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Minimax Approximate Solutions

of Linear Boundary Value Problems

By Darrell Schmidt* and Kenneth L. Wiggins

Abstract.   Define the operator D:   C"[0, t] —► C[0, t] by D\u] = u" - a0u' -

axu where an, ax G C[0, t] and consider the two point boundary value problem

(BVP) D( y](x) = a2'x), x S [0, r), NQ{ y] = any(0) + <*x y'(0) = a2, NT[ y] =

ß0y(r) + ßx /(t) = ß2 where a2 e C[0, r], a\ + a\ ¥= 0 and 0q + ß\ * 0.   Let

n^ denote the set of polynomials of degree at most k and define the approximating

set Pfc = {p£ nfc:  N0[p] = a2, NT[p] = ß2}.   Then for each k > 3 there exists

pk G Pk satisfying l|DIpfc] - a2l| = inf_ep   \\D[p] - a2\\ = 6fc, where || • || denotes

the uniform norm on C[0, t].   If the homogeneous BVP D\ y] =0, ATn[ y] =

NT[ y] = 0 has no nontrivial solutions, then the nonhomogeneous BVP has a unique

solution y and Hm^Jlp^   - y*-''\\ = 0 for í = 0, 1, 2.   If X denotes a closed sub-

set of [0, r] and

&ICX=   inf     max l£)[p](x) - a2(jc)|,

pepk x&C

then for each e > 0 there exists S > 0 such that d(X) < 6 implies that 0 < &k -

&k X < e, where d(X) denotes the density of X in [0, t].   Several numerical exam-

ples are given.

1.  Introduction.  Consider the linear two point boundary value problem

y" = a0(x)y' + ax(x)y + a2(x),      x e [0, t] ,

(1.1) N0[y]=a0y(0) + axyXO) = a2,

NT[y) =ß0y(r) + ßly'(r)=ß2,

where a0, ax,a2 € C[0, t] , c¿o + &\ # 0, and (3q + ß2 =£ 0.  The purpose of this paper

is to study closed form polynomial approximations to solutions of (1.1).   In particular,

we focus on a method which uses a uniform type norm as opposed to L2 type norms

used in other methods.

Let Pk = {p:  p is a polynomial of degree k or less, NQ[p] = a2,NT[p] = ß2}.

We call pk S pfc a minimax approximate solution (MAS) of (1.1) from Vk if
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max     Ip"k(x) - a0(x)p'p:) - ax{x)pk{x) - a2{x)\
xG[0,t]

(1.2)
=   inf      max    \p"{x) - a0(x)p'(x) - ax(x)p(x) - a2(x)\.

p&pk xG[0,t]

Introducing the uniform norm || • || on C[0, t] and the linear differential operator D

given by

(j 3) D[u] = u" - a0u - axu,

the minimization problem (1.2) can be rewritten as

n d, \\D\pk] - a2\\ =   inf   \\D[p] - a2\\.

Throughout we will assume that

the homogeneous boundary value problem D[u] = 0,

0)
N0 [u] = NT [u] = 0 has no nontrivial solutions.

Condition (I) is equivalent to (1.1) having a unique solution y G C'[0, t] (see [7]).  In

this paper, we consider a MAS as an approximation to y.

If (1.1) has homogeneous boundary conditions (a2 = ß2 = 0), a MAS can be

viewed as a best approximation to y from the linear subspace Pfc of C'¿ [0, t] =

{u G C"[0, t] :  N0[u] = NT[u] = 0} with respect to the uniform type norm || • \\D

on C'¿ [0, t] given by

||w|fD = ltf>l>]l|.

This differs from the Rayleigh-Ritz approximates as the latter are best approximations

to y with respect to a similarly defined ¿2 type norm (see [6]).  In this light, a MAS

differs from Galerkin or collocation approximates as a MAS results from a best uniform

type norm approximation rather than an orthogonalization or a curve fitting process.

In the case of nonhomogeneous boundary conditions, a MAS results from a best

approximation as follows:   Fix p* G Pfe and let Pk = {q:  q is a polynomial of degree

k or less, N0 [q] = NT[q] = 0}.  Then any MAS pk can be written pk = qk 4- p*,

where

\\D[qk] -(a2 -D[p*])\\ =   inf   \\D[q] - (a2 -D[p*])\\.

q^k

Such a qk is a best approximation to y ~ p* from the linear subspace Vk  of C'¿ [0, r]

with respect to the norm || • ||D, or equivalently, D[qk] is a best uniform approxima-

tion to a2 -D[p*]  from D[P°k] = {D[q] :  q G p° }.  Since D[P°] is a finite di-

mensional subspace of C [0, r], such a qk exists and, thus, a MAS pk exists (see [2, p. 20] ).

