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Inverse Linear Multistep Methods for the

Numerical Solution of Initial Value Problems

of Ordinary Differential Equations

By Peter Alfeld

Abstract.   The well-known explicit linear multistep methods for the numerical solution

of ordinary differential equations advance the numerical solution from xn+k_x to

xn+k ky comPut'ng some numerical approximation from back values and then evaluat-

ing the problem defining function to obtain an approximation of the derivative.   In

this paper similar methods are proposed that first compute an approximation to the

derivative and then compute an approximation to the exact solution, either by evaluat-

ing a suitable function, or by solving a nonlinear system of equations.   The methods

can be applied to initial value problems where the exact solution is explicitly given in

terms of the derivative.   They can also be applied in the context of the CDS technique

for certain stiff initial value problems of ordinary differential equations, introduced in

[1 ] and [2].   Local accuracy and stability of the methods are defined and investigated,

and specific methods, containing free parameters, are given.

The methods are not convergent, but they yield very good numerical results if

applied to the type of problem they are designed for.   Their major advantage is that

they significantly reduce the amount of implicitness necessary in the numerical solution

of certain problems.

1.   Introduction.   Consider the initial value problem (IVP)

(1.1) F(x, y, y') = 0;   y(a) = V;   y, F E Rm ;    x e [a, b].

Special cases of (1.1) are

(I-2) y = f(x, y);   y(a) = r,;   y,fERm;    xE [a, b],

and

(1.3) y = g(x, y');   y\a) = co;   y, g E Rm;    x G [a, b].

An example for a physical problem, arising naturally in the theory of viscoelasticity,

that gives rise to an initial value problem of the form (1.3) is described in [2].

Sometimes (1.2) can be transformed into (1.3), e.g. in the case that

f(x, y) = \y;   X G R;   A # 0,

where the corresponding problem (1.3) is given by

g(x, y') = A~V;    co = \_1t?.
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On the other hand, the simple integration problem defined by

f(x, y) = p(x)

with some function p cannot be transformed into (1.3).  Whenever it is necessary, we

shall assume that (1.2) can be transformed into (1.3) and vice versa.

The problem (1.2) can be solved numerically using the explicit linear multistep

method (ELMM)

(1-4) Z V«+/ = ÄrV-+/'
7=0 ;=0

where an = 1, yn+j is an approximation to y(x„+/) (with x„ = a + nh, n = 0, 1, 2,

. . . , h is a given constant, the step-length), and fn = f(xn, yn), n = 0, 1, 2, ... ,

(see [6, Chapter 2]).  We ignore the problem of finding the starting values yQ, y,,

— yk-i-

Similarly, (1.3) can be solved numerically by defining

(L5) *"   Z  *?»+,' tfa+fi
7=0 /=0

where'4 = 1 and yn+j = g(xn+j, fn+j).

The equation (1.5) defines a class of methods, whose properties are investigated

in this paper.  We refer to these methods as inverse linear multistep methods (ILMM).

It is assumed that the reader is familiar with the theory of linear multistep meth-

ods as it is developed in [6].   A knowledge of [1] is desirable, and essential for the

understanding of Sections 6 and 7 of this paper.

2.   Local Accuracy.  With the ILMM (1.5) we associate the difference operator:

(2-1) T(z(x), h): = - ¿ (h-laFixn+j) - ßjz'ixn+f)),
7-0

where z(x) is an arbitrarily often differentiable test function.  Proceeding similarly as

for ELMMs, we expand T(z(x), h), collect terms, and obtain

(2.2) T(z(x), h) = hTlC0zix) + Cxz^\x) + C2z<-"\x) + ■■■ ,

where the C   are given by

C0 = à0 + ax + ■ ■ ■ + ak,

(2.3) i    * i *
C^Z/^-^-Z/^,      Í-1.2.3.

q 7=0 (q-l)\j=o

where 0° :=  1, and ak := 0.

Remark.   Hexe we proceed similarly as is done for ELMMs (see [6, p. 23]).  The

C¡ axe formally the same as the C¡ in [6], except that the coefficients of the ELMM

are replaced by those of the ILMM.

