
MATHEMATICS OF COMPUTATION, VOLUME 33, NUMBER 145

JANUARY 1979, PAGES 217-238

The Lanczos Algorithm

With Selective Orthogonalization*

By B. N. Parle« and D. S. Scott

Abstract.   The simple Lanczos process is very effective for finding a few extreme

eigenvalues of a large symmetric matrix along with the associated eigenvectors.

Unfortunately, the process computes redundant copies of the outermost eigen-

vectors and has to be used with some skill.   In this paper it is shown how a

modification called selective orthogonalization stifles the formation of duplicate

eigenvectors without increasing the cost of a Lanczos step significantly.  The

degree of linear independence among the Lanczos vectors is controlled without

the costly process of reorthogonalization.

1.  Introduction.   The Lanczos method is well suited to the task of computing a

few ip) eigenvalues and eigenvectors of a large (n x «) symmetric matrix 4.  The

wanted eigenvalues may be at either, or both, ends of the spectrum.  Typical values

are p = 4 and n = 1000; in a typical application the smallest eigenvalues of 4 will

correspond to the natural frequencies which can be excited in some structure after it

is perturbed away from equilibrium.

It seems appropriate to give a brief review of the history of the method.  Simple

processes, like the Power Method, require, in principle, an infinite number of matrix-

vector products to converge to an eigenvector.  On the other hand, the method of

Minimized Iterations, which Lanczos announced in 1950, expands each eigenvector in

a convergent series with at most « terms.**   However, Lanczos' method was promptly

switched to a different channel.  It was used as a process for computing a tri diagonal

matrix T orthogonally congruent to 4; T = Q*AQ, Q = (qx, q2, ■ . ■ , qn), Q* = Q~X •

Despite its theoretical attractions the Lanczos process was soon displaced by the

Givens [1954] and Householder [1958] methods which employ explicit similarity

transformations on 4.  To compete in accuracy the Lanczos process has to be

supplemented with the explicit orthogonalization of the Lanczos vectors {q¡} which,

in exact arithmetic, would be orthogonal automatically.

In 1971 C. Paige showed that the simple Lanczos procedure, without orthogonal-

ization, was very effective for finding a few of the extreme eigenvalues and their match-

ing eigenvectors.
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In part this is because the only way 4 enters the Lanczos algorithm is through

a subprogram which computes Ax for any given vector x.  The user is free to exploit

sparseness and compact storage of 4 in the coding of this subprogram.  Equally

important is the fact that the algorithm need not go the whole way.  It builds up

Q. = (c/., . . . , q) and T¡ = QfAQ- by step / and can often be stopped at values of

/ as small as 2\fn~.  Paige [1971] showed that loss of orthogonality among the

Lanczos vectors {qx, q2, . . . } was a necessary and sufficient condition, in finite

precision arithmetic, for convergence of at least one of 7\'s eigenvalues to one of 4's

eigenvalues.

This left the Lanczos algorithm as a very powerful tool in the hands of an

experienced user.  However, it did not provide a black box program which could be

used "off the shelf in the same way as eigenvalue programs for small matrices.  There

are several rather technical reasons for this.   For one thing suitable criteria for accept-

ing good approximations, rejecting spurious approximations, or stopping were all rather

elusive.  Left to itself a simple Lanczos program will run forever, doggedly finding more

and more copies of the outer eigenvalues for each new inner eigenvalue it discovers.

This uncertainty about the amount of storage which is needed prompted the suggestion,

by Golub and others, that the Lanczos method be used iteratively.  That is, after k

steps the best approximation to an eigenvector is computed and it, or some modification

of it, is used as a new starting vector.  With this approach the old difficulties take on

new forms:   how to choose k and how to select the new starting vector.

Another variation which has been used with success is the block form of the

Lanczos method.  Each step becomes more costly but fewer are needed, and this

seemed to be the only way to find small clusters of close or multiple eigenvalues.

However, the user has to make the difficult choice of the block size.

The remainder of this article describes an inexpensive modification of the simple

algorithm (we call it Lanczos with selective orthogonalization) which permits the

simple Lanczos process to be used as a black box.  Moreover,

1. No redundant copies of eigenvectors are computed.

2. A posteriori error bounds and estimates cost almost nothing and are used

in order to stop the program as soon as possible.

3. Multiple eigenvalues, and their eigenvectors, are found naturally, thanks to

roundoff error.

Not surprisingly, the idea of purifying Lanczos vectors did not come out of

the blue.  Cullum and Donath [1974] found it necessary to deflate converged Ritz

vectors from their blocks, Lewis [1977] found that some deflation helped in a

difficult calculation of interior eigenvalues, and Underwood [1975] removed such

vectors from his blocks when restarting the iterative version of Lanczos.  However,

we do not regard deflation as an aid in adversity but as a tool for producing

orthogonal Ritz vectors; and thus, our orthogonalization is independent of convergence

and will occur beforehand, especially when the user wants high accuracy.
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2.  Notational Conventions.

Integers—/, /', k, I, m, n, p.

Scalars-small Greek letters a, ß, . . . .

(Column) Vectors—small roman letters x, y, . . . (except for the integers).

Matrices—capital roman letters.

Identity matrix—I = (e,, e2, . . . , en).

Diagonal matrices-capital Greek letters.

