 2.3. Let djp be defined as in (2.3).  777t>77

(2.9) JR{sinc[^]}(n)sinc[^]dx=^-«5/(«),      77 = 0,1,2,....

Proof.   Let us set

(2.10) fit) = S(J,h)it)

and let us note that /G BQi).  By Eq. (2.8) it thus follows that /(n) G BQi), n =

0, 1, 2, ... .  Equation (2.9) thus follows by taking/= S(j, h)^ in (2.6), and noting

by (2.3) that

(2.11) S(n)(j, h)(kh) = h~nd^\

Definition 2.4.  Let d > 0, and let B(V'd) denote the family of all functions /

that are analytic in

(2.12) tld= {z=x+iy:\y\<d},

such that

rd

(2.13) j _d ¡fix + iy)\dy —► 0   asx-*±°°

and such that Nif, Vd) < °°, where

(2.14) N(ft Q'd) =  lim_ | fR \f(x + iy)\dx + fR |/(x - iy)\dx\.

Theorem  2.5 [13].  Let h and d be positive, let f E B(V'd), and let eif) be

defined by

(2.15) eif) (x) = fix) - C(f, h, x),      xER.
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Then,

e(f)(x)

(2.16)

Moreover,

(2.17)

sin(7rx//i)

2ni JR[(t-

f(t-id-)
x - /d)sin[(r - id)-n/h]

(t-x +
v+ *n_idt
id)sin[(t + id)*lh]\    ■

M

N(f. Vf)lle(0IL= sup    |e(/)(x)|<
x<=r 2nd sinn(nd/h)

Definition 2.6.  Let V be a simply-connected domain in the complex plane C,

and let V'd be defined as in (2.12).  Let 0 be a conformai map of V onto V'd, and let

0 = 0_1 denote the inverse map.  Let a = 0(-°°) and b = \p(°°) # a be boundary

points of V, and let us take

(2.18) r = {w E V : w = 0(x), -°°<x<°°}.

Let 5(f) denote the family of all functions that are analytic in V, such that for « real

/, ii(L + u)
\f(z)dz\ 0    as u

(2.19)

where

(2.20)

and such that

(2.21)
C^dV,CCt>

(Note that if/G B(V), then / ° 0 G B(P¿).)  Set

£ = 0y: -d<y<d},

N(f, V) =    lim inf      f  |/(z)(iz | < °°.

(2.22) xk = i¡/(kh),      k = 0,±l,±2,

and let g be a function which is analytic in V, which plays the role of a weight function

in the inner products, and whose properties we shall determine in the sequel.   Finally,

we set

(2.23) S¿z) = g(z) sine
|X*)-/*1 =g(z)S(j, h) o   0(z).

The following result was established in [7].

Theorem 2.7. Let m be a nonnegative integer, and let f<p'Ig-E B(V). Let there

exist positive constants a, C0 depending only on m, d and g, Cx depending only on m

and g, and C2 depending only on m, g and f such that

(2.24)

(2.25)

(2.26)

g(x)
< C7e~al^x)[   forallxET,

( d \n ( g(x)sin[7T0(x)//7])

\dx)   \    0(z)-0(x)     j

<Cxh~n   forallxET

< c0h-n for allxEV.zE bD

77 = 0,  1, .  .  . , 777.
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777e77 there exists a constant K depending only on m, d, a, g and f such that if h

M(a/V)] Vl, then

(2.27)
j=-N « VV

< KN(-n + 1)>2 exp[-(7rdcrA0,/2]

for all x EV, and for n -0,1, ... ,m.

Theorem  2.8 [13]. If fE B(V), then the identity2

(2.28)

tYy)        ~       f(xi)

_   SÍn[7T0(x)//7] l Az)dz

2m        JW   [0(z)-0(x)]sin[7T0(z)/Ä]

is valid for all x G f.  Moreover,

in<pjz)

(2.29)      frf(x)dx-h   £    T7
foj) 1 f  6XP |     A

;f^  *(*/)        2
J-

sgn Im 0(z)

sin
[ï*>]

/(z)dz.

The results of this theorem may be conveniently combined with those of the

formulas obtained above, to yield explicit approximate expressions for inner products.

The results of the following lemma are useful for bounding the error of these

approximate expressions.

Lemma 2.9. //|Im z| = d > 0 a77d if k is an integer, then

(2.30)
sinc[(z - kh)/h]

ún(nz/h)
<Cx(h, d)

2nd '

(2 31)       1 I (d/dz) {sine [(z - kh)/h] }\<c(h d)-d + (h/n)tanh(ndlh)

2 | sin(w/A) ~|       2   ' 2d2tanh(7Tc77/0

(2.32)    I
2

-£? {sinc[(z-*A)/A]}
dz

sin(n/h)

c (f¡ \j2hln) + n2d/h]dtanhjnd/h) + 2d   .