Definition 1. The local truncation error of the inverse linear multistep method

(1.5) at xn + k is defined to be the expression T(y(xn), h) given by (2.2), where y(x)

is the exact solution of the initial value problem (1.3).
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Remark.   Thus, for ELMMs (respectively, ILMMs) the local truncation error is

given by the difference yixn + k) ~yn + k (respectively y'ixn + k) ~fn+k), provided the

back values used for the computation ofyn + fc (respectively, fn + k) axe exact.

Definition 2. The inverse linear multistep method (1.5) is said to be of order p,

if, in (2.2):

(2.4) C0 = CX =... = Cp+1 =0,    Cp + 2*0,

Cp + 2 is called the error constant of (1.5), which is said to be consistent if it is of

order p > 1.

Remarks.  Note that in the corresponding definition (see [6] ) for linear multi-

step methods we have that Cp + x + 0.  This difference is due to the factor h"1 in

(1.5).
It is easily verified that C +2 is independent of the point the local truncation

error is expanded about (see [6, p. 24]).  Thus, both ELMMs and ILMMs are of order

p if the local truncation error is of exact order hp + l.

For a fc-step method (1.5) we have 2k parameters at our disposal and can set to

zero 2k of the coefficients given by (2.3). Thus, we can expect a maximum order 2k

- 2 for (1.5).  Note that a one-step ILMM cannot be consistent.

Linear multistep methods of maximum order are of little use in practice because

they are not zero-stable, and, as we shall see, something similar happens for inverse

linear multistep methods.

3.   Stability of Inverse Linear Multistep Methods.  The stability of ELMMs is

governed by their stability polynomial.  The same applies to ILMMs.

Definition 3.  The polynomials

k k

m = Z V'   Kr) = z W>
7=0 /=0

(3.1) .     _      -
n(r, h) = S(r) - hoir);      h G C,

are said to be the first and second characteristic polynomials and the stability polyno-

mial of (1.5), respectively.

Similarly, as for LMMs we define

Definition 4. The inverse linear multistep method (1.5) is said to be absolutely

stable for a given h G C if, for that h, all the roots rt of (3.1) satisfy \rt I < 1, t = 1,

2, . . . , k, and to be absolutely unstable for that h, otherwise.  The set R := {h E Cl

(1.5) is absolutely stable for h] is called the region of absolute stability of (1.5), the

set C - R is called the region of absolute instability of (1.5).

For simplicity we restrict ourselves to the case where the zeros of Il(x, h) and

n(x, h) are distinct. If there are multiple roots, similar reasoning applies (cf. [5, p.

213]).

If either an ELMM or an ILMM is applied to the test equation

(3.2) y = Ay;   y, X E C,
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we obtain the general numerical solutions

it

(3.3) yn = Z 7/f"
7=1

and

yn = Z t#.
7=1

respectively, where the 7. and 7, are arbitrary constants, and the fy and fy are the roots

of the stability polynomials of the ILMM and the ELMM, respectively.

It follows that (as for the case of ELMMs) the ILMM (1.5) is absolutely stable

for a given hX E C, if all numerical solutions {yn} of (3.2) by (1.5) with step-length

h tend to zero as 77 tends to infinity.

Here we encounter the fundamental peculiarity of ILMMS:   for hX = 0, Xl(r, hX)

is of degree k - 1, and thus possesses only k - 1 roots.  This corresponds to the fact

that if hX = 0 (1.5) cannot be applied to (3.2) at all, because (3.2) cannot be trans-

formed into (1.3) (if X = 0), or (1.5) itself does not make sense (if h = 0, i.e. h~l

= <*>)•

The major application area of ILMMs are situations in which hX is large and

negative, i.e. where we want all numerical solutions of (1.3) by (1.5) to tend to zero

as 77 tends to infinity.  This is equivalent to requiring that the zeros of X\(r, hX) axe

less than one in modulus for sufficiently large h.

Since the zeros of the stability polynomial Xl(r, h) tend to those of ô(r) as \h\

tends to infinity (cf. [5, p. 236]), we are led to seek ILMMs whose second character-

istic polynomial possessesonly zeros of modulus < 1, i.e. is a Schur polynomial.

Definition 5.   The inverse linear multistep method (1.5) is said to be infinite-

stable, if â(r) is a Schur polynomial.

Remark.  The concept of infinite-stability is in a way dual to the concept of

zero-stability (cf. [6, p. 33], [5, p. 218]).  Zero-stability deals with the case that hX

tends to zero.  Infinite-stability deals with the case that \hX\ tends to infinity.  The

practical interpretation of this is not so straightforward, because h cannot tend to

infinity for a practical problem on a finite interval, and X is independent on the IVP.