SYMMETRIC (nondiagonal) MATRICES-SYMMETRIC LETTERS 4, H, M, U,

V, W, X.

Tridiagonal matrices—

Ti =

a.      0.

h     a2

O

o

P/-1   a.

AU vectors are «-dimensional unless the contrary is stated.  All square matrices

are « x « unless the contrary is stated.

4 - % is written for 4 - %I.

Span(ft,, . . . , ft) denotes the subspace generated by ft,, . . . , ft-.

x* is the transpose of x.

Ilx|| = \Jx*x, the Euclidean norm.

\j [M] —the ith eigenvalue of M (from the left).

X. < X2 < <x.
Eigenvalue Ordering:

*-„< <X_2 <X_

\\M\\ = max,. \\[M] | = max ||Mi>||/||i>||, v ¥= 0.

(J)—a formula in the current section.

(k, /)—a formula in section k.

3.   Lanczos in Exact Arithmetic. 4 can be reduced to tridiagonal form Tn in

many different ways.   Let

(0 Q^Qn = Tn

he one such reduction, where Q„ = (-7,, . . . , qn) is orthogonal.  If the off-diagonal

elements ßp i = 1.« - 1, of Tn are positive then, in fact, Tn and ß„ are

completely determined by qx or by qn.   Let us write (1) in the form AQn = Q„Tn

and see what it says about the « x / submatrix Q, = (./,, . . . , fy), / < «.
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(2)

The last column on the right is r- = q,+ xß,.  Now (2) can be written compactly as

(3) AQj = QjTj + rfi,     j=l, n,

where e*= (0, . . . , 0, 1) has / elements and ßn = 0.   From the orthogonality of

Qn follows

(4) QiVi = h

whereas Q¡Qf is an orthogonal projector onto span Q-.

Note that if j3, (= II r-1|) = 0, then span Q. is an invariant subspace and 7\- is the

restriction of 4 to it.  In genuine applications ß- = 0 never happens, even for/ > «!

The Lanczos algorithm builds up Q- and T one column per step.   Some

important relations follow from (3) and (4) and are independent of the specific

implementation of the algorithm.

Orthogonality.   Since r- is a multiple of q,+, it must be orthogonal to all

previous q¡, i = I, . . . ,/.  In fact, this property can be deduced from (3) and (4)

without invoking (1).

Lemma 1. Let Qj be any matrix satisfying (3) and (4).   Then Qf_xr¡ = 0 and,

if a¡ = qfiqjt then Qfr¡ = 0 too.
A proof is given in Kahan and Parlett [1974].

The Lanczos algorithm proceeds from Q■ to Q+, by forcing qpr. = 0 via the

choice of ou and then normalizing r- to get j3- and q +,.  What could be simpler?  Note

that Qfxr.- is not forced to vanish because, in exact arithmetic, the lemma guarantees

it.   From (3)

(5) 7*.  = T■£■£.
i     >i i (AQi-QjTj)ej = Aqi-qj_xßHX-qja i r

Observe that q , . . . , q¡_2 are not needed for the computation of a-, r, j3-,

»7+, (i.e. the jth step) and so may be put out to a secondary storage medium.  This

is a very attractive feature of the method.
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Suppose that the Lanczos algorithm pauses at the/th step and makes a subsidiary

computation of some, or all, of the eigenvalues and eigenvectors of T-.  Let

(6) Tt=swr>

where S, — (s,, . . . , s-) is / x / and orthogonal and 0. = diag(0,, . . . , 9 •) has the

eigenvalues of Ty  Since Tj = Q*AQj, the values d¡ and the vectors yi = Qfr are the

(optimal) Rayleigh-Ritz approximations to 4 from the information on hand, i.e. from

span(ß).  Note that

(7) \\AQj-QjTß = \\rjef\\=ßj.

How good are these optimal approximations?

Theorem  1.   77.ere are j eigenvalues of A, call them X,>, . . . , X-, such that

\\.-ei\<ßl.,i= 1, ...,/.
A proof is given in Kahan [1967].  See also Kahan and Parlett [1976].   The

bound covers all the 6¡ and does not discriminate between them.  We can do better.

Let s-- denote the bottom (jth) element of T's eigenvector s¡.

Theorem 2.  To each i there is a corresponding eigenvalue of A, call it 3y,

such that

\\t-6,\<ß,\if,\&ßp   i'=l,...,/.

A proof is given in Kahan and Parlett [1976].  The quantity ßj{ = \\(A - 6^t\\,

the rth residual.

Theorem 3. Let Az¿> = Zf\f, let i//,- be the angle between z¡> and its Ritz

vector y¡ = QjS¿, and let the gap y¡ = minfc#I- \\k - 6¡\.  Then, for i = 1, . . . , /,

IV-^K^/t,-,     tan^/y?,.

Proofs are given in Davis and Kahan [1970].

In principle yi is unknown and these bounds are not computable.   However,

b¡ = minfc^.|öfc ± ß-k - 0,1 can be used in place of y¡ to give an estimate.