3   ' 2c73tanh(7rd//7)

(2-33) | sin(7Tz//7)| > sinhind/h),      I cosinz/h)\ < cosh(7rd/ft).

Proof.   We shall only prove (2.31), since the proofs of the remaining cases are

similar, and we omit them.   We have

w=d_ = cos[7r(z - kh)/h]     h sin[njz - kh)/h]

& z-kh «      iz-kh)2

Here and henceforth j^f(z)dz is defined by lim inf^gp ccçJcf(z)dz, for any feB(P).
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Now if |Im z| = d, then \z - kh\> d, |cos[7r(z - kh)] | < cosh(nd/h) and |sin(7rz/7î)| >

sinhind/h); hence

w

J ún(nz/h)
<

d tanhind/h)       ^d2
+ -Shr = c2ih, d).

Theorem 2.10. Let 8Jp be defined as in (2.3) and (2.4), let Cfi, d) be

defined as in Lemma 2.9, let xk be defined as in (2.22), Sk as in (2.23), set Fk =

E(xk) for an arbitrary function F, and let r and f be functions which are analytic in V-

(a) LetrfgEB(V).  Then

(2.34) frr(x)f(x)Sk(x)dx-h^-± <Cx(h,d)N(rfg,V)e-ndlh.

(b) Let [rfglfy] (x) —* 0 as x —► a and as x —► b along T, and let (rg)'fand

rg<t>'fEB(V).  Then

(2.35)
/,

(rg)'. §(D

,rix)f'ix)Skix)dx + h £   fj V-f- **? + (*>/ -f
l=-

< [Cxih, d)Nifirg)', V) + C2ih, d)Nifrg<¡>', V)]e-"d'h.

(c) Let \frgl4>] (x), \frg<j>70] (x) a77d \f'rg/(p] (x) —► 0 as x —> a and as

b along T, and let f(rg)", f[2(rg)'<j> + rg<p"] and frg(4>')2 E BiV).  Then

j  r(x)f"(x)Sk(x)dx

h z /, ^-88} +
(*y„o>. ^gy^. + irg¥i] »g>        .*g>

(2.36)
7=-°

f+<^;#

[Cx(h, d)N(firg)", V) + C2ih, d)Nif{2irg)'4>' + rg<¡>"}, V)

+ C3ih, d)N(frgi4>')2, V)] ■ e-ndl".

Proof.   We shall only prove the (b)-part of Theorem 2.9, since the proofs of the

(a)- and (c)-parts are similar.

We find, upon integration by parts, that

Jrr(x)/'(x)Sfc(x)dx = rix)fix)Skix) | J

(2.37)

-  U(x)[r(x)S'k(x) + r'(x)Sk(x)] dx.

The first term on the right-hand side vanishes, by assumption of the (b)-part of the
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theorem, while by expansion of the second part of (2.37), we have

Lr(x)f'(x)Sk(x)dx

(2.38)
= - frf(x)[(rg)'(x)S(k, h) ° 0(x) + (rg4>')(x)S'(k, h) ° 0(x)] dx.

Hence by replacing/in (2.29) by the integrand on the right-hand side of (2.38), and

noting that if z G bV, then |Im 0(z)| = d and

expiy 0(z)sgn Im 0(z)~]   = e'1"1'"

we find by (2.29), Lemma 2.9 and Theorem 2.3, that

r °°        (freí- 5(1)i
frrix)f'ix)Skix)dx +h   Z   fjfP- 6g> + irg)j "f

<e~ndlHkv [C^ Wte)']00l + C2ih, d)\ifrg4>')iz)\] \dz\,

which is just (2.35).