However, we can consider a family of IVPs

y =Xiy- z(x)) + z(x);      r\ = z(a),

where the exact solution z(x) is independent of the parameter X, which tends to in-

finity (in modulus).

The exact solution of the test equation (3.2) tends to zero faster, the larger - X

(for X G R).  We would like this property to be reproduced by the ILMM.   If some

zeros of Xl(r, h) axe bounded away from zero (as \h\ tends to infinity), the numerical

solution will in general not tend faster to zero than 7", where 7 =£ 0 is some constant

independent of h.   If, however, all zeros of X\(r, h) tend to zero (as \h\ tends to in-

finity), the rate with which the numerical solution tends to zero can be arbitrarily

high.
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Since the roots of Xl(r, h) tend to those of o(r) (as \h\ tends to infinity), we

define

Definition 6. The inverse linear multistep method (1.5) is said to be strongly

infinite-stable if 0(7-) = rk.

Remarks.   For a strongly infinite-stable ILMM (1.5) becomes

fc-i

fn + k=h'1 Z «PW
7-0

For a strongly infinite-stable ILMM we have k parameters â0, âj.âfc_,

at our disposal and can, thus, expect to be able to attain order k - 2.  A consistent

strongly infinite-stable ILMM has a step-number k > 3.

Strong infinite-stability resembles ¿-stability (see [3]).  If a strongly infinite-

stable ILMM is applied to (1.5) with starting valuesy0, y,, . . . ,yA_,, and step-

length h, independent of X, then

lim   yk = 0.

Obviously strong infinite -stability implies infinite-stability.

The following theorem gives the maximum attainable orders of infinite-stable

and strongly infinite-stable ILMMs.

Theorem,    (a) Let a(r) be a polynomial of degree k (with ßk = 1).  Then

there exists a unique polynomial Ç(r) of degree k - 1, such that the inverse linear

multistep method defined by o(r) and f(r) has order at least k - 2.

(b) The maximum order of an infinite-stable inverse linear multistep method

is k - 2. For each k > 3 there exists a strongly infinite-stable inverse linear multi-

step method of order k - 2.

Proof.  (Note:   the proof follows closely the lines of Henrici's [5] proof on

the maximum order of zero-stable LMMs.  The roles played by the first and second

characteristic polynomial are interchanged, and some adjustments have to be made to

account for the term h"1 in the expansion (2.2) of the local truncation error, and

for the fact that by definition the second characteristic polynomial does not possess

zeros of modulus 1, whereas zero-stability allows for such zeros.)

With an ILMM we associate the function

Ht) ■= ?(!) - Hk)o&-

Then (1.15) is of order p if i//(£) possesses a zero of exact order p + 2 at £ = 1.

To see this, assume that the exact solution of the invertible IVP, to which

(1.5) is to be applied, is given by y(x) = ex.   Suppose (1.5) is of order p.   Substitut-

ing into (2.2) and assuming xn = 0 yields

(3.9) h-il(eH)-0(eh) = 0(hp + 1)

or

l(eh) - ho(eh) = 0(hp + 2).



116 PETER ALFELD

Setting % = eh this becomes

(3.5) f(f) - ln(¿0a(£) = Hï) = OiÜp + 2),

i.e. Ht) has a zero of order p + 2 at £ = 1.  Conversely, assume i//(§) has a zero of

order p + 2, i.e. (3.5) holds.  This implies (3.4) and because the order of (1.5) de-

pends on the coefficients S- and fl- only, the ILMM is of order p (cf. [5, pp. 225,

226]).
To prove the first part of the theorem observe that the function ln(|)ô(|) is

holomorphic at £ = 1 and can, thus, be expanded about % = 1, i.e. there exist coef-

ficients gj, j = 0,1,2, ... , such that

ln(£)a(?) =So+gx^-l)+ g2(t - i)2 + ... .

Define

m = g0 +*.« -!) + ••• +**.,« - o*-1.

With this definition >//(£) has a zero of order x at £ = 1 and, thus, (1.5) is of order

k-2(cf. [5, p. 226]).

We now turn to part (b) of the theorem.  Assume a(r) is a Schur polynomial.