The following result, proved in Kahan [1967], shows that the previous bounds

fail gracefully when Q, is not orthonormal.  Specifically, the bounds must be

multiplied by \¡2¡ax, where a, is the smallest eigenvalue of QfQi-

Theorem 4.  Given A,n x «, (?,« x m, H,m x m,with \[H] = 6¡,i = I, . . . ,

m, there are m of A's eigenvalues, call them\ , so that for i = 1, . . . , m,

IV - Bt\<<j2\AQ- QMVoxiQ),

where a] = X, [Q*Q].

The Kaniel-Paige theory (Kaniel [1966]) shows that it is the extreme (leftmost

and rightmost) eigenvalues which are most likely to be approximated by some of the

dj.  Moreover, the rapidity of convergence, as / increases, depends on the (unknown)
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gaps between 4's eigenvalues. Cases have occurred in which an unusual distribution of

eigenvalues coupled with special t/.'s have caused interior eigenvalues to come out first.

See Cline, Golub and Platzman [1976].

In principle, then, the Lanczos algorithm should be continued, with periodic

pauses, until, and only until, adequate approximations to the wanted eigenvalues and

eigenvectors are in hand.  This sometimes happens for values of/ as small as 2\fn~,

another attraction of the method.

In practice, things are not this simple.  With finite precision computation con-

vergence goes hand in hand with loss of linear independence among the q¡, and so the

error bounds cease to be valid by the time the first of the 8¡ converges.

Before leaving the context of exact arithmetic we want to emphasize the value

of the bounds ß,t.  They show why the absence of small ß- does not impede conver-

gence of some of the 0¿ to eigenvalues and the computable numbers s,,, show which

of the 0- are converging.  There are extensions of Theorem 3, which allow a bunch of

close 0's and their ^'s to be treated simultaneously; the gap then becomes the distance

of the cluster from eigenvalues not associated with the cluster.

4.  Orthogonality Versus Convergence.   The use of finite precision arithmetic

provokes significant departures from the exact version of the Lanczos algorithm de-

scribed above. In order to examine these effects we turn our backs on the quantities

which would be produced by use of exact arithmetic and make a standard change of

notation.  The symbols Q,, T-, a-, ß- from now on denote the computed quantities

stored in the computer under these names.  We shall not try to compare them with

their Platonic counterparts but instead we will seek the (more complicated) relations

which do hold between the objects on hand.

The fundamental equation (3.3) becomes

(1) AQ, = Q,T, + rtf-Ff,

where F, accounts for local round-off effects.  Paige has shown that if the algorithm

is implemented correctly, F- is harmless, satisfying an inequality of the form ||F.|| <

0(«)e|¡4|| for some almost linear function 0 (Paige [1972], [1976]). The orthogonality

relation (3.4) fails and in its place we write

(2) \\l-Q*Q.\\<Kj.

In the last section we given an expression for k •; but here we focus on the more

special and more important issue of orthogonality loss among the vectors y, =

Qfr, i = 1, . . . , /, which we continue to call Ritz vectors despite the fact that the

optimality with which they approximate eigenvectors of A departs hand in hand with

ô;.'s orthogonality.
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In Paige [1971] can be found the following remarkable results in which the

bottom elements s¡ (= e*s.) of J's eigenvectors s¡ appear again.

Theorem 5.  Consider the jth step of the simple Lanczos algorithm, and drop

the index j on which all the quantities depend.   The computed approximate eigenpairs

(Ö,-. y¡), i=l, ■ ■ ■ ,j, satisfy

yfyk = \gu(sjklsji) - Skk(sjilsjk) + fik 1 Kei ~ek)'   f * *>

where G and F are round-off matrices; \\G\\ = ||F|| = eV« \\T\\, where e is the relative

precision of the arithmetic.  Moreover,

ypj+1 = sulßji = giilißf i-s/i i).    i = i,...,/.

The bottom elements of the s¡ appear in a special way.  With any good program,

S will be orthonormal (to working accuracy) so that Ej-xS« = 1.  If

(3) \sjk\ = \sfi\ = r1'2,    10,- - ek\ > imi/ioo,

then the error bounds (Theorems 3 and 4) on 6¡ and 0fc indicate that they are poor

eigenvalue approximations while Theorem 5 shows that y¡ and yk are orthogonal to

working accuracy.  Conversely, if \sJ < 10~3, say, then 0- (if isolated) is a good

eigenvalue approximation, yi is good too, and y¡ will not he orthogonal to any

unconvergedyk (indicated by sfc =/_'/2). Since S is orthogonal to working accuracy,

it is Q. which must have lost orthonormality.  The better the approximations 9¡ and

y¡ the greater the departure of Q from orthogonality.

A further analysis (Paige [1971] ) shows that xh < \\y¡\\ < 2 provided that the

0's are not too close.  What this means in practice is that Ritz vectors y,- cannot shrink

alarmingly unless there are two or more 0's approximating a single eigenvalue X.  Our

orthogonalization forestalls this calamity.

As the Lanczos algorithm proceeds with increasing /, the loss of orthogonality

among the Lanczos vectors {q¡} is widespread but has no apparent structure.   It is

the Ritz vectors {y■} which display the pattern of the loss of orthogonality.  Un-

converged Ritz vectors will be mutually orthogonal while both the unconverged Ritz

vectors and q +, will have strong components in the direction of Ritz vectors which

have nearly converged.

Example of Loss of Orthogonality.

« = 6.