However, Z)[P^.] may not be a Haar subspace of C[0, r], and, as a result, MAS's need

not be unique.

For each k > 3, we select a MAS pk of (1.1) from Pfc.  In this paper, we show

that Pk, p'k, and p"k converge uniformly to y, y', and y", respectively.  In fact, our

analysis will yield corresponding orders of these convergences depending on smoothness
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properties of the coefficient functions aQ, ax, and a2 in (1.1). As computer computation

of a MAS necessitates a discretization of the interval [0, t] , we analyze discrete mini-

max approximate solutions of (1.1) and show that they possess some rather pleasing

convergence properties.   This is followed by some examples of MAS's and comparison

to actual solutions of (1.1).  This work extends the ideas of [1], [3], [4] to boundary

value problems.

2. Convergence and Orders of the Error. In this section, we show that if for each

k> 3, a MAS pk G ?k of (1.1) is fixed, then the sequences {pj^}^ converge uni-

formly to y('\ i = 0, 1,2, where y is the unique solution of (1.1).  In addition, we

estimate the orders of these convergences.  It should be noted that condition (I) is

assumed; and thus, a unique solution y G C'[0, r] of (1.1) exists.

Let

5fc =   inf   \\p" -a0p -axp-a2\\.

(2.1) pGPfc

We shall require the following lemma.

Lemma 1.   limfc_koo Sfc = 0.

Proof.   Since y, y', a0, ax,a2G C[Q, t] , the differential equation in (1.1) implies

that y" G C[0, t] .  By the Weierstrass theorem, there is a sequence {rk}k=x where rk

is a polynomial of degree k or less such that

(2.2) lim ||rfc-/|| = 0.
k-+<*>

Let H{x, £) be the Green's function for the boundary value problem u" = 0, u(0) =

u{t) = 0, and let l{x) be the linear function such that /(0) = y(0) and 1{t) = y(r).

For reference on Green's functions, see [7].   Let the sequence {wk}k=x be given by

given by

(2-3) wk{x) = l(x) +/J" H(x, %)rk{Ç) d%

for x G [0, t] .  Then

w'k(x) = l'(x) + V Hx(x, Ç)rk(Ç)d%
j o

and w"k (x) = rk(x) for x G [0, t] .  Thus, wk is a polynomial of degree k + 2 or less.

Furthermore,

and

y(x) = l(x) + p H(x, %)y"it)dt
Jo

y'(x) = l'(x) + fT Hx(x, $)y"(t)d%
j t\

for x G [0, r].  Thus,

(2.4) llwfc-.y||<||rfc-/'||r2/8,

(2.5) IX-/II <\\rk-y"\\T/2,
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and

(2.6) \\wk - y"\\ = \\rk - y"\\.

By (2.2), (2.4), (2.5), and (2.6), lim^Jlw» - /*>|| = O, i = 0, 1, 2.

To complete the proof, we use the following observation.  If

/2,4 +B\   2     (A +B\   o

(2.7) <*) = ̂  - l~7~J *   + {—¿~J X '

then s(0) = s(t) = 0, s'(0) = A, s'(t) = B, and ||s(,)|| -+ 0 as A —► 0 and B —> 0,

i = 0,l,2.

From (2.3), wk(0) = y(0) and wk(r) = y(r), and from (2.5),

lim \w'k(0) -y\0)\ =  lim \w'k(T) -y'(r)\ = 0.

Let sfc be the cubic polynomial in (2.7) with s^O) = sk(r) = 0, s'k(0) = y'(0) - w'k(0),

and s'k(T) =y'(T) - wk{r).  Then lim^JUJ^U = 0, i = 0,1,2.  Thus, ̂  = wk + sk

G Pk+2 and lim^JI^ -/0|| = 0, / = 0, 1, 2.

Since<7fcGpft + 2,

°<s* + 2 < Hi* "«oik-«i9fc-fl2H

< llfï-/Il +llfl0llllifc-/ll +1^,1111^-^11.

Thus, lim^^^Sj. = 0 and Lemma 1 is proven.

Remark.   In the proof of Lemma 1, (2.4), (2.5), and (2.6) indicate that

11*4° -y^W ~ 0(\\rk -/H), i = 0, 1, 2.  Moreover, (2.7) and the selection of sk im-

ply that ||s<?|| = 0(11 rk -/H), j = 0, 1, 2, and, hence, ijflfp -/'>|| = 0(||rfc ~/||).