To handle this assumption we use the transformation

z = ($ - l)/(£ + 1),   £ = (l+2)/(l-z)

(cf. [5, p. 229]), which maps the unit circle into the left half plane, and define

r(z):= (1-2)^(0 +z)/(l-z)),

siz):= il-z)ka(il +z)/(l-z)).

We have

s(z) = a0 + axz + • • • + a^,

where the a-, j = 0, 1, . . . , k, are real.   Because a(j") is a Schur polynomial, the

imaginary parts of siz) are all strictly negative.  This implies that all coefficients of

siz) are nonzero and of the same sign (cf. [5, p. 230]).   Define further

p(z):=(l-z)kH(l +z)l(l-z))

= riz) -ln((l +z)/(l ~z))siz).

The function piz) has a zero of order p + 2 at z = 0 (£ = 1) if (1.5) is of order p.

Consequently, if (1.5) is of order p, then

riz) = bQ+bxz+---+bp + xzp + \

where

ln((l + z)/(l + z)>(2) = b0 + bxz + b2z2 +■■■.

(Note that ln((l + z)/(l - z))siz) is holomorphic at z = 0.)
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Since the degree of r(z) must not exceed k - 1, the existence of an ILMM of

order p > k - 2 implies that

bk = bk+i = ••• = Vi =0-

We show that for an infinite-stable ILMM bk # 0.  We obtain

ln((l +z)/(l-z)) = (Z c2i+xz2i+)(¿ aÀ = ¿ bf*
\l'=0 / \í=0 / 7=0

(observe that ln((l + z)/(l - z)) is an odd function that is holomorphic at z = 0),

where

b0 = 0

bx =cxa0

b2 = cxax

b2i=alC2i-l   +a3C2i-3  +•" +a2i-lCl

b2i+l  =a2C2i-l   +a4C2i-3  + ' " '  +a2fl

for 7 = 1, 2, 3, ... , and a, := 0 for / > k.

That bk ¥= 0 follows now from the fact that a- are all nonzero and of the same

sign (see above) and that the c2i+x are strictly positive.

To see the latter we compute the c2i+x explicitly.  Define

Viz) := ln((l + z)/(l -z)) = Z c2f+xz'+1,
7=0

where

(3.7) c2j+x =vi2i+1)iO)H2j + l)\.

We have r¡iz) = 2/(1 - z2).   Define

H(z):= 2/(1 -z2)= ¿ d2fz2',

7=0

where d2 • = fi^2/^(0)/(2/')!.  (Note that fi(z) is an even function and that it is holo-

morphic at z = 0.)

From

(l-z2)H(z)=(l-z2) ¿cV2'
7=0

= ^o + Z (d2i+2-d2f)z2i+2 = 2
7=0

it follows by induction that

d2j = 2      (/ = 0, 1,2, ...).

Hence, we obtain

2 = d2j = fl(2/)(0)/(2/)! = v(2i+l)iO)H2j)\,
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i.e.

T?(2/+i)(0) = 2*(2/)!.

From (3.7) it follows that

c2¡+x =2/(2/4 1),

which completes the proof.  D

Remark.   Henrici in his theorem on the maximum order of zero-stable ELMMs

distinguishes between the case where the step-number is even and odd.  This is because

zero-stability allows for zeros of f (r) of modulus 1, whereas infinite-stability does not

(for zeros of ô(r)).

The intersections of the regions of absolute instability of strongly infinite-stable

ILMMs and the negative real line are given in the specifications of ILMMs in the fol-

lowing chapter.  Plots of the regions of absolute instability can be found in [2].

There also an approach to compromising between strong instability and the size of the

region of absolute instability is described.

4.   Specification of Inverse Linear Multistep Methods.  The following is a list of

inverse linear «-step methods, of order k - 2, for k = 3, 4, 5, 6, with free parameters

that give complete control over the coefficients and, thus, over the zeros of 5(r).  Also

given is the error constant in terms of these parameters, and the maximum value of

-hX (real), iz2Xmin, say, for which the zeros of the stability polynomial have modulus

> 1, if the method is the unique strongly infinite-stable method.