4 = diag(0., .00025, .0005, .00075, .001, 10.).

qx -6-**(l., 1., 1-, 1., 1., l.)T.

Unit round off = 10"14.

Simple Lanczos was run for six steps.   Y6 = Q6S6.
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<#>6

.10E+01

.75E-14

.30E-10

.25E-06

-97E-02

.41E+00

.75E-14

.10E+01

.33E-10

.55E-06

-22E-01

.91E+00

-.30E-10

.33E-10

.10E+01

-.97E-10

.19E-05

.79E-04

.25E-06

.55E-06

.97E-10

.10E+01

.11E-09

.23E-08

.19E-05

.11E-09

.10E+01

-.12E-12

.79E-04

.23E-03

.12E-12

.10E+01

-* .62E-05

I
.62E-05

.32E-03

.68E-03

.99E-03

.10E+02

.10E+02

.10E+01

.53E-10

.18E-10

.16E-13

-.12E-12

-.41E-08

.32E-03

.53E-10

.10E+01

.39E-14

.18E-10

.93E-13

.98E-08

.68E-03
*

Y Y

.18E-10

.39E-14

.10E+01

.53E-10

.78E-13

.98E-08

.99E-03

.16E-13

.18E-10

.53E-10

.10E+01

.13E-12

.41E-08

.10E+02 . 10E+02

.12E-12

.93E-13

.78E-13

.13E-12

.41E-08

.98E-08

.98E-08

-41E-08

Note that the general loss of orthogonality seen in Q*Q6 is represented in Y%Y6 as

the second copy of the eigenvector associated with the eigenvalue 10.

5.  Selective Orthogonalization.   One way to restore orthogonality to Q- is to

use the modified Gram-Schmidt process in order to force q -+, to be orthogonal to

all previous q's. Besides the ever increasing expense in arithmetic operations, this

reorthogonalization process requires the presence of all the q¡ at each step.  Paige's

result suggests that linear independence of the q's can be maintained by merely orthog-

onalizing the q's against a few selected vectors, namely the Ritz vectors which have

nearly converged.   Hence, the name of the algorithm.

The modification of the simple Lanczos process is as follows.  At each pause 7\

is diagonalized and the bounds on the not-yet-computed Ritz vectors are inspected.

Those Ritz vectors with error bounds less than Ve||4 || are declared good, are computed,

orthonormalized, and then stored in the fast memory.   From that point until the next

pause all future q's are kept nearly orthogonal to these directions.

It might appear to be necessary to orthogonalize only q+x and _/+2 against

these good y's.   It follows from (3.5) that all subsequent q's would remain orthogonal

to them.   In finite precision, however, the error vector in each computation of Aqk

will bring back small multiples of all A's eigenvectors.  Fortunately, it is not necessary
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to orthogonalize r- against the y's at every step as Section 7 reveals.

The purpose of selective orthogonalization is to prevent the computation of many

unwanted copies of all the well-separated outer eigenvectors.  This reduces the number

of Lanczos steps required to compute the wanted eigenvalues and eigenvectors and so

keeps the number of calls on the large matrix 4 as low as possible.  The algorithm

must compute and store good Ritz vectors even if some of them are not wanted by

the user.   For example, if the three eigenvectors at the left end of the spectrum are

wanted, the algorithm may well have computed three or more eigenvectors at the right

end as well, should they happen to be better separated from the rest of the spectrum

than are the ones we want.

Example of Selective Orthogonalization.

« = 6.

A = diag(0., .00025,..0005, .00075, .001, 10.).

Unit round off

-6-*(l., 1., 1., 1., 1., l.)r.

10
-14

The Lanczos algorithm with selective orthogonalization was run for six steps.  It

paused after four steps and computed a good Ritz vector for the eigenvalue 10.  It

then took two more steps orthogonalizing against this vector.

QÍQ, for Selective Orthogonalization

.10E+01

.75E-14

■.30E-10

.25E-06

-. 11E-09

.92E-10

.75E-14

.10E+01

.33E-10

.55E-06

.51E-10

-.36E-10

■.30E-10

.33E-10

.10E+01

-.97E-10

•.44E-10

-.37E-07

.25E-06

.55E-06

-.97E-10

.10E+01

.24E-07

-.64E-08

-.11E-09

.51E-10

-.44E-10

.24E-07

.10E+01

.10E-13

.92E-10

-.36E-10

-.37E-07

-.64E-08

.10E-13

.10E+0.

Note that the leading 4x4 principal minor is the same as in the earlier example.

Robust linear independence has been maintained by selective orthogonalization.

6.  When to Pause.  There are five possible strategies for deciding when to pause.

The simplest (and cheapest) is to pause every m steps, where m is some constant,

possibly depending on « = dim(4), but independent of all other characteristics of 4.

Such a plan is completely insensitive to the loss of orthogonality in Q- and is un-

satisfactory in practice.

Paige and others have suggested keeping q   in fast store and computing q*q¡

as a measure of the loss of orthogonality.  This is not cheap since it requires the

storage of an «-vector as well as the computation of a vector inner product at each

step.   This scheme usually works quite well.   However, this estimate is a lower bound

rather than an upper bound on ||/ - QfQA\. Therefore, on occasion, the pause may come

too late and disastrous failures of this kind are possible in practice.   Furthermore, it is
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not clear how to apply this scheme, after the first pause, for deciding when to pause

again.