Theorem 2.11. Let N be a positive integer, a a positive constant, and take

h = [ndliaN)]v\

(a)   Under the assumptions of Theorem 2.9(a),

(2.39) Lrix)fix)Skix)dx-hf-^- <^1   g-ÍTrdaiV)1''N*

where Kx depends only on f r, g, d and a;

(b) // I [r/g](x)| <K2 exp[-a|0(x)|] on T, then under the assumptions of

Theorem 2.9(b),

r N      ( (rg)' ' S*1.*]

Jr^)/'(x)5fc(x)dx + h   £   //-T1«^ + for), -f |
(2.40) j=-N

< K2e'^daN)Vl,      k = -N,-N+l,...,N,

where K2 depends only on f r, g, d and a;

(c) // \f{2(rg)' + rgf l<t>'}] (x) and [rgf<p'] (x) are bounded by K3 exp[-a|0(x)|]

on T, then under the assumptions of Theorem 2.9(c),

Lrix)f"ix)Skix)d>

(2-41)      _h  ¿   /,j(<^ |   M*P/'+<*W/
j=-N # *

ô(2))

Jr+irg)!4i-r

< K^N1Ae-indaN)   ,      k = -N, -N + 1, . . . , tV,

wAere /f3 depends only on f r, g, d and a.
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Proof.   The proof is similar to that of Theorem 8.1 of [13], and we omit it.

The results of Theorem 2.10 are especially suited to the solution of linear

differential equations via a Galerkin method, for which the functions [Sklg] are the

approximating basis functions.  We remark that we could have obtained alternate

expressions of fr7-(x)/^(x),Sk(x)dx, by combining Eqs. (2.29) and (2.27), i.e., if

rgfin) E BiV), then by Eq. (2.29)

(2.42)

C        a ^                     hrkgkf(n)(xk)
Lr(x)f<"\x)Sk(x)dx - -^-*_

— «— 4>k

< cxih, d)Nirgf{n\ vy-*d,h;

and we could now use (2.29) to approximate /("*(xfc) on T.   However, the resulting

expressions are usually not as accurate as those of Theorem 2.10. Nevertheless the pair of

equations (2.27) and (2.29) do form a powerful combination for purposes of solving

nonlinear equations.  For example, if gG E B(V), where G = G(x, f(x),f'(x)), then

(2.43)

f                    ,                            Gixk,fixk),f'ixk))
}  G(x, fix), f'ix))Skix)dx - h-—J7^-— «C

*'(**)
xk)

<Cx(h,d)N(G, V)e-"d/h;

if the conditions of Theorem 2.7 are satisfied for m = 1, we may now replace f(xk) in

(2.43) by the approximation

(2.44) A**) = z£ h
j=-N bl     LSi

üm
jr'5(0) +2 6'"-^gi°jk   ^gjfj  n

given by Eq. (2.27).

The approximating expressions of Theorem 2.10 may be more compactly   ex-

pressed by means of matrices. To this end, let 777 = 2/V + 1, and let Sm and fm be column

vectors defined by

(2.45) Sm(*) =

/   S-7V(*)\

S_N+l(x)

\ SN(x)    I

M
fm =

-N+l

II
Corresponding to a function u = u(x), let Am(u) denote a diagonal matrix, whose

diagonal elements are u(x_N), u(x_N+x), ■ ■ ■ , u(xN) and whose off-diagonal

elements are zero.   Let I*^ and I^) denote the matrices
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(2.46)   4»

r o

-i

-i

0

1

1

i
2

-1

0

1

3

A"2

1_ .
2/V

1
2/V- 1

1

2N-2

1

L 2/V        2tV- 1   27V-2       2N - 3

Wjk

3

(2.47) 42) =

-2      -,

IT
3

(2/V)2

2

(2/V-l)2

I2
3

= m

I-    (2/V)2      (2/V-l)2 (2/V-2)2

With this notation Eqs. (2.39), (2.40) and (2.41) take the approximating form

Jrr(x)/(x)Sm(x)dx = hAm (Jfym,

(2.48)

Jr7-(x)/'(x)Sm(x)dx = -77[Aw(^')    +il(l)AJ^  ,m>

Jrr(x)/'(x)Sm(x)dx

= * [Am (-^) + ¿41}Am(2fe)' + **"/*') 4 i2 lL2)AmM')

By [4, PP- 67—721], the matrix I*}) is simply related to a Toeplitz-type matrix,

by considering the Fourier series expansion of-7'í on (-77, 7r).  The matrix iffl is a

Toeplitz matrix, obtainable by considering the Fourier series expansion of -r2 on

[-77, ?r].  Thus, [4, p. 65], the eigenvalues of 4° are i\^>, k =-N,-N + I, . . . ,

N, where -n <\k1^ <n, while the eigenvalues of l£p are ~~Kk2\ k = -N, -N + 1,

...,N, where 0 < Xk2) < tt2.  Indeed, let 0 < X<$ < ^2)n+i < • • • < X^2> < rr2.