k = 3

fn + 3 = ~ ß2/„ + 2 ~ ßifn+1 ~ ^fn

+ ((5 + 3ß2 + ßx - ß0)yn + 2 + (-8 - 4ß2 + 4ß0)yn + x

+ (3 + ß2 - ßx - 3ß0)yn)/(2h)

order of the method:   1

error constant:   C3 = (- 11 - 2j32 + j3, - 2j30)/6

^min = «

k = 4

fn + 4~ ~ßjf„ + 3 _r52/„ + 2 _ ßi/ii-ri  _ ß(Jn

+ ((26 + 11^+2^-/3, +2ß0)yn + 3

+ (-57 - I8P3 + 3ß2 + 6ßx - 9ß0)yn + 2

+ Í42 + 9ß3 - 6ß2 - 3ßx +W0)yn + X

+ (-11 - 2ß3 + p\ - 2ßx - 1 lß0)y„)H6h)

order of the method:   2

error constant:   C4 = (-25 - 3j33 +ß2~ßx + 3f30)/12

h-Xmin = 68/3
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k = 5

Jn + 5 = ~ßafn + 4 ~ @3Jn + 3 ~ ^2^n + 2 ~ @lfn+l ~ ßr,fn

+ ((77 + 250~4 + 303 - ß2 + 0, - 30>„ + 4

+ (-214 - 4804 + 1003 + 8¿2 - Wi + l^oKi + a

+ (234 + 3604 - 18ß3 + 1801 - 360o)y„ + 2

+ (-122 - 1604 + 603 - 802 - 100, + 480o)y„ + ,

+ (25 + 304 - 03 + 02 - 30, - 25ß0)yn)l(l2h)

order of the method:   3

error constant:   Cs = (-137 - 1204 + 303 - 202 + 30, - 012O)/6O

*\nin = 56

k = 6

Jn + 6 = ß$fn + 5 _ ÍWn + 4 ~~ @3Jn + 3 ~ ß2/„ + 2 ~ Pi ¡n + 1 ~ "ofn

+ ((522 + 13705 + 1204 - 303 + 202 - 30, + 120o)y„ + 5

+ (-1755 - 3000s + 6504 + 3O03 - 1502 + 200, - 750o)y„ + 4

+ (2540 + 30005 ~ 120^4 + 20h + 60^2 ~ 60h + 200h)yn + 3

+ (-1980 - 20005 + 60&i " 60^3 ~ 20^2 + l20^ " 300i30)y„ + 2

+ (810 + 7505 - 2O04 + 1503 - 3O02 - 650i + 300^oK + i

+ (- 137 - 1205 + 304 - 2h + 302 - 120, - 1370o)y„)/(6O/7)

order of the method:   4

error constant:   C6 = (-147 - 1O05 + 204 - 03 + 02 - 20, + 1O0O)/6O

^min = 1936/15

5. Comparison of Explicit Linear Multistep Methods and Inverse Linear Multi-

step Methods. In the following table some properties of LMMs and ILMMs are com-

pared:

minimum step-number

of consistent method

minimum step-number of zero-

(resp. infinite-) stable consistent

method

maximum order of zero- (resp.

infinite-) stable fc-step method

ELMM

1

1

k

ILMM

1

3

k-2
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6. Application of Inverse Linear Multistep Methods of Certain Stiff Systems of

Ordinary Differential Equations. In [ 1 ] the application of so-called CDS (Correction

in the Dominant Space) schemes to certain stiff systems is described. These separably

stiff systems are characterized by the occurrence of a few (s, say) large negative ei-

genvalues of the Jacobian which dominate the rest of the eigenvalues clustered about

the origin.

A special CDS scheme, based on ILMMs, is given by

(«-1©) y„+k = Z (-y„+/ + >0/W>
7=0

(6.1(ii))

7=0

s

(6.1(ÍÍÍ)) y =   y ,     +    V      fÖ')       r(J)Sn + k      yn + k T Z,   Sn + kcn + k'
7-1

where the c^+k (j = 1, 2, . . . , s) axe the eigenvectors corresponding to the dominant

eigenvalues of the Jacobian, evaluated at ixn + k, yn + fc).  The corresponding eigen-

values and left eigenvectors are denoted by X%'+k and </„ + k, respectively.

The scalar correction factors %^\k ij = 1,2, ... ,s) are chosen such that

(6.2) <d«lk,fixn + k, yn + k)) = (4\k, fn + k),      j=l,2,...,s,

where (a, b) = aTb, the standard inner product of vectors.  (We normalize the eigen-

vectors such that idn'\k, c„\k) - 5;/, i, j = 1,2, . . . , s, Ôy the Kronecker delta,

see [1].)