Kahan and Parlett [1974], [1976] have described two different schemes for

bounding \\I - QfQ.W-  The scoreboard majorizes the matrix / - QfQ¡, which requires

j2 storage locations.  Since the orthogonalizations will permit the Lanczos process to

continue well beyond/ = v^ steps, this storage cost becomes excessive.  The other

scheme is a scalar bound k • on \\I - QfQ. ||.  Only a few arithmetic operations are

needed to update k at each step, independent of both / and n.

Rather than monitoring the loss of orthogonality, it is also possible to monitor

convergence of the Ritz vectors instead.   If the ß,( are calculated at each step (or even

a few of them from each end of the spectrum), the moment to pause can be determined

exactly.  One way of doing this would be to calculate all the Ritz values at each step

and use a formula from Paige [1971] that states that

(O 4 = -WW'»>'

where x.-O-O is the characteristic polynomial of T¡.  Another way would be to calculate

a few eigenvalues of T- at each end of the spectrum, and then use inverse iteration to

find the bottom elements of the corresponding eigenvectors.

The program described in the rest of this paper uses the kappa bound exclusively

to determine when to pause.  The details of the implementation are given in Section

14.

On the other hand the possibility of directly monitoring convergence is quite

appealing.  This approach, used on its own or in conjunction with the kappa bound,

is being actively investigated.

7.  Monitoring the Return of Banished Ritz Vectors.   Let y be a good normalized

Ritz vector, and let r, be a bound on \y*qA, the unwanted component of y in q..

There is a simple three term recurrence governing the r's.   We have

(1) Ay = dy + r   (r is not to be confused with r).

The quantities computed in the /th step of the Lanczos algorithm satisfy

(2) ?/+1ßj = M, - q,*, - ?/_,ßj- , + ff,

where /■ accounts for the round off and ||/|| < i-e||4 || for some constant v which

depends on 4 but not on /.   Hence,

(3) y*Qj+1 ßj = y*Aq¡ - y*qfx¡ - y*q¡_, /»,_, + y*fr

Because \y*q¡\ < T¡, (1) and (2) yield
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(4) \y*ql+i\< [W-ajWj + ßj-iTj_x + \r*q¡\ + w||4||]/p\ = Tj+X.

Moreover, r = qk+xßki for some k </, so \r*qÀ < fiki\qkq¡\ < P\,Vë = 0(e||4||).

Since v and \\A || are not   readily available, the program simply drops the last two

terms in (4).  Each time that a pair of q's are explicitly orthogonalized against y the

corresponding r's are set to e.    Then the recurrence is updated by (4) at each step

and tested.   As soon as r- again exceeds the tolerance, y is explicitly deflated out of

q¡ and qJ+,.  The tolerance is not critical (Vë seems to be an appropriate value).

Along with each computed Ritz vector is stored the associated eigenvalue 0¿,

the residual norm estimate /?.., and cells for the current and previous r-values.  The cost

of updating this information is negligible.  Thus, r may be thought of as a two-rowed

array of length equal to the number of good Ritz vectors.

8.   Flowchart I.   Lanczos with selective orthogonalization, ample storage and no

multiple eigenvalues.

No

Initialize.
Permits input of q,,

Take a Lanczos step.
Update t.
Purge if necessary.
Update K.

Is k  > /e?

Yes

Compute partial
Eigensystem of T and
test the ß..

Enough acceptable]
vectors? J

Notes.
1. k monitors loss of
orthogonality and is de-
scribed in Section 14.

2. t monitors the com-
ponents of the current
Lanczos vector in the
directions of the good
Ritz vectors. See
Section 7.

3. A good Ritz vector need
not be one which is wanted.
It may not be quite accu-
rate enough to be accepted
yet or it may belong to the
wrong end of the spectrum.

4. Good Ritz vectors will
be recomputed at each
pause.

Compute and store
good Ritz vectors.
Initialize x-vector.
Store Ritz values.
Reset k

Compute and store
accepted vectors.
Store Ritz values.

Return
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9. Running Out of Storage.   Information is always lost when the Lanczos process

is restarted.  Since our algorithm maintains semiorthogonality among the »/-vectors at

a modest cost, the usual reason for restarting is not present.   However, since the

available storage may be quite limited on some computer systems, the program must be

capable of restarting when necessary and as much information as possible should be

retained.

Every time that storage has been exhausted, the program calculates and

permanently stores all acceptable wanted /.-vectors and all good vectors not among

those desired.  It also stores the corresponding Ritz values and sorts all the permanently

stored Ritz vectors by increasing Ritz value.

There remains the question of what the starting vector should be.  The new q1

is currently taken to be a linear combination of some of the Ritz vectors which are

not acceptable.   The one with smallest residual /..,■ is always used as well as any others

which have converged to half the acceptable accuracy.   The weights for the linear

combination are the reciprocals of the /..,-.  Other choices for the restart vector could

be made.   Before restarting qx is orthogonalized against all the permanent vectors,

and the r-vector (see Section 7) is initialized.