By (2.8), 8k = (X]\rk -/ll).
Letting

Ek(y") = inf {||p - /||:  p is a polynomial of degree & or less},

appropriate selection of rk implies that there is a constant mx independent of k such

that

(2.9) 8k + 2<mxEk{y").

Before getting to the main result of this section, we rewrite (1.1) in its selfadjoint

form.   Let

r(x) = exp \-fX a0Ü)d¿\     and   A(x) « K*H(*)

for x G [0, t] .   Let L be the linear differential operator given by L [u] = {ru')' - Au.

The selfadjoint form of the differential equation in (1.1) is

(2.10) L[y]=ra2.

Now condition (I) implies that a Green's function G{x, |) for the boundary value

problem L[u] = 0, N0[u] = NT[u] = 0 exists.   If/is the unique solution of the lin-

ear boundary value problem L[u] = 0, N0[u] = a2, NT[u] = ß2, then the unique

solution w of the boundary value problem L[w] = g, N0 [w] = a2,NT[w] = ß2,
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satisfies

(2.11) w(x) = /(*) +/oT G{x, Ç)g{%) dt

and

(2.12) w'(*) = /'(*) +/J Gxix> *)««) <**

for x G [0, r].  Again see [7] for reference on Green's functions.

Theorem 2. Assume conditon (I) holds and y G C'[0, t] is the unique solution

o/(l.l).  Suppose that for each k > 3,   a MAS pk o/(l.l) from Pk is fixed.   Then

lim \\pk° - y{i)\\ = 0,      i = 0,1,2.
it-* 00

Proof.   Let

(2.13) AfcO) = Pfc(*) - "0{x)p'^x) - ax {x)pk{x) - a2(x)

and x G [0, t] . Note that L [y] = ra2 and Z, [pk] = r(a2 + Ak).  Also, y and pk

satisfy the boundary conditions of (1.1). By (2.11) and (2.12),

||pfc-j>||<||Afc||    sup    C \G(x, SMOdi
(2.14) xg[o,t]Jo

= 6t    sup     fT IGfx, |)Kf)d{
= [0,t]-'0

and

(2.15) IIPfc-yiKSfc     sup    C\Gx(x,%)\r(%)di-
x<E\0,t]J°

From the differential equation of (1.1) and (2.13),

iiPfc -/il < Sfc + HM Wp'k-/H + ««ill lip* ~y*w

<hk(\ +||«0||   sup    fT|G(x, S)Kg)rfÇ
(2.16) V xe[°'Tl   °t

+ 11«!||    sup    CT \Gx(x, ïMQdS).
x<E[0,t]J° )

Now by Lemma 1, (2.14), (2.15) and (2.16), lim^Jlp*0 -_y(0|| = 0, i = 0, 1, 2.

Thus, Theorem 2 is proven.

Ztonarfc.   From (2.9), (2.14), (2.15), and (2.16), we see that \\pf -/'>|| =

0(Ek_2(y")), i = 0, 1,2, and thus there is a constant m2 independent of k such that

\\pk0-y({)\\<m2Ek_2{yH).

By Jackson's theorem [2, p. 147], if / G C"[0, r] , then Ek_2{y") = 0(1/*").   From

the differential equation of (1.1), y" G C" [0, t] whenever a0, flj, a2 G C" [0, r].

Thus, we have the following corollary to the proof of Theorem 2.

Corollary 3.   Ifa0,ax,a2£C" [0, t] , then there is a constant m indepen-

dent of k such that

\\pk°-y0)\\<m/kr,     i = 0,1, 2.
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3.   Discretization.   In practice, rather than finding a pk G Pk satisfying (1.2), one

would find a pk x G Pk such that

max \p'kX(x) - a0(x)p'kX(x) - ax(x)pk x(x) - a2(x)\
x&X

(3>1) =    inf   max\p"(x)-a0(x)p'(x)-ax(x)p(x)-a2(x)\,
p(EPkxGX

where A' is a closed subset (usually finite) of [0, t] .   We call such a pk G Pk a dis-

crete minimax approximate solution of (1.1) from Pk.  In this section, we show that

if X is "sufficiently dense" in [0, r], then any discrete MAS is nearly a MAS.