If the initial value problem (1.2) is defined by the linear function

(6-3) fix, y) = Aix)y + gix)

(where .4(x) is an m x m matrix function) then the correction factors can be com-

puted explicitly, giving:

(6 4)   tV)      = - (d(J)       v > - {dn + k'g(xn + k)~fn + k>
\°-H)  <n + k ™n + k> yn + k> Q) ' /—l, /,...,*.

\ + k

For the general, nonlinear, case it is suggested in [2] to compute the i$+k by

the iterative procedure

(6.5(i)) [0)tfi* = #+*-!>

(6.5(ii))
fc(0_!_ i¿(t)       f( - +^    \r\M)      (i)    \_f
Vi + fc        (f)     \"n + k'J y-n + k'Sn + k ^ ¿*,        ^n+kLn + kJ      Jn-

Ml.

t= 1,2, . . . ,s;r= 0, 1,2,
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In the linear case the above iteration scheme terminates after one step, and re-

duces to (6.4).

Some properties of the CDS scheme (6.1) are covered by the two following theo-

rems.   For the first one compare [1].

For both theorems we note that the dominant components of a vector y are

given by (d(ni\k, y), i = 1, 2, . . . , s (see [1]).

Theorem 2.   The CDS scheme (6.1), with a rational basic method, and the

correction factors given by (6.2) is dominantly stable, provided hX^ E R    i = 1, 2,

. . . , s, where R   is the region of absolute stability of (1.5).

Proof.   If (6.1) is applied to y = Ay, A a constant separably stiff matrix, with

correction factors defined by (6.2), then we obtain for i = 1, 2, . . . , s:

(d(i\ yn+k> = (x'V/V1 Z â/W(,). W - Z ßj<d(i\ fn+i)),
\        7=0 7=0 /

i.e. the 7th component of yn + k is obtained by applying (1.5) to the scalar IVP with

starting values

¥>{¿° » <J°. V'      M = 0, l,...,fc-l.

Thus, <d(i), yn) = <$ -*■ 0 as n -*• «>, for i = 1, 2.s, if hX(i) E Rp.

This together with Theorem 1 in [1] proves the result.  D

Since, in the context of separably stiff systems, we are interested in large

IhX^l, i = 1, 2, .... s, it is appropriate to employ an infinite-stable ILMM for the

computation of fn + k in (6.1(h)).  The region of absolute instability of infinite-

stable ILMMS may be fairly large, but, in practical applications, hX^ will usually be

outside the region of absolute instability, because we assume that the dominant eigen-

values are large in modulus compared with the subdominant ones.

Theorem 3. // the initial value problem (1.2) is defined by the linear function

(6.3), then the dominant components of the local error of the CDS scheme (6.1) with

correction factors given by (6.2) are of 0(hq + l), where q is the order of (1.5).

Proof.   We can write

g(x) = -A(x)y(x) + y'c(x),

(where y(x) is the exact solution of (1.2)) and obtain for i = 1, 2, . . . , s

^lkJn+k) = <d^+k,fn+k)   (by (6.2))

= <d^+k,A(xn + k)yn + k - A(xn + k)y(xn + k) + y'(xn + k))

= **n+k<dn%k. yn+¿ - *&*<4'l*. y(xn+k)> + <4'l* /(*„+*)>>

i.e.

ui'lk-yn+k^

= -¿- (<4'l* /» + k> + <<#U> y(-Xn + k)> ~ <dn%k' y'(xn + kW'

and hence,



122 PETER ALFELD

^k,yixH+k)-yn+k) = - -77V- «<#l*. /«+*> - <4'l*> /(*..+*)»
All + rC

= - -0JT (<4 + k'fn + k- f(xn + k> y(xn + fe»>)

= 0(hq +1)    by the definition of q

which completes the proof.  D

Remarks.  For the linear problem it is trivial that the subdominant components

of the local truncation error are of 0(hp + l) where p is the order of the ELMM em-

ployed in (6.1(f)).

For the nonlinear problem the dominant and subdominant components of the

local truncation error are interdependent.