10. Multiple Eigenvalues.   Since the Lanczos algorithm only examines the sub-

space spanned by the vectors (qx, Aqx, A2qx, . . . , A'qx), it is unable to detect any

eigenvector which is orthogonal to qx.  In particular, it is incapable of finding multiple

eigenvalues.   If V is the eigenspace of a multiple eigenvalue X, then the Lanczos

algorithm will find only the single eigenvector in the direction of the projection of

-/, onto V.

Despite this, the program finds multiple eigenvalues quite naturally.   Rounding

errors introduce components in all directions.   After one eigendirection of a multiple

eigenvalue has been found the components in orthogonal directions will persist after

purification.  These components will grow as the algorithm continues until a second

eigenvector, orthogonal to the first, has been found.

Since multiple eigenvalues are found sequentially instead of simultaneously, a

more sophisticated termination criterion is needed.   For example, if 4 has a double

eigenvalue at zero, a simple eigenvalue at 1, and the rest of the spectrum larger than

2, then the program will find an eigenvector of 0 and the eigenvector of 1 at about the

same time.  Therefore, if the program finds enough acceptable vectors it must decide

whether to start over again to test for undisclosed multiplicities. Currently, the

program makes a test run if, at the last pause, more than one acceptable eigenvalue is

found, or if the only one found is in the convex hull of the rest of the acceptable

eigenvalues found so far.  This strategy is rather conservative and will often make test

runs which are unnecessary.   However, with this criterion multiple eigenvalues will

always be correctly unearthed.

11. Can Low Accuracy Be Achieved Safely?    Yes.  The user desired accuracy

is used only in determining which of the desired vectors should be saved permanently
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when the process is started.  A simple perturbation argument shows that any eigen-

value found after a restart is perturbed by no more than the   maximum of the norms

of the residuals of the permanent vectors.  Consequently, eigenvalues found on later

passes will be of the same order of accuracy as those found earlier.

12.   Flowchart II.  Modifications of Flowchart I to cope with limited storage

and multiple eigenvalues.

Initialize variables,
qi may be specified.
Sane R-vectors may be specified.

Key

Take a Lanczos step.
Update T-vector.
Purge as indicated by x.
Update k.

elements of Flowchart I

modifications to Flowchart I
in italics

control path in Flowchart I

i or out of storage!

Yes

References

x-vector

<

test

good

acceptable.

Section 7

Section 5

Section 10

Section 5

user specified

Calculate Eigensystem of T.

Is this a test?

No

Enough acceptable vectors?
or out of storage

No

Compute and store good
R-vectors and R-values.
Initialize x-vector.
Reset k.

Sort, compute, and store
good and acceptable R-
vectors and R-values.

13.  Some Numerical Comparison for Lanso.  We present some comparisons of

LANSO (Lanczos Algorithm with Selective Orthogonalization) with published examples

of block Lanczos programs written by R. Underwood and by J. Cullum and W. E. Donath.

We have numbered the examples as they appear in the references.   Unfortunately, the

number of vector inner products needed by the Cullum and Donath program is not

available.  After the comparison we also trace the history of LANSO as it solved the

problem.  In all but the last example, significant effort was spent on the final multiple
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eigenvalue check.  A modification is planned which would reduce the length of the

check run significantly.

Underwood Examples. (Example 2 omitted.)

Example 1.  This example has a cluster of three eigenvalues well separated from

the rest.  Three eigenvalues were requested (nval = 3).

n = 453, nval = 3, ifig = 8 = no. of correct decimal digits desired

X, =-10., X2 =-9.99, X3 =-9.98, X,. =-9. 4- .02 x (; -4), i =4, 5,..., 454

matrix-vector
products

vector inner
products

max error in
eigenvalues

max residual
norm

Block Lanczos

LANSO

165

70

1265

191

10

10

•13

-11

3x10

3x10

-6

-6

History of LANSO (mxstep = 50. = maximum no. of Lanczos steps permitted

in a run)_

pause at j

restart
(check)

26

44

26

2.4

3.4

1.1

new k

1.6x10
■12

comments

3 vectors found

terminate

Example 3.  This example is a purely linear distribution.  It is the most difficult

of the Underwood examples since the eigenvalues desired are not well separated from

the rest.

« = 101, nval = 6, ifig = 5

X, = -(101 -o/ioo

matrix-vector
products

vector inner
products

max error in
eigenvalues

max residual
norm

Block Lanczos

LANSO

350

112

1974

383

10
-9

10
-7

2x10

1 xlO

-5

-4

History of LANSO (mxstep = 50.)

pause at j = new k comments

restart

restart
(check)

27

46

50

20

36

26

2.8

2.4

3x10"

3.1

.92

2.2

1 x 10

6x10

-12

■10

4x10
-11

3 vectors found

3 more vectors found

terminate
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Example 4.  This example has two double eigenvalues separated from the rest

of the spectrum.  Note that LANSO finds the eigenpairs to higher precision than

desired.  This is very common when low accuracy is desired for well-separated

multiplicities.

« = 180, nval = 4, ifig = 4

0, X, .1, X,. = .25 4- .01 x (/ - 5), for / = 5, 6, .... 180

block size = 1

block size = 2

block size = 3

block size = 4

LANSO

matrix-vector
products

158

125

140

317

120

vector inner
products

997

725

699

1330

361

max error in
eigenvalues

2x10
-9

3x10
-13

max residual
norm

1.5x10

5x10

-4

History of LANSO (mxstep = 50.)

pause at j = new k comments

restart

restart
(check)

25

38

44

50

19

34

44

j=26

1.8

3.5

1.0

.12

2.7

2.5

2.2

1.6

3x10

6x10"

1 xlO"

-9

1 xlO

2x 10"

-10

2 vectors found (one of each)

2 more found

terminate

Example 5.  This example has a triple eigenvalue between a single and the rest.