Then by [4, pp. 64 and 67], since x2 > 2 - 2 cos x on [-77, rr], it follows that

A(_27v- > 2 - 2 cos[7r/(2/V + 2)] =4 sin2 [nl(4N + 4)].  That is, I A^Wj2^ I, the

condition number of 4> is bounded by 7r2/{4 sin2 [n/(4N + 4)] } ~ (N + l)2.  Sum-

ming up, we have
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Theorem 2.12.  (a)  4^ /s a skew-symmetric matrix having determinant zero.

The eigenvalues i\kl * of 4 * satisfy the inequality - n < Xfc* ) < tt, k = -N, -N +

1, . . . ,N.  (b)  4^ is a negative definite matrix having eigenvalues -\k2\ where

4 sin2 [tt/(4/V + 4)] < Afc2> < tt2 .

We close this section with a derivation of the formulas of Theorem 2.10, for the

case of the important intervals [0, 1], [-1, 1], [0, °°], and [-<», °°].

Example 1.  T = [0,  1 ].  In this case

(2.49)

0(z) = log
1 -z

0'(z) =
1

z(l-z) '

v={'-U(-rr)\<4

Figure 2.1.   V of Example 1

Let us assume that the coefficients r of a second order equation are analytic in V, and

that the same is true of r' and r".  It is then convenient to take

(2.50) g(x)
1

0'(x)
x(l-x).

The conditions of Theorem 2.10 are satisfied if/is analytic and bounded on V, and

if on [0, 1], |/(x)| < C|x(l -x)|a, where C and a axe positive constants. If/does

not vanish at 0 and 1, we replace /by F in the differential equation, where

(2.51) F(x) = fix) - ail -x)-bx

and where a = /(0), b = fil).  The functions Sk axe

(2.52) {Sk(x)}%=-N = Ml - x)S(k, h) o 0(x)}£=_/v.

To the basis functions {Sk/g} it may be necessary to adjoin 1 - x if a is unknown,

and x if b is unknown.  Differentiating g and 0', we get

1 -2x
(2.53) g'(x) = 1 - 2x,    g\x) = -2,    0"(x) = -

x2(l -x)2

Hence,
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irg)ix)=xil -x)rix); ^j(x)=x2(l -x)2r(x),

(^j-J ix) = x(l -x)[x(l -x)r'ix) + (1 - 2xM*)],

( %)W' ) w = j^, _ xyw + (1 _ &>(r)i

(i**')(x) = r(x).

Hence, we get the approximations (2.48), in which xk = Yi + %tanh(Ä:ft/2).

Example 2.  T = [-1, 1].  In this case

'l+z\      .,., 2
0(Z) = log

(2.55)
-z

1 +z

0'(z)
1-z2'

H«!l-(£i)H
Under assumptions on r similar to those of Example 1, we take

(2.56) g(x) =
1 1

(I-*2).0'(x)       2

The conditions of Theorems 2.9 and 2.10 are satisfied if /is analytic and bounded in

V, and if on (-1, 1), |/(x)| < C(l - x2)a, where C and a > 0.  If / does not vanish

on -1 and 1, we set / = F + p in the differential equation, where

(2.57)
Í   ^ 1  -X     ,    ,    1   +XP(x) = a -y- + b ——

and where a = /(- 1), b = f(l).  The functions Sk are

(2.58) P*«}*—* = {5O - x2)S(k, h) ° 0(*)}"=_JV;

to {5fc/g} it may be necessary to adjoin (1 - x)/2 and/or (1 + x)/2 if a and/or b axe

unknown.  Differentiating g and 0 , we get

(2.59) g\x) = -x,   g\x) = -l,   4¡\x)=x(~-\,

so that

Figure 2.2.  V of Example 2
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(2.60)

(rg)(x) = ¿(1 - x2)r(x);    (|-)(x) = f^-^)2'^),

(f>> - (t*) V» - *o - *!>'w - (iii> w.

(2(iy)' + rgfl<p')(x) = (1 -xV(x) -xt<x),

fe0')(x) = K*).

Hence, with xk = tanh(fc/V2), the approximations of Theorem 2.10 take the form

(2.48).
Example 3.  The case T = [0, °°].  In this case

(2.61) 0(z) = log z,     0'(z) = -,     V = {z : |arg z |< d}.

Suppose that the coefficients t- are analytic in V.  If on V,

\fiz)\<C\zF/il + \z\)2a,

where C, a axe positive then it is convenient to take giz) = z/(l + z)2, in order that

the conditions of Theorems 2.9 and 2.10 are satisfied.  However, if |/(z)| <

C|z|°7(l + \z\)2 + 0i in V, where Canda are positive, then it is possible to choose a

simpler form for g, and Skix), namely

1
(2.62) g(x) = x;      Sk(x) = g(x)S(k, h) o 0(x).

