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How to Make the Lanczos Algorithm Converge Slowly

By D. S. Scott*

Abstract.   The  Paige style Lanczos algorithm is an iterative method for finding a few

eigenvalues of large sparse symmetric matrices.   Some beautiful relationships among

the elements of the eigenvectors of a symmetric tridiagonal matrix are used to

derive a perverse starting vector which delays convergence as long as possible.   Why
i

such slow convergence is never seen in practice is also examined.

1.   Introduction.  In 1950 Lanczos [2] presented an algorithm for reducing a

symmetric matrix, call it 4, to tridiagonal form.  The algorithm begins with an arbitrary

unit vector qx.  It produces a tridiagonal matrix T and an orthogonal matrix ß such

that

(1) Q*AQ=T   and    Qex =qy.

In practice the algorithm could not compete in speed or accuracy with later methods

based on explicit orthogonal transformations.

In 1971 Paige [3] introduced a modified version of the algorithm which could

be used effectively to find a few eigenvalues, and their eigenvectors too if desired, of

a large sparse symmetric matrix.  Paige suggested terminating the process prematurely

at, say, the /th step with T- the / x / leading principal minor of T and ß;- the first /

columns of ß in hand.  In exact arithmetic

(2) QfAQj = 7}

Let the spectral decomposition of T he

(3) 7} = SfèSf    with © = diag(0'., 0'2,

Define

Yi-&vA.y¡) ^Q,sr

Then 6\, 6'2, . . . , 0'- are the Rayleigh-Ritz approximations to the eigenvalues of 4

(commonly called Ritz values) derivable from the subspace spanned by the columns

of Qj, and y,x,ys2, . . . , yi are the corresponding Ritz vectors.  The norm of the
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residual of y¡, namely |j4y \ - ö/y.'ll, is a bound on the accuracy of d'¡ as an approxi-

mation to an eigenvalue of 4.

The Kaniel-Paige error estimates [1], [3] lead us to expect that some of the

eigenvalues of T, should converge (have negligible error bound) for/ « «, provided

only that the starting vector qx is not pathologically deficient in the corresponding

eigendirections of 4.  Numerical tests by Paige and other researchers have confirmed

that convergence occurs relatively quickly.   Despite this abundance of evidence,

Paige was unable to prove that convergence of some Ritz value must occur before

/ = n = dim(4) at which point, in exact arithmetic, T is similar to A so that all the

"approximations" are exact and all the bounds are zero.

There are several interesting unresolved problems connected with the Lanczos

process.  Except in its last section, this paper is restricted to the theoretical behavior

of the algorithm in the context of exact arithmetic.  In the following section we

derive some beautiful relationships among the elements of the eigenvectors of a

symmetric tridiagonal matrix which may be of interest in their own right.  In Section

3 these results are applied to obtain formulas for the Lanczos starting vector.  In

Section 4 these formulas are used to find a perverse starting vector for matrices with

well-separated eigenvalues which delays convergence until / = «.  Section 5 generalizes

the construction to matrices with close or multiple eigenvalues to yield a vector which

delays convergence for a long time.  The final section will indicate why such slow

convergence is never seen in practice.

2.  The Eigenvectors of a Symmetric Tridiagonal Matrix.

Definition.   Let ad](R) be the transpose of the matrix of cofactors of R.  This is

usually called the adjugate or classical adjoint of R.   By the Cauchy-Binet theorem

(1) R ad](R) = det(Ä)/.

Theorem 2.1 (Thompson and McEnteggert, 1968). Let A = ZAZ* with

A = diag(X., X2, . . . , Xn), Z = (z., z2, . . . , zn) and Z*Z = /. Then for i = 1,2,

3, . . . ,«

adj(y-4)= n (h-\)^r=x'Ai\)ztzr,
1=1

where xAiyi) is the derivative of the characteristic polynomial of A.

Note that if \ is a multiple eigenvalue of 4, then xAQ\t) ~ 0> so that the

ambiguity in the choice of eigenvectors doesn't matter.

Proof.   Let p =£ X;, for all /', so that (p/ - A)~x exists.   Then

adjO-t/ - 4) = detißl - A)(pl - A)~ '

= XA(p)Z(pI-A)-XZ*

= ZAZ*,

where A is diagonal and
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XAiM) JL .
kk     ß~K       ¡A '

Since computing cofactors does not involve division, adj(/.) is a continuous function

of R.  Therefore, the last equation must hold even for p = \.  Setting p = X., for

i = 1,2,3, ..., n, yields

adj(X/- 4) =ZAZ*,

where

\k= n (\--\-) = o
/=-
/#*

if k # /,

= n (\ - v if *='•/=!

Since níLj^fíX, - X;) = x^(\), the result follows.    D

Thompson and McEnteggert were working with general Hermitian matrices.