The density of X in [0, r] is defined to be

d(X) =    sup     inf \s - t\
sG[0,t] fGX

and in contrast to (2.1) let

(3.2) okX =   inf   max \p"(x) - aQ(x)p\x) - ax(x)pk(x) - a2(x)\.
PG pk x&x

Theorem 4.  Given e > 0, there is a ô > 0 such that ifd(X) < 5, then 0 < 5k

8k,x<e-

Proof. Let e > 0 be given. Let 0 < e, < e/ok. Applying Lemma 1 on p. 85 of

[2] to the finite dimensional linear span of {p" - a0p' - axp - a2: p G Pk], there is

a 5 > 0 independent of X such that if d(X) < 6, then

max     |p"(x) - a0(x)p\x) - ax(x)p(x) - a2(x)\
xG[0,t]

< (1 + ex) max \p"(x) - a0(x)p\x) - ax(x)p(x) - a2(x)\
xex

for all p G Pk.  It is clear that 5k x < 5fc.  Let pk x be a discrete MAS of (1.1)

from Pk corresponding to a closed subset X of [0, t] with d(X) < 5.  Then

8k <    max    \p"k>x(x) - aQ(x)p'kX(x) - ax(x)pk x(x) - a2(x)\
jE|0,t]

(3.3) < (i + Ci) max \p'kiXix) - a0{x)p'kX{x) - ax(x)pkX(x) - a2(x)\
x&x

= {l+ex)8KX<bKX + e.

The proof of Theorem 4 is complete.

The following corollary to the proof of Theorem 4 indicates that any discrete

MAS is nearly a MAS whenever X is sufficiently dense in [0, t] . The proof is contained

in (3.3).

Corollary 5.   Given e > 0 there is a o > 0 such that if d(X) < 5, then

ôk <    max     \p"ktX(x) -a0(x)p'kX(x) - ax(x)pkX(x) - a2(x)\
xG[0,t]

<5fc + e,

where pk x satisfies (3.1).
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In view of the proof of Theorem 2, we see from Corollary 5, that when X is

sufficiently dense in [0, t] , a corresponding discrete MAS approximates the solution of

(1.1) nearly as well as a MAS.

The last result of this section concentrates on how well a discrete MAS approxi-

mates a MAS.  For any closed subset X of [0, r], let pk x G pfc satisfy (3.1) and

define

Ak,xix) = P'icxi*) - aoix)Pk,xix) - aiix)Pk,xix) - ^to-

Then pk x is a solution of the boundary value problem L [u] = r(a2 + Ak x), N0 [u] =

a2,NT[u]=ß2.  Then by (2.11),

Pk xix)=fix) +f <Kx. Mï)ia2iï) + \x(9)¿í
J o

for x G [0, t] .   For X sufficiently dense in [0, t] , Corollary 5 insures that

(3.4) ||pfc x\\ < \\y\\ + (hk + 1)    sup     V \G(x, %)\r(ï)dl
xG[0,t)J°

Now consider a sequence {Xn}°°=x of closed subsets of [0, r], where d(Xn) —* 0 as

n —► °°.  By (3.4), the sequence {pk x }~=1 is uniformly bounded over [0, t] and,

thus, has a cluster point pfcG Pfc.

Theorem 6.  77¡e polynomial pk is a MAS o/(l.l) from Pk.

Proof.   Suppose pk x      —► pk.  By Corollary 5,

lim \\p"k,xníl)-HPk,xníl)-"iPk,xn(n-°2\\ - h-

^^o)^^'^0'1'2- Thus

lim  Wp'l y      ~QnP'ir y      ~a,plrV      -a-,\\
l-+oo    Hk'Xn(.l)        °   k-Xn(l) 1Pfc'Xn(/) 2"

= Hp-fc-«oPfc-fliP~fc -fl2||.

Thus, pk satisfies (1.2).

4.   Examples.  In this section, we report the results of five computer examples of

minimax approximate solutions of boundary value problems.  Two algorithms have been

employed.  In Examples 1, 2, 4, and 5, the first two coefficients of a MAS can be ex-

pressed in terms of the remaining coefficients, and finding a MAS becomes a linear best

uniform approximation problem.   In these cases, the second algorithm of Remes [2]

was used.   In the discrete case, a MAS can be expressed as a solution of a linear pro-

gramming problem.  The linear programming algorithm was used in all cases with the

interval discretized with 21 evenly spaced points.   In Examples 1, 2, 4, and 5, there are

only slight differences in the MAS's and in the maximum errors computed over 21

evenly spaced points in the interval using both algorithms.  In these examples, the

Remes algorithm provided somewhat smaller errors, and we report these results.  In

Example 3, the first two coefficients of a MAS cannot be expressed in terms of the re-

maining coefficients, and it is not expedient to use the Remes algorithm.  The results
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for this example come from the linear programming algorithm.   All computations were

done on an IBM 370 computer in double precision arithmetic.   For simplicity of nota-

tion, we shall denote the discrete MAS's by pk.