In this latter case

(2.63)

Figure 2.3. V of Example 3

irg)ix) = xrix);   ffl (x)=x2r(x),

(-^) (x) = xV(x) + xr(x);    (^')(*) = x2r"(x) + 2x/(x),

(2(rg)' + 7-£0"/0')(x) = 2xr'(x) + r(x),

(rg4>')(x) = r(x).
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The approximations now take the form (2.48), in which xk = e    .

If/is merely bounded on V, and if d = lim- _00oc2/'(x), then we replace /by

Fin the differential equation, where

(2.64)

where

(2.65)

xb
/(*) = ̂ ) + TT7+TTx- +

xc

(1 + x)2

a = f(0),   b = /(°°),   c = b-a-d.

If the limit lim,x_+„yK2f'ijc) does not exist, it may be better to take g(x) = x/(l + x)

or g{x) = x/(l + x)2, depending upon the problem.

Example 4.  The case T = [0, °°].   For some differential equation problems over

[0, °°] it may not be possible to prove that the solution is analytic in a sector; rather

it may be possible to prove analyticity only in the strip

V = {z : larg sinh z I < d} (see Figure 2.4),   d < tt/2.

In this case it is convenient to take

w = 0(z) = log sinh z,

(2.66)

0'(z)=\/l +e-
2w

Best results are achieved for solutions / which are analytic in V and which satisfy

|/(x)| < Cxae-ax on [0, °°], where cv > 0.  In this case

g(x) = ~Z
1

0(X) v/T+ e
■ 2w

(2.67)

Sk(x)=g(x)S(k,h)o<l>ix),

and the solution is approximated as follows:

N

(2.68)
/(*)-   Z   fkSik, h) ° fa),

k=-N

where fk s /(xk) and xk = logk?*" + \/l + e2kh].

Figure 2.4.   V of Example 4
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Then

(rg)(x)

VÍ
J-r(x);    (f)(x) =-l-^Z-r(x),
+ e-2w V0 / l + e~2w

0'

-2w

^ W = —l— r'(X) +-^-rTTT, r(x),
1 +e -2w (1 +e-2w)3/2

(2.69)    /   (rg)"

1 +e

a, .v  . 2e
r (x) +

-2w

-2w

2e-2w

(l+e-2w)3/2 (l+e-2w) 2w^2

(2(/?)' + rgfl4>')(x) =
,, .   .       e-2w

Vl +e-2w
r'(x) +

1 +e -2w
r(x),

(rg<p')(x) = r(x),

in which we may substitute xk for x and kh for w.

If / is bounded but does not vanish at 0 and/or «, we can replace / by F in the

differential equations, where

(2.70) F(x) = f(x) ~f(0)e-x -/(~)(1 - e~x).

Example 5.  The case T = [- °°, °°].  In this case

(2.71) <Kz) = z,    0'(z)=l,

TWp

D

Figure 2.5.  V of Example 5

and V = Vd (see Eq. (2.12)).  If the coefficients r of the differential equation are

analytic in V'd, and if fEB(V'), we simply take

(2.72) g(x) = 1,    {Sk(x)lN=_N = {S(k, h)(x)}^_ N

in order that the conditions of Theorem 2.9 become satisfied, and provided that /

vanishes at ±°°. The conditions of Theorem 2.10 also become satisfied if l/(x)| <

Ce-"1*1 on T.  Then xk = kh, and
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irg)ix) = rix),    (^p)ix) = rix),    (^)(*) = r\x),

(^f) (x) = r"<*>'    (2(,y)' + **"/*'X*) = >'(*)>

(rg<fi')(x) = r(x).

The approximating equations again take the form (2.48).

If / does not vanish at ± °°, we replace / by F, where

(2.74) F(x) = fix) - ^x  l+ e_cx [<?-"/(-") + fxf(~)]

and where 0 < c < nli2d).

3. Examples of Applications. In this section we shall illustrate the application

of the formulas developed in Section 2, on the solution of some simple ordinary and

partial differential equations.

Example 1.  Consider the simple problem

(3.1) fxx(x) = -2,      0<x<l;     /(0)=/(l) = 0.

This has the solution f(x) = x(l - x).   By taking r(x) = 1 in (2.54) and combining

with (2.48), we arrive at the system of equations

h\2Am(x(l-x)) + \ 4>Am(l -2x) +^242)]fm

(3.2) L «        J

= -2/.Am(x2(l-x)2)e,

where e = (1, 1.1) , T denoting the transpose.  Solving this system for the

case N = 16, h = .75/N>/2, xk = xh + 1/itanh(x/!7/2),  we get an approximate solution

/(*)=    Z   fkS(k,h)°<p(x)      (0(x) = log[x/(l-x)]),
fc=-16

which is accurate to 5 decimals on [0, 1].  Similar accuracy obtains if the -2 in

(3.1) is replaced by - 2xa_2(l - x^-2, a, ß > 0.