The application of their theorem to tridiagonal matrices was made by Paige [3].

Notation.   Let

T    =r,t

«r     ßr

ßr     «r+1       ßr+l        O

ßr+l ar+2

O 0.-1

Jr-i      a.

let xr Aß) = det(p/ - Tr t), the characteristic polynomial of Tr t; and let xr>r_i(0 =

1 for all r.

Theorem 2.2 ( Paige, 1971). Let T=TXn= S@S* with 0 = diag(0., 02,. ..,0„)

and S*S = I.   Then for r < t and all i,

X;,„(Ö,-)V.I = XUr-l(Gl)ßrßr+l   ■ ■ ■ ßt-lXt+l,nVi)-

In particular,

x'i,„(ei)*ri = Xl,r-liOí)Xr+i,n(6i)-

Proof.   By Theorem 2.1

(2) adj(0,./-7) = x',,„(Ö,)vf-

The (r, t) element of the RHS of (2) is x'i,„iO¡^r^tr  Because of the tridiagonal form
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of T, the (r, t) element of the LHS of (2) is Xi>r_i(0,)0A+i ' ' ' ^.-iX. + i ,n(dd-

For example,

V-3TM

(v5) "^
—/3,        0,- - a2       -02

©        0/ - <*3 "03

-^3 ,• - a4      _^4

"04 0i - aS ~ßs

-05 Ö.   - a6j

The circled elements contribute to the (2, 3) cofactor.  Note that the minus signs on

the ß's cancel with the alternating signs associated with the cofactors.    D

3.  Formulas for Starting Vectors.   The Lanczos algorithm begins with an

arbitrary unit vector qx and terminates with a tridiagonal matrix Tand an orthogonal

matrix ß such that q. is the first column of ß and 4 ß = QT.  The process is

geometric, i.e. it is invariant under orthogonal changes in coordinates.  The coordinates

which give the most insight into the process are the eigenvectors of 4.

In these coordinates the operator 4 is diagonal and the matrix ß becomes the

transpose of S, the matrix of eigenvectors of T.  The matrix equation AQ = QT

becomes

(1) AS*=S*T,

where A = diag(X,, X2, . . . , Xn).

Theorem 3.1. Let AS* = S*Tas above.   Then for i = 1,2, ... , «

0) h^nûCA^i) = 0102 "" 0/1-1 - nn a constant,

00  s«/Xa(a,) = Xi,„_,(\).

Proof.   Since A is similar to T, XaOO = XrO-O = xO-0-

(i)  This is Theorem 2.2 with r = 1 and t = n.

(ii)  This is Theorem 2.2 with r = « and t = n.    O

In order to refer to the Lanczos vectors, we need names for the columns of S*.

For this purpose, when 4 = A, we define

(2) P = ipx,P2,.-.,Pn)=S*.

Theorem 3.1(f) relates the first Lanczos vector p, to the last Lanczos vector

pn.  Theorem 3.1(h) relates pn to the eigenvalues of Tx      , which are the approxima-

tions to eigenvalues of A furnished by the (n - l)st step of the Lanczos algorithm.

Since Tx n is similar to 4, the Cauchy Interlace Theorem requires that the eigenvalues

of Tn_x, call them p., p2, . . . , pn_x, satisfy the inequalities

(3) X.<p. <x2 < < "«-l <x«
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Since Tx n, the tridiagonal matrix produced by the Lanczos algorithm, will be

unreduced, the interlacing must be strict.

Theorem 3.2. Let A = ZAZ* with A = diag(X., X2, . . . , X„) and Z*Z = I.

Then the Lanczos algorithm run with a starting vector q, produces a Tx      . with

eigenvalues px < p2 < ■ • • <pn_x if and only if qx = Zpx, where

P2n = nl

n- 1

n (\--vn (\-m/)
lP1 /=1

-1

= ^[x'(A,)x1,n_1(A)]

Strict interlacing is required to make the quantity in the brackets positive for all /'.

Proof.   The Lanczos algorithm produces the same T whether it runs on the

pair (4, qx) or (A, p.).  Combining the two parts of Theorem 3.1 and changing to

the P notation yields

(4) PflXih)Xi,n-l(\) = <'

for any starting vector px.

If p. is known, then by interpolation, Xi,„_i(.-0 can be found from (4), up to

a constant factor.   Hence, p., p2, . . . , p„_x, the zeros of Xi,„_i(m) can be found.

If px, p2, . . . , pn _, are given, then pfx, for / = 1, 2, ...,«, can be found

from (4) up to the multiplicative factor -n2n, which can be determined by the required

normalization of p..  The ambiguity in the choice of sign for each component of p.

merely reflects the choice of sign for each eigenvector of T.  All choices yield the

same tridiagonal matrix T.    D

The required qx depends on both the eigenvalues and on the eigenvectors of 4.