Example 1.

y" + ir2y = 0,     *G[0, 1],     y(0) = 0,     /(l) = -tr.

For k = 1,

Pl(x) = 3.14159* - 0.00284*2 - 5.09959*3

- 0.39503x4 + 3.53380*5 - 1.17794*6 - 0.0000008*7

with S7 = 0.0057.   The actual solution is y(x) = sin irx and the maximum error is

max     |p7(*) - sin tt*| = 0.000053.
xG[0,l]

Example 2.

y" = 2xy' + 2y,      * G [0, 1],

X0)-/(0)=1,      2X1)-/(1) = 0.

A MAS degree of 6 is

p6(x) = 1.00022 + 0.00023* + 1.01817*2

- 0.25924*3 + 1.38320*4 - 1.19479*5 + 0.76947*6

with 56 = 0.036.  The actual solution is y(x) = expfx2) and

max   |p6(x) - exp(*2)| = 0.00093.
xG[0,l ]

Example 3.

y" = y^y'+xy - x\n(l +x),      xG[0, 1],

y(0)+y'(0)=l,

y(l) = ln(2) = 0.69147.

A MAS of degree 6 is

p6(x) = 0.00005 + 0.99995* - 0.49995*2

+ 0.32390*3 - 0.20309*4 + 0.09135*5 - 0.01951*6

with 56 = 0.00093.  The actual solution is y(x) = ln(l + *) with a uniform error

max     |p6(*) - ln(l + *)| = 0.00005.
XG[0,1 ]

Example 4.

y" = - n2ysin2x - tr2 sin irx cos2*,      * G [0, 1],

y(0)=y(l) = Q.
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For k = 7,

p7(x) = 3.14151* - 0.00292*2 - 5.09855*3

- 0.39681*4 + 3.53450*5 - 1.17731*6 - 0.00042*7

with 57 = 0.0058.  The actual solution is y(x) = sin -nx and

max     |p7(x) - sin 7r*| = 0.000042.
xG[0,l]

Examples 1 -4 indicate that for relatively low degrees MAS's provide good

approximations to the solutions of the boundary value problems.  It is interesting to

note that in each of the examples above the maximum error is one or two orders of

magnitude smaller than the corresponding bk.  In our last example, we consider bound-

ary value problems which "nearly" do not satisfy condition (I).

Example 5.

/ + ¿y = 0,      * G [0, r] ,      y(0) = 0,      y(T) = 1.

For t = 1, the boundary value problem does not satisfy condition (I) and, in fact,

does not have a solution.   For 0 < T < 1, condition (I) is satisfied and the solution is

Sin 7T*

For t = .99, a MAS of degree 7 is

p7(*) = 100.02520* - 0.08527*2 - 162.46945*3

- 12.08374*4 + 111.55158*5 - 36.67208*6 - 0.26634*7

with 57 = 0.170.  The maximum error is 0.00355, and the relative error is 0.011%.

For r = .999 and A: = 7,

p7(*) = 1001.14814* - 0.89931*2 - 1625.22006*3

- 125.38559*4 + 1125.16506*5 -374.54331*6 - 0.26606*7

with 57 = 1.80.  The uniform error is 0.352 with a relative error of 0.11%.

In either case, the maximum error is not as dramatically small as in Examples

1—4; however, the relative errors are quite small.

We conclude this section with some remarks of the two algorithms used. Although

the Remes algorithm is not guaranteed to work in the absence of the Haar condition,

no failures were encountered with this algorithm.   In Examples 1, 2, 4 and 5, the

Remes algorithm produced virtually the same results as those of the linear programming

algorithms.  The Remes algorithm appears to be considerably faster than the linear

programming algorithm.   In Examples 1, 2, 4, and 5, the Remes algorithm required

between 3 and 4 seconds of computer processing unit (CPU) time and the linear pro-

gramming algorithm required between 8 and 10 seconds of CPU times.

5.  Conclusions.   Approximation theory techniques have been used to provide

approximate solutions of boundary value problems.  Convergence is guaranteed under

rather general conditions and appropriate orders on the uniform error are obtained.
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Although it has been shown that discretization does not significantly alter the approxi-

mation properties of a MAS, further research needs to be done with algorithms for

finding MAS's.   Particularly, it would be interesting to characterize those problems in

which the Remes algorithm applies.
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