Example 2. f" =/-/3/x3,/(0) =/(°°) = 0.  This problem was solved by

different procedures in [1] and [6].   By taking x   = ekh and combining (2.63) and

(2.48), we get the approximating system

(3-3) [4° +  |42)]fm =*Am(x2)[fm -ej,

where em denotes the vector [xZNflN, xZN+1 /Ítv+i« ■ • ■ 'xÑ2fN¡T-  The solution

of (3.3) involves the solution of a system of nonlinear equations.  By taking h =

102

(2.73)
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.5/N , N = 16 we get an approximate solution

16

/(*)-    Z    fkS(k'h)°4Ax)      (0(x) = logx)
fc=-16

which is accurate to 5 decimals on [0, °°].

Example 3.

uxx=uv   0<x<l,t>0,

(3.4)
u(x, 0) = sin 7TX, 77(0, t) = 77(1, t) = 0.

In order to get zero boundary conditions, we set

(3.5) u = v + sininx)e~4t.

This yields the problem

Ívxx -vt = (n2 - 4)sin(7rx)e-4f,      0 < x < 1, r > 0,

l<x, 0) = 0,   v(0,t) = v(l,t) = 0.

We solve this by taking our approximating basis functions to be

(3.7)

Sk(x) = x(l - x)S(k, h) o 0(x),     0(x) = log[x/(l -x)],

S ft) = tSQ, s) o 0*(r),   0*(í) = logí.

103

The problem (3.6) may now readily be reduced to a matrix problem, by proceeding

as for (3.2) above.   Setting

r ■-N,N -N.-N+l

(3.8) V =

V-N+l,-N V-N+l,-N+l

VN,-N VN,-N+l

-NN

-N+1,N

UNN

(3.9)     B=- 2hkmixil-x)) + l^kmil-2x)+ll^
1 x1*   ukh

ck=- + -tanhY

The solution /satisfies f(x) ~ Ae~x as x   -►  », and consequently, it may be necessary,

on some computers, to replace £_jy by £_^r, where M « N, in order to avoid underflow.   The

method of Example 4, Section 2 avoids this difficulty and produces a more accurate solution to

this problem.
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(3.10)

(3.11)

(3.12)
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c = Am(o[<0) - 41}]   ai0) =unit matrix> h =eks)'

D = hXm(x2 (1 - x)2)       ixk = K + V2 tanhikh/2)),

E = sAm(t2)       itk = ek%

(3.13)  F

where

F-N.-N F-N.-N+l

F-n+i,-n      E_N+lt_N + 1

-N,N

-N+1,N

' N,-N N.-N+l NN

-It,
Fk, = in2 - 4)sin(7rxfc)e  "'',

we arrive at the matrix system

(3.14) D1BV + VCE1 = F.

Equation (3.14) may be solved by diagonalizing D_IB and CE-1.  If X_Ar,

A_jv+ t> • • • • Aiv an(l V-N' V-N-r i» • • • > Mjv denote the eigenvalues of D~ 'B and

and CE-1, respectively, obtained by taking X_1D_1BX and ZCE_1Z_1 via e.g. the

method of Golub and Reinsch [3], and if G = \gkl] = X-1FZ-1, Y = [ykl] =

X1 VZ1 then ykI = gkll(kk + p,), and V = XYZ.

By taking h = .75//v'/2,/V = .5//Vy2, tV = 16, we get an approximation

16

uix, t) s e-4fsin /ix +     £     vklSik, h) ° 0(x)5(/, h) ° 0*(i),
7c,;=-16

which is accurate to 4 decimals on [0, 1]  x [0, °°] .4

Example 4.

(3.15)

"^+"w = -l'   (x,y)es= [0,1]  x [0,1],jíjí yy

u = 0    on bS.

Letting B and D be defined as in (3.9) and (3.11) we now get the approximating

matrix system

(3.16) D-'BU + U(D1B)r = -H,

where   U = [ukl], H = [hkI], hkl = 1.   This may now be readily solved via the

The choice of S¡(t) given in Example 4 of Section 2 would have  yielded  5 decimal

accuracy.