The expression qx = Zpx clarifies their roles; Z is independent of the X,-, while p,

is independent of Z.

Example.   Let A = diag(l, 3, 5, 7, 9) and p¡ = 2/, for i = 1, 2, 3, 4.

x'0)xM0) = (1 - 3)(1 - 5)(1 - 7)(1 - 9)(1 - 2)(1 -4)(1 - 6)(1 - 8) = 40320

x'(3)xM(3) = (3 - 1)(3 - 5)(3 - 7)(3 - 9)(3 - 2)(3 - 4)(3 - 6)(3 - 8) = 1440

x'(5)xM(5) = (5 - 1)(5 - 3)(5 - 7)(5 - 9)(5 - 2)(5 - 4)(5 - 6)(5 - 8) = 576

x'(7)xM(7) = (7 - 1)(7 - 3)(7 - 5)(7 - 9)(7 - 2)(7 - 4)(7 - 6)(7 - 8) = 1440

x'(9)xM(9) = (9 - 1)(9 - 3) (9 - 5) (9 - 7) (9 - 2) (9 - 4) (9 - 6) (9 - 8) = 40320,

so

Pi i =Psi   = 7r5/V40320 = .004987.-,

P21 =p41   = 7T-/V1440   = .026357rs,

p31   = 7Ts/\/576  = .04167t,5.

By normalization 7T5 = 17.749 and

p. = (.0880, .4677, .7396, .4677, .0880)*.
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The Lanczos algorithm run on A  with p. as the starting vector yielded a T4 with

eigenvalues 2, 4, 6, and 8 correct to the precision of the machine used.

Results similar to Theorem 3.2 have been used by D. Boley, C. deBoor, and

G. H. Golub [5], [6], in the context of inverse eigenvalue problems for banded

matrices.

4.  Slow Convergence.   Before examining the convergence properties of the

Lanczos algorithm in the light of Theorem 3.2, it is useful to describe in more

detail the properties of the Rayleigh-Ritz procedure.   Let W he any subspace of R"

and let Pw denote the orthogonal projection of R" onto W.  Then the Rayleigh-Ritz

approximations to eigenpairs of 4 obtained from W are precisely the eigenpairs of

PWA whose eigenvectors he in W.

Theorem 4.1. If V C W, then the Rayleigh-Ritz approximations for A obtained

from V are the same as the Rayleigh-Ritz approximations for PWA obtained from V.

Further, if(y, 0) is a Ritz pair, then \\(PwA)y -yd\\ < ||4y -y0||, with equality

holding if and only if the residual vector, Ay - yd, lies in W.

Proof.   Let Pv he the orthogonal projection onto V.  Then, PV(PWA) =

iPvPw)A = PVA, since V C W.  Since y G F C W, WiPwA)y - 8y\\ = \\PwiAy -yB)\\.

Finally, since Pw is an orthogonal projection, ILPK,(4y -y0)|| < ||4y -y0||, with

equality holding if and only if Ay - yd G W.    D

Corollary.   // V and W are nested Krylov subspaces of different dimensions,

then \\Ay-yB\\ = \\PwAy-yd\\.

Proof.   If V = Kjiqx) and W = Kkiqx) for k >/, then, since y G K¡iqx),

Ay-yeeKj+xiqx)ç Kkiqx) = W.

We now examine the convergence properties of the Lanczos algorithm .  The

reader is directed to Section 1 for the terminology.

Theorem 4.2. Suppose that the Lanczos algorithm when run on iA, qx)

produces p., p2, . . . , pn_x as Ritz values at the in - l)st step.   Let (y, 0) be a

Ritz pair from any step except the nth.   Then

■y=\\Ay-yd\\>8¿2,

where 8ß = min(.<n_. .k<n \p¡ - Xfc|.

Proof.   For any unit vector x and any scalar r it is well known that

(5) min IX, -t\<\\Ax-xt\\.
i<n

In particular,

(6) min IX,-0|<l|4y-y0|| = 7,
i<n

and

(7) min |p. - 01 < \\PwAy -y6\\ = y,

with the last equality following from the Corollary.  The smallest y which can satisfy

both (6) and (7) is 5^/2.    D
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In practice 7 cannot be as small as 6/2.  However, no significantly stronger

bound can be obtained.  In particular, the smallest residual at the (« - l)st step can

The combination of Theorem 3.2 and Theorem 4.2 yields the following.

Theorem 4.3. Let A be a symmetric matrix with eigenvalues X. < X2 < • • •

< \n.  Let bA = mini:7tfc| X. - \k\.  Then there exists a starting vector for the

Lanczos algorithm such that the residual norm of any Ritz vector at any step j < «

will be larger than 5^/4.