Note that the rest of the spectrum is not  linear which improves convergence.  Note

that LANSO finds five vectors, all with better accuracy than desired.  The new

multiplicity check will make the most difference on this example.

« = 300, nval = 3, ifig = 3

X, = 0, X2 = X3 = X4 = .1, X,- = 1 - 3/(/ - 1), for i = 5, 6, 300

block sizes of 1, 2, and 3 were tried but only the best, block size = 3, was

reported

matrix-vector
products

vector inner
products

max error in
eigenvalue

max residual
norm

Block Lanczos

LANSO

36

67

288

249

2x10

2x10

-9

■13

3.3x10

5x10

-4

-9
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History of LANSO (mxstep = 50)

pause at j = new k comments

restart
(check)

restart
(check)

restart
(check)

17

16

16

18

2.9

9.1

1.6

5.1

0,   .1, and  .25 found

another .1  found

another  .1  found

terminate with 5 vectors

Example 6.  This is just the previous example with the triple eigenvalue slightly

perturbed.

n = 300, nval = 4, ifig = 3

X, = 0, X2 = .0999999, X3 = .1, X4 = .1000001, X,- = 1 - 3/(i - 1), i = 5, 6,

. . . ,300

matrix-vector
products

vector inner
products

max error in
eigenvalues

max residual
norm

Block Lanczos

LANSO

54

58

408

204

2x10

2x10"

-8
9x10

6x10

-4

History of LANSO:

pause at j ■ new k comments

restart
(check)

restart
(check)

18

24

16

18

5.5

2.4

1.5

8.0

5x10
-7

4 vectors  found:  0,   .1,   .1,
and  .25

another .1   found

terminate

Cullum and Donath Examples.

Example 7.1 B.  This example has two eigenvalues with a good separation from

the rest.

« = 316, nval = 2, ifig = 9

K = 0'K-i =--l,Xn_,. = -.6-.03 x (i-2),/= 2, 3.n-l

matrix-vector
products

vector inner
products

max error in
eigenvalue

max residual
norm

BLAN

LANSO

94

69 179

6x10

6x10'

-10

•12

2x10

3x10
-6
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History of LANSO:_

pause at j =

restart
(check)

26

43

26

1.2

1.2

2.7

new k

8x10 12

comments

2 vectors found

terminate

233

Example 1.4A, A. This example has two eigenvalues with less separation than

the previous one. A higher value for mxstep (say 100 instead of 50) would improve

the convergence rate for LANSO.  Note again that LANSO produces more accuracy.

n = 201, nval = 2, ifig = 11

\ = 0, X„_, = -.01, X„_,- = - .1 - .05 x (/ - 2), fori = 2, 3, ...,«- 1

matrix-vector
products

vector inner
products

max error in
eigenvalues

max residual
norm

BLAN

LANSO

184

142 346

3x10

5x10
■14

5x10

2x10

-6

History of LANSO (mxstep = 50)

pause at j

restart

restart

restart
(check)

27

46

50

21

37

50

15

27

2.5

1.2

3x 10"

1.8

2.0

.57

1.2

3.1

new k

9x10

6x10

•13

•12

1 xlO

2x10

■10

-9

comments

mxstep

mxstep,  1  vector found

second vector found

terminate

Example 7.4A, B.  The two eigenvalues are much closer together this time.  This

slows the convergence rate for LANSO somewhat.

Same as 7.4A, A except X„_, = - .0001

BLAN

LANSO

matrix-vector
products

184

156

vector inner
products

353

max error in
eigenvalues

7x10

3x10

-12

■14

max residual
norm

2x10

2x10"

-6
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History of LANSO (mxstep = 50)

pause at j

restart

restart

restart
(check)

27

46

50

20

37

50

20

30

26

2.7

1.6

3x10"

1.0

.98

3.2x10

2.3

1.0

2.5

-2

new k

1 xio

7x10

12

-11

1 xio

1 xlO

-11

-10

4x10
-7

comments

mxstep

mxstep

2 vectors found

terminate

Example 7.4A, C.  With the two eigenvalues equal the convergence is about the

same as for BLAN.  Setting mxstep = 100 would improve LANSO.

Same as 7.4A, A except X„_, = 0.

BLAN

LANSO

matrix-vector
products

184

186

vector inner
products

490

max error in
eigenvalues

2x10

1 xlO

-12

■14

max residual
norm

2x10

2x10

-6

-7

History of LANSO (mxstep = 50)

pause at j new k comments

restart

restart

restart

restart

27

46

50

20

33

43

50

15

27

45

50

20

2.7

1.7

3x10*

1.5

3.9

1.1

.26

2.5

3.0

1.3

3x10

1.9

-7

1 xio

7x10

•12

■11

2x10

3x10

7x10

-7

-6

1 xlO

1 xlO

•12

•10

mxstep

mxstep, 1 vector found

.1 found

mxstep

other 0 found, terminate
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14.  The Kappa Bound.***   Let k, be an upper bound on the error committed

in normalizing an «-vector, so

(1) H -\\q,\\2\<Kl,    for all/.

k, will depend on the arithmetic unit, the square root routine and other details of

the program.   Suppose that numbers f,- are known such that

(2) llö/-7/+1IK.>    for all/.