Table 1.   Simple scalar numerical example

n xn yn yn-y(xn)

3 0.3 0.955 2.98E - 7

4 0.4 0.921 4.76E - 7

5 0.5 0.878 6.51E-7

10 1.0 0.540 1.39E-6

15 1.5 0.077 1.79E-6

20 2.0 -0.416 1.75E-6

25 2.5 -0.801 1.28E-6

30 3.0 -0.990 5.02E - 7

35 3.5 -0.936 -4.03E - 7

40 4.0 -0.654 -1.21E-6

45 4.5 -0.211 -1.72E-6

50 5.0 0.284 -1.81E-6

100 10.0 -0.839 -7.78E-7

200 20.0 0.408 -1.55E-6

300 30.0 0.154 1.83E-6

1000 100.0 0.862 -1.13E-6

7.  Numerical Examples.

Example 1.  Consider the scalar problem

(7.1) y(x) = O' + sin(x))/X + cos(x),   y'(0) = 0,

with exact solution y(x) = cos(x).  This example has been chosen because of its

simplicity.  It can be transformed into the form (1.2).

If X is large and negative, however, an implicit linear multistep method would

have to be employed, if the numerical solution is to be stable and the step-length h

is not to be excessively small.  Contrastingly, the application of an ILMM to (7.1) is

fully explicit.

Table 1 contains numerical results, with X = -104, and using the strongly in-
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finite-stable ILMM

4 + 3 = ft_1(5y„+2 - 8y„ + , + 3y„)

with step-length h = 0.1, and exact starting values.

We observe that, although there is an initial rise of the global error, the results

are stable, and the accuracy is about 10-6.  The errors do not alternate in sign as

would be typical for instability.   Because of the factor 1/X in (7.1) the accuracy in

the fn is only about 10~2.   However, usually one will be more interested in the ap-

proximations of y(x) than in those of its derivative.

Example 2.   Enright et al. in [6] give the following separably stiff initial value

problem, arising in insulator physics:

(7.2(i))      V = -iy + 10Vy(l - V), V(0) = 1,

(7.2(10)     y = io*2y + 3*10Vy(l - 2y),    2y(0) = 0,

(7.2(ii0) y = -y-y, yo) = o,   xg[o, ij.

The Jacobian A(x, y) of this system is singular for all (x, y) (this is implied by

(7.2(iii)); thus one of the eigenvalues is zero.  On the exact solution curve the second

eigenvalue decreases from -1 to -8.6, the third and dominant one decreases from

-3*107 to approximately -4*107, asx increases from 0 to 1.

The problem (7.2) was tackled using the CDS scheme (6.1), with correction

factors defined by (6.2) and computed by (6.5), where

1
fn+k = — (26yn+3 ~ 57yn+2 + 42y„ + 1 - lly„).

Thus,/„ + k is defined by a strongly infinite-stable ILMM.  The step-length was taken

to be h = 0.01.

For comparison purposes an "exact" solution was computed using the standard

4th order Runge-Kutta method with the very small step-length h = 5*10~8, which

was required by stability.

The starting values were chosen to be the "exact" values y(x,), y(x2), y(x3),

y(x4).  The initial value y(x0) was not used because it lies in the transient phase (see

[2] ; there also alternative ways of finding starting values may be found).

The linear multistep method employed in (6.1(i)) is the standard fourth order

Adams-Bashforth method.

The following measures of the maximum correction factor, and the maximum

dominant and subdominant error, respectively, are given by

MC=     max     l#>|,
5«n«100

MD=     max    I (dnl\y(xn) -yn)\,
5<u<100

MS =     max     lly(x„) -y„ - id^\yixn) - ^ fc<» > II...
5<n<100
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Thus, MD gives the maximum error in the dominant component of the numerical

solution, and MS gives the infinity norm of the error after the dominant component

has been subtracted.  The results are

MC = 1.18/j- 11,   MD= 1.58E- 17,    MS = 1.60E - 6.

The numerical solution is stable, and the results are accurate.  The dominant

accuracy is even close to the working accuracy of the machine (the DEC 10 of the

University of Dundee), the computations were carried out in double precision carry-

ing 19 digits.

Note that this example is extremely difficult numerically.  A treatment with

conventional methods would require the use of fully implicit methods, whereas here

the implicitness is reduced to the scalar problem of finding the single correction

factor £(1).

Conclusions. A class of method has been proposed, that can be used with ad-

vantage for certain unconventional types of initial value problems, and that is parti-

cularly efficient if applied in conjunction with the CDS technique to the extremely

difficult separably stiff initial value problems.
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