A "SINC-GALERKIN" METHOD OF SOLUTION 105

diagonalization of D_1B.  By taking N = 16, h = JSjN1'* we get an approximate

solution

16

u(x, y)=     Yi     ukis&' h) ° <Kx)S(l, h) ° 0(y),
fc,7=-16

which is accurate to 5 decimals on 5.

4.   Error Analysis.   For sake of simplicity, we shall restrict ourselves to the

simpler case of the second order problem

(4.1) 77" + f(x, u) = 0,      w(0) = 77(1) = 0.

The analysis for the case of other ordinary or partial differential equations is somewhat

more complicated, but may be carried out similarly.

Throughout this section a, Cv C2, . . . ,Cl6 denote positive constants, and

h = [ndl(aN)l/2].

In the notation of the previous sections, we take 0(z) = log[z/(l - z)], and we

take the domain of analyticity to be V = {z : |arg[z/(l - z)] | < d}.  We shall assume

that (4.1) has a (locally) unique solution u0 which is analytic and bounded in V and

which satisfies the inequality

(4.2) \u0(x)\<Cxxa(l-x)a,      0<jc<1.

Definition 4.1.  Let M(d, a) denote the family of all functions v that are

analytic in V, such that

i<0) = v(l) = 0,

(4.3) { gv" E B(V),    \g(x)v"(x)\ < C2xa-! (1 - x)a~1    on (0, 1),

73Xa-1(l-x)a-1

where

(4.4) g(x)=x(l -x).

We shall also assume that the solution of the Fréchet derivative problem

(4.5) 0"(x) + fu(x, u(x))6(x) = w(x),   9(0) = 0(1) = 0,

satisfies

(4.6) lÖWKQM-'wll

for all u E M(d, a) such that ||u - 770|| < e, where ||-|| is defined by

(4.7) 11/11=    sup     |/(x)|,
*e(o,i)
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where

(4.8) (A-lf)(x) = -foG(x, t)f(t)dt,

and where for any x G [0, 1 ],

f(l-x)r   if0<7<x,

(4.9) G(X' f> -

(x(l-i)    if JC < Í < 1.

Moreover, we shall assume that if ||í7 - «0|| < e, then

(4.10) nu-7a«(0)}ii<c5.

Let us assume that we have found an approximate solution

(4-11) 77m(x)=     £     UkSik, h) ° 0(x) (777 = 2^+1)
k=-N

by the method of the previous sections, and let us set

(4.12) Öm="m-"o-

Then

(4.13) elix) + fuix, « (x))0m(x) = u'^ix) + fix, umix))

for some u between u0 and um; and therefore, by (4.5) and (4.6),

(4.14) löm(x)| < C4 \\um +A~lf(; um)\\.

Now by Theorem 2.1, we find, by taking Sk(x) = g(x)Sik, h) ° <¡Ax), xk =

lâ + fttanh(khl2), that

(4.15) fo [v"rx) + f(Xt v(x))]skix)dx ~ h j^ [v"ixk) + fixk, vixk))]

and

jV(x)Sfc(x)dx

OÍ1?
= h

(4.16)
i */> [t§ *8} + {2^+^/)*>/)/0'(*)> *-f-

+ g(x/)0'(x/)^-J

in which the error of either term on the right-hand side of (4.15) is bounded by

C6N-'/2e-^daN^A, and the error of the right-hand side of (4.16) is bounded by

C1N1/le-^7"iaN^   .  By our process of solution, the numbers uk in (4.11) are deter-
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mined such that

N

»  Z    «,
i=-N      lv/

(4.17)

8fW + i^¥Wb^+¥,b-f\

+ hg-{rfixk,uk) = 0,      k = -N,-N+ I,. . . ,N.
vk

Theorem 4.2. Let the numbers u   (k = -TV, -N + 1, . . . , N) be determined

by (4.17), and let umix) be defined as in (4.11).  77ze77

<4-18) Kix)-u0ix)\ < ClsN3>2e-(ndaN)*,      0 <x < 1,

where u0 is the solution of (4.1).

Proof.   In view of the errors in the approximations (4.15) and (4.16), the

solution of (4.17) is equivalent to finding a function v G M(d, a), such that

(4-19)    J(f) [v{Xk) +f(Xk' *x*))]      A  '      k = -N,-N+l,...,N,

v'/2

gfrfc)      r    ».
~AA7^~\ lv (
<t>(xk)

where v(xk) = uk, and where

(4.20) I ek\ < CsN^e-^ndaN^,      k = -N, -N + 1, . . . , N.