Then define k/+ , by

~Ki     */]

Si   Ku
(3) V+i = [k, + K, + VO-,-/-,)2 +4f?]/2.

Lemma 1. // ||1 - Q*Q}\\ < k, then 111 - Qf+,Q.+ , || < k/+ ,.

i-ß;+1ß/+1n<

\l-QfQ,l\       \\-Qfqi+x\\

-qf-iQjii n-«;+,i/+1i
D

In order to compute k ■ we must first compute f ■.  The vector »/ +, is obtained

by dividing r;- of (4.1) by (3;-.   Hence,

(4) llß;-//+1ll<llß/ir/.||/p,/ + llß/%/ll,

where g- accounts for the error introduced by the division by ß-. g¡ is always small

and satisfies   ||g|| < e, where e is the relative machine precision.  To bound ||<2.*r-ll we

first prove the following result.

Lemma 2.

Qfrj = [(1 - ö*ö/)7} - (1 - e/epT¡0 - QfQji\ e, - F*qj+,

4- iqfAgj - aj)ej + Qff;..

Proof.   Recall Eq. (4.1), namely

(5) AQj = QjTj + rjef-Fj.

***The three lemmas are taken from the unpublished report (Kahan and Parlett [1974)).
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Then we have

Qfr, = Q*iAQ} - Q¡Tj + Fj)ef,   using (5),

= iQfAQj - Q*jQ¡Tj)e¡ + Q*f¡,    where /. = Ffr

= [(AQj)*Q¡ - QfQjTj]ef + Q*fjt   using A* = A,

= [TßPf - FJQ,- + etfQj - QJQjTj] e¡ + QJfj,    using (5) again,

= [ - 7}(1 - Q*Q¡) + (1 - QftyTj - FfQj) e, + effQft + Q*f},
adding and subtracting T,.

Finally, using the second line above,

éJQfr, = ef iQfAQj - QjQjTfo

= qJAqf - éjQjQfTfy

= qJAqraj + e*jil-QfQj)Tñ.

After transposing, substituting, and rearranging terms the lemma's assertion is obtained.

D

The expansion for Q*r. falls into two parts ß*r- = c- + d-, where

e, = [(1 - QJQj)Tf - (1 - efpTfA - Q?¡Qjj\e¡t

dj = -F*qj+x +iqfAqj-a.)ef + Qfj.

Using the stable implementation of the algorithm analyzed by Paige [1976], d- is

always tiny.   In practice, it has been found that the contribution of d, to ß*r- can be

ignored completely in computing the bound f..

Lemma 3. Let \\Qfqi+ , II < f,, for i </.   Then

Ik,I < nC7>_, -OfMj-t +ß/-i(S,-i +f/_a +2ie1) + la»l«i-

Proof.   Partition T¡ and 1 - QfQf. to find

i - Ik/«2

(6)

0-QfQj)Tn = «,+
-ß;-2«/-i

_ IU 1,2

-1*11-1

ß> 1'

Tß - QfQ^e,
op-Wq^-ß^q^q,

The factor (1 - e-ef) simply annihilates the bottom element.  Moreover, by (1),

ll-lk/KK-,    and    \qJq,_1\ = \qJ_1q)\<Çi_1.

The bound is obtained by collecting terms. D

Finally, to compute numbers we need a value for k,.  It can be shown that

K, = (« 4- 6)e will do.  We also use || T,  , - all«, as an upper bound on \\T;X - a-||.



LANCZOS ALGORITHM WITH SELECTIVE ORTHOGONALIZATION 237

After the program has made a pause, it is necessary to reset the kappa recurrence

in order to use it to determine the next pause.  To do this we make use of Theorem

5 (Section 4) which states

(7) y*-?/+i =galßji-

The quantities j3.. are available at a pause.  A current estimate of |[4|| (= max|0|) is

also available.  An estimate of f. is obtained from the formula

(8) t^eUMfy,

where j3;/- is the minimum of the fl.f above the tolerance.  To restart the recurrence

fy_, and k, are set to this value as well.

To avoid a search over all of T_x to compute \\T-_X - aÀ\x, the program

maintains values for AMAX, AM IN, and BMAX which are, respectively, the largest

a, the smallest a, and the largest beta from T,_..  These values permit the program

to compute the right-hand side of

(9) \T¡_ x - c-yll < max {AMAX - a/; af - AMIN} 4- 2 * BMAX.

Further, if the program pauses at step /, the eigenvalues of T- must be computed.  If

TLARGE and TSMALL are the largest and smallest eigenvalues of T., respectively,

then

(10) \\Tk_x - ak\\ < max{max(TLARGE - ak, ak - TSMALL), \\TJ(_1 - afc|i} + ßf,

where

"a/+i       ßj+i

ßj+i    ■

ßk-2

ßk-2 Ûfe-i   -I

Ti =
1 k-l

and lir¿_j - a-.il is estimated as in (9).
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