Proof.   If 4 has multiple eigenvalues, then 6^=0 and any vector will do, so

we may assume that 4 has distinct eigenvalues.   Let p.. = (Xf + X1+])/2, for i = 1,2,

...,«- 1, and let qx be any starting vector generated by Theorem 3.2.  With this

choice of qx, px, p , . . . , pn__ x will be the Ritz values at the (« - l)st step and

5   = 5^/2. The result now follows from Theorem 4.2.    □

If the spectrum of 4 is such that 5^ /4 is larger than some given convergence

tolerance, then Theorem 4.3 shows that there exist perverse starting vectors which

delay convergence until the «th step.  This result does not imply that no earlier Ritz

value is accurate enough; it only guarantees that the corresponding bound will not

reveal such accuracy.  In the previous example of A = diag(l, 3, 5, 7, 9) and p- =

2i, for / = 1, 2, 3, 4, 02, the middle eigenvalue of Tx 3 is 5, correct to working

accuracy.  The corresponding bound is 1.25, which shows that this fortuitous

accuracy is due to the symmetry of the example, rather than the accuracy of the Ritz

vector.

5. The Problem of Clustered Eigenvalues.   If the spectrum of 4 is such that

6^/4 is smaller than the given convergence tolerance, Theorem 4.3 does not guarantee

slow convergence.   However, starting vectors can still be found which delay

convergence a long time.

Theorem  5.1.  Let W be an A-invariant subspace of maximal dimension

such that A   = A restricted to W is such that 8A/4 is larger than the given convergence

tolerance.   Let m = dim W.  Then there exists a starting vector for A which delays

convergence until the mth step.

Proof.   Apply Theorem 4.3 to 4 to yield a starting vector qx. Since the Lanczos

algorithm run on (4, qx) yields the same T as the Lanczos algorithm run on (4, q,),

this -7j will do.    D

In general, it may be possible to delay convergence even longer.

6. The Beneficial Effects of Rounding Errors.  The slow convergence discussed

in the previous sections never seems to occur in practice.  The reason for this lies in

the formula for p. given in Theorem 3.2,

(l) Pa = *2n[x'i\)xlin-ii\)]-1.

First, we give three examples.
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Example 1.  Linear distribution.

\ = i for i = 1,2, ... , 50,

(\ + Xi+i)      ..lf,,-, AQ
p¡ =-2- =        2 ' =   '     ' ' ' '

p, was computed by Theorem 3.2. Pj is symmetric from top to bottom.  The

largest elements of px are p25X = p261 = .397.  The smallest elements of pj are

Pi,i=P5o,i =-25 xlO-14.'

Example 2.  Geometric distribution.

X,. = (1.1)'' for i=l,2,-50,

(\ + \+i)
P,=     '   2'+1      for i = 1,2,..., 49.

The largest element of p   is p8 , = .495.  The smallest element of p. is pso . =

.162 x 10"52.

Example 3.  Tchebychev distribution.

X¡ = cos ( — 1 for i = 1, 2, ... , 50,

(\ + \+l)
ßi= 2 for i = 1,2, ...,49.

The largest elements of p. are p2S , = p26 . = .228.  The smallest elements of px

are p. . = p50 . = .642 x 10-3.

The tiny elements of p, in Examples 1 and 2 are due to the large variation in

magnitudes of the numbers (x'(Xfc) \k = 1,2, . . . ,n}.  Most practical examples also

show large variations, which leads to a perverse starting vector with some tiny eigen-

components.  Such tiny components are unlikely to appear in a randomly chosen

vector.  More importantly, such tiny components are unstable in the face of rounding

errors.

By standard rounding error analysis

(2) qx=Zpx+f,    ll/ll <n3/2e,

where e is the relative machine precision.   In exact arithmetic,

(3) Z*qx=px+Z*f.

Unless Z has some special symmetry, the term Z*/will swamp any tiny component

of p,.  That is, qx is unlikely to have any eigencomponents much smaller than e.

Even if c/. had precisely the eigencomponents desired, the first step of the Lanczos

algorithm would obliterate the small components unless the example were specially

rigged.  The first step of the algorithm computes q2 as

(4) ßxq2=(A-axI)qx+f,    where ||/|| < «3/2e \\A \\.
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Again,/will be randomly distributed among the various eigendirections and will

prevent q2 from inheriting any tiny components from qx.

We have been able to observe delayed convergence for large matrices only for

two classes.   Tchebychev distributions come very close to minimizing the variation in

x'i n(Aj)-  Therefore, Tchebychev distributions (even on fairly large problems) do not

have components of p. smaller than e.  The other class of examples is diagonal matrices

in which the rounding errors are uncoupled and tiny elements of p. (which is qx) are

not swamped by small multiples of much larger elements.
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