Since v E M(d, a), it follows, for any t G(0, 1), that

4£   [»/(f) + fit, Vit))]   -     Z      ̂ T I""**** + /(**' V(-X*))] Sik' ̂  ° *®
?l'J fc=-~   Wk>

(4.21)
_ sin[7T0(7)//7]   r    gjz)\v'Az) + fjz, vjz))]dz

2ni hv  [0(z)-0(r)]sin[7r0(z)M]

By multiplying (4.21) by 0'(r)2, taking A~' of each side, and noting that git)<t>'(t) = 1,

we get

v(x) + {A-if(t, vit))lx) -   ¿   ■%■ [v'l +/(xfc, vk)]A-1 {<¡>'it)2S(k, h) o 0(7)Xx)
*=-<*> vk

(4 221 (
,-,     ¿it)2sin[mKQIh 1   f     g(z)[u"(z)+/(z, t;(z))]dz

I 2m J3P    [0(z) - 0(7)] sin [tt0(z)//7]

Since 0'(f) = l/[f(l - t)], it follows, by taking t = [I + tanh(u/2)]/2, x =

[1 4- tanh(w/2)]/2, and using (4.8) and (4.9), that

/,(*, x) =A~l {0'(i)2sine[{0(f) - kh}lh]}(x)

(4.23) = - P      l-tanh(w/2) [a^
7 J--   l-tanh(u/2)  S     L   *    J

f-  1 + tanh(w/2)   .     Tw - tal  ,
"Jw  1 + tanh^ Mc pT~J ^
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On the interval [-<*>, w], the function [1 - tanh(»v/2)]/[l - tanh(i7/2)] increases

monotonically from [1 - tanh(w/2)] ¡2 to 1, while on [w, °°] the function

[1 + tanh(w/2)]/[l + tanh(u¡2)] decreases monotonically from 1 to [1 + tanh(w/2)]/2.

For this reason, it may be shown by a somewhat lengthy, but simple argument, that

(4.24) \I1(h,x)l<4nh.

Similarly, if x G [0, 1] and z G bV, we can show that

(4.25) \I2(h, x)| = , U\t)2m\ir^t)lh]
2777 [0(Z) -'0(7)]   t* <^

since Im 0(z) = ±d.

By means of (4.19), (4.22) and (4.25), Eq. (4.21) now yields

lu(x)+ {yr'/a »W)X*)I

(4.26)
<\Ix(h,x)\   £   -^ +!/,(/., x)|    Z    T-\W¿+f(xk,vk)]\

k=-N

Sk

\k\>N   "7

+ l/2(*. x)\ J
3P

g(z)\vn(z)+f(z,v(z))]

sin[n<p(z)/h]
dz

Using the bounds given in (4.20) and (4.24), we bound the first sum on the right-

hand side of (4.26) by C9N3l2e-("<io<N'>'Á; using (4.3) and (4.24), and recalling that

xk = lA + 1atanh(kh¡2), we bound the second sum on the right-hand side of (4.26)

by Cxoe-^daNS>Vl; and using (4.25) and the fact that |sin[7T0(z)//7] | > sinned/A] if

z G bV, we bound the integral term on the right-hand side of (4.24) by

\v(x) + {A~lf(t, v(t)))(x) | < CX2N3'2e-("daNï/2.

Hence, for all x G [0, 1],

(4.27) W*) + W-'/fc v(t))}(x)\ < Cx2N3/2e-(«d«NïA.

Since v E M(d, a), it follows from the first and second of (4.3) that

(4.28) |u(x)| < Cx3xa(l -xf,      0 <x < 1.

Furthermore, since v GM(d, a), and since um and v coincide at x_N, x_N+x, . . . ,

xN, it follows that [13, Theorem 8.2] for all x G [0, 1],

(4.29) \um(x) - v(x)\ < C147VJ/2e-(,rí,aiV) \

In view of (4.5), (4.6) and (4.10), it now follows that for all x G [0, 1],
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\umix)-{A-1fit,umit))}ix)\

(4.30)
< I vix) + {A-1 fit, vit))Kx)\ + C5 \umix) - vix)\.

By (4.14), (4.27), (4.29) and (4.30), it thus follows that for all x E [0, 1]

(4.31) I *«(*)! = \umix)-u0ix)\<CX5N3'2e-^da^V\

This completes the proof of Theorem 4.2.

Similarly, it may be shown that when using 77 = (2/V + l)2 points to obtain an

approximate solution of a partial differential equation, such as (3.15), the error is

bounded by Cx6N3l2e-yNV2 < 5Cx6n3t*e-'i"/'.  Indeed, for the case of (3.15), we

may take Cx 6 = 1 and 7 = 7r